N掺杂锐钛矿TiO_2可见光催化活性的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机科学的迅猛发展和量子化学算法的不断改进,材料计算在物理研究中占有越来越重要的位置。材料计算不仅可以用来解释实验现象,更为重要的是还可以预测材料的性能以开发出新型功能材料。近年来,N掺杂TiO_2材料由于可显著提高可见光催化活性而备受关注;然而目前人们对其可见光催化活性机理的认识尚不统一,其微观电子结构性质尚需进一步借助于当前的计算模拟技术进行研究。为此本论文采用第一性原理方法计算了N掺杂TiO_2各体系的电子结构,在此基础上对其电子结构变化的原因和可见光催化活性进行了深入的分析和讨论。
     主要内容如下:
     第一章主要介绍了有关二氧化钛的一些基本情况。二氧化钛因具有较好的稳定性、无毒、廉价和光催化活性高等优点而成为当前实验和理论的一个重要研究对象。我们首先简单介绍了TiO_2半导体的光催化基本原理和主要用途;接着简述了实验和理论两方面对TiO_2进行掺杂改性研究的一些方法;然后着重介绍了N掺杂TiO_2光催化剂的研究进展和目前存在的主要问题。最后针对目前存在的主要问题,提出本论文的研究意义和主要研究内容。
     第二章在简单回顾材料计算科学和量子化学发展的基础上,依次详细介绍了密度泛函理论方法的理论基础和几种常用的交换关联能泛函;最后针对本文所使用的Castep模拟软件进行了简单的介绍。
     第三章采用基于密度泛函理论的自旋极化平面波计算方法,研究了锐钛矿TiO_2及N掺杂TiO_2的电子结构,分析了其可见光催化活性提高的原因。本文的计算数据表明,与纯TiO_2的相比,N掺杂并未改变体系导带底的位置而使其价带顶升高了0.272 eV,且在略高于价带顶的带隙处引进由N 2p、O 2p和Ti 3d态组成的带间隙态。这三个态的共同作用使得受主态能级展宽增大和带间隙电子态在实空间分布上表现出既有局域性又有离域性的特点。Mulliken集居数分析和差电子密度分析揭示了N掺杂TiO_2电子结构变化的原因:一方面由于N比O少一个电子使得单一N掺杂TiO_2超胞体系少一个电子,在体系中引进受主态;另一方面N取代晶格O掺杂后,N、O电负性差导致在体系中形成相对较强的N-Ti共价键,受此相对较强共价电子云的影响体系电子结构发生了变化。价带的上移和扩展带隙态提高了可见光催化活性,较好的解释了实验现象。
     第四章通过对三类模型的计算,系统研究了氧空位对N掺杂TiO_2体系电子结构及光催化活性的影响。考虑到氧空位和N杂质间的相互作用,我们分别采用两种方法对这三类体系的电子结构性质进行计算:即对含施主态和不含施主态的体系分别采用DFT+U方法和标准DFT方法。含氧空位TiO_2的计算结果显示:氧空位在带隙中引进了深施主能级,该深施主电子态在实空间分布上具有较强的局域特性。一个氧空位与一个近邻N共存体系的计算结果表明,在带隙中出现两个局域态密度峰,其中一个峰位于价带顶附近,另一个则位于距价带顶约1 eV处。氧空位与两个近邻N共存体系的计算数据显示,当两个NTi_3单元不在同一平面时,价带顶向高能端移动了0.18 eV,当两个NTi_3单元在同一平面时,在近邻价带顶之上出现局域态密度峰。基于以上各体系的电子结构性质,分别对每个体系电子结构改变的原因展开了较深入的分析;最后对各体系的可见光光催化活性进行了简单的讨论。
     第五章应用超软赝势自旋极化平面波方法,研究了H对N掺杂TiO_2体系的影响。计算结果显示H与N结合可以改善N掺杂TiO_2体系的稳定性,提高体系的含N量;在某种条件下,含N量增加一倍的H、N共存体系比单一N掺杂体系还稳定。此外,各体系的电子结构数据表明,N/H共掺杂TiO_2的价带顶向高能端发生微小的偏移,带隙态消失;这说明在N掺杂浓度相同的情况下,该体系在提高可见光活性上并不优于单一N掺杂的TiO_2体系。然而,对于含N量增加一倍的N、H共掺杂TiO_2体系,价带被抬高了0.54 eV,且价带之上的受主态与价带电子态在某种程度上发生一定的混杂;与单一N掺杂TiO_2的计算结果相比,费米能级附近的电子态离域性增强;这些因素都易于促进体系可见光催化活性的提高。各体系电子结构变化的主要原因是由于N-Ti键的电子能级相对较高所致。
Along with the swift development of computer technology and the constant improvement of computational methods of quantum chemistry, material computational technology has become more and more important in modern physics. This is because it has been used to interpret the experimental phenomena, and the special important role is that it can be used to predict and develop the new functional materials. On the other hand, recent researches have reported that N-doped TiO_2 can remarkably improve the photocatalytic activity under visible light irradiation, and it has received extensive attention. However, the uniform unambiguous understanding on the mechanism of visible-light photocatalysis of N-doped TiO_2 is still lacking, and its electronic structural properties still need to be deeply investigated by modern computational simulation techniques. So the first principles calculations are employed to investigate some systems about N-doped TiO_2 in this paper. Based on the calculated results, we further discuss the reasons of the electronic structural change and the visible-light photocatalytic activity of all the doped systems. The main contents are presented as the followings:
     In the first chapter, some main basic information about TiO_2 is introduced. Titanium dioxide, as one of the most promising photocatalyst, has exceptional properties such as nontoxicity, low cost, and long-term stability against chemical corrosion; and has attracted worldwide research concerns. Firstly, we simply introduce the basic principle of photocatalyic oxidation and the major applications of the TiO_2. Secondly, some common methods used to improve the visible-light photoactivity of TiO_2 by doping are narrated. Then, we highlight the progresses and some unresolved problems in research on N-doped TiO_2. Finally, based on the present problems, we describe the purpose and meaning of our research on N-doped TiO_2。
     In the second chapter, we firstly give a brief review on the development of computational material science and quantum chemistry. Then, we focus on describing the theoretical basis of the density-function methods and several common exchange-correlation functional approaches in details. At last, we simply introduce the simulation package Castep used in this work.
     In the third chapter, we investigate the anatase TiO_2 doped with N by using spin-polarized plane-wave method based on density functional theory. The calculated results show that in comparision with pure TiO_2, the conduction band minimum is almost unchanged. However, its valence band maximum shifts to high energy by 0.272 eV, and the band-gap states composed of N 2p, O 2p and Ti 3d states are formed through the three states entering into the gap. The combinations of the three states make the band-gap states expanded and delocalized to some extent. The origin of the electronic structural changes for N-doped TiO_2 is revealed by the electron density difference and the population analysis. It is because that the N-doped TiO_2 supercell has one electron less than pure TiO_2 one and the comparatively stronger N-Ti covalent bonds are formed due to the effect of electronegative difference between nitrogen and oxygen. The lifted VBM and the wide band-gap states enhance the visible-light photocatalytic performance of N-doped TiO_2, providing a good interpretation for the experiment phenomena.
     In the fourth chapter, we systematically investigate the effect of oxygen vacancy on the electronic structure and the photocatalytic performance of N-doped TiO_2 by calculating three kinds of models. Considering the interactions between the oxygen vacancy and the N dopant, we employ two different methods to calculate the electronic structural properties of the three systems, respectively. The DFT+U and the standard DFT methods are used to study the systems with and without donor states, respectively. The calculated results of titania containing oxygen vacancy show that the oxygen vacancy introduces the deep donor states in band gap, and the distributions of the band-gap states have highly localized character in real space. The calculations of TiO_2 supercell including one oxygen vacancy next neighboring to a nitrogen indicate that there exist two localized density of state peaks in band gap. One peak just locates above the valence band maximum and the other one sites at about 1 eV above the valence band maximum. The obtained data by calculating the TiO_2 supercells with one oxygen vacancy next neighboring to two N, describe that the valence band maximum is shifted to high energy by 0.18 eV as the two NTi_3 units lie in different plane, and that there localizes one density of state peak just above the valence band maximum as the two NTi_3 units place in the same plane. According to the data, we further analyze the reason of electronic structural change for every system. At last, the visible-light photocatalytic activities of all systems are simply discussed.
     In the fifth chapter, the ultrasolft-pseudopotential spin-polarized plane-wave method is used to investigate the influence of H on the N-doped TiO_2. The calculated results show that the H bonding to the N in N-doped TiO_2 can improve the stability of systems, and hence increases the contents of N dopant. Under certain conditions, the TiO_2 containing N bonded with H is more stable than the TiO_2 doped with single N even if the N concentration in former system is twice as high as that in the latter one. In addition, the electronic structure calculations for all systems show that the valence band maximum of N/H-codoped TiO_2 slightly shifts to high energy and the band-gap states of TiO_2 doped with single N disappear. This means that with the same N contents, the single N-doped TiO_2 has advantage over the N/H-codoped TiO_2 in improvement of visible-light photocatalytic performance. However, for the TiO_2 supercell including one nitrogen as well as a N bonded to a H, the valence band maximum is upraised by about 0.54 eV, the acceptor states weakly mix with valence band, and the distribution of the electronic states near the Fermi level has highly delocalized nature compared to the single N-doped TiO_2. All these factors can promote the increase of visible-light photocatalytic activity. The reasons of electronic structural variations for all N-doped TiO_2 with H, are mainly attributed to the relatively higher electron energy in N-Ti bond.
引文
[1] A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode [J]. Nature 1972, 238, 37.
    [2] D. Goswami, A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes [J]. J. Sol. Energy Eng. 1997, 119, 101.
    [3] J. Zhao, H. Hidaka, A. Takamura, et al., Photodegradation of surfactants. 11.ξ.-Potential measurements in the photocatalytic oxidation of surfactants in aqueous titania dispersions [J]. Langmuir 1993, 9, 1646.
    [4] H. Hidaka, J. Zhao, E. Pelizzetti, et al., Photodegradation of surfactants. VIII, Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface [J]. J. Phys. Chem. 1992, 96, 2226.
    [5] A. Fernandez, G. Lassaletta, V. Jimenez, et al., Preparation and characterization of TiO_2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification [J]. Appl. Catal. B: Environ 1995, 7, 49.
    [6] D. F. Ollis, Photocatalytic purification and treatment of water and air [C]. Elsevier Science Publishers, 1993, 820.
    [7] D. F. Ollis, Photocatalytic purification and remediation of contaminated air and water [J].Comptes Rendus de l'Acadé|mie des Sci. Ser. IIC: Chem. 2000, 3, 405.
    [8] H. Al-Ekabi, D. Ollis, Photocatalytic purification and treatment of water and air [J]. The Netherland: Elsevier Sci. 1993, 321.
    [9] S. Hager, R. Bauer, Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide [J]. Chemosphere 1999, 38, 1549.
    [10] K. P. Kühn, I. F. Chaberny, K. Massholder, et al., Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light [J]. Chemosphere 2003, 53, 71.
    [11] F. Salih, Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation [J]. J. Appl. Microbiol. 2002, 92, 920.
    [12] J. C. Ireland, P. Klostermann, E. Rice, et al., Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation [J]. Appl. Env. Microbiol. 1993, 59, 1668.
    [13] K. Tanaka, M. F. V. Capule, T. Hisanaga, Effect of crystallinity of TiO_2 on its photocatalytic action [J]. Chem. Phys. Lett. 1991, 187, 73.
    [14] M. R. Hoffmann, S. T. Martin, W. Choi, et al., Environmental applications of semiconductor photocatalysis [J]. Chem. Rev. 1995, 95, 69.
    [15] S. Sato, J. White, Photodecomposition of water over Pt/TiO_2 catalysts [J]. Chem. Phys. Lett. 1980, 72, 83.
    [16] J. Grzechulska, A. W. Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water overmodified titanium dioxide [J]. Appl. Catal. B: Environ 2002, 36, 45.
    [17] C. Lettmann, K. Hildenbrand, H. Kisch, et al., Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst [J]. Appl. Catal. B: Environ 2001, 32, 215.
    [18] S. Torii, H. Tanaka, N. Tada, et al., Ene-type chlorination of olefins with dichlorine monoxide [J]. Chem. Lett. 1984, 877.
    [19] R. Cai, K. Hashimoto, K. Itoh, et al., Photokilling of Malignant-Cells with Ultrafine TiO_2 Powder [J]. Bull. Chem. Soc. Jpn. 1991, 64, 1268.
    [20] J. J. Lagref, M. K. Nazeeruddin, M. Gr tzel, Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO_2 solar cells [J]. Synth. Met. 2003, 138, 333.
    [21] R. Palomino-Merino, A. Conde-Gallardo, M. Garcia-Rocha, et al., Photoluminescence of TiO_2: Eu3+ thin films obtained by sol-gel on Si and Corning glass substrates [J]. Thin Solid Films 2001, 401, 118.
    [22] C. Delerue, M. Lannoo, Description of the trends for rare-earth impurities in semiconductors [J]. Phys. Rev. Lett. 1991, 67, 3006.
    [23] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem. 1994, 98, 13669.
    [24] M. Rahman, K. Krishna, T. Soga, et al., Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO_2 thin films [J]. J Phys Chem Solids 1999, 60, 201.
    [25] K. Wilke, H. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania [J]. J. Photochem. Photobiol., A: Chem. 1999, 121, 49.
    [26] S. Klosek, D. Raftery, Visible light driven V-doped TiO_2 photocatalyst and its photooxidation of ethanol [J]. J. Phys. Chem. B 2001, 105, 2815.
    [27] S. T. Martin, C. L. Morrison, M. R. Hoffmann, Photochemical mechanism of size-quantized vanadium-doped TiO_2 particles [J]. J. Phys. Chem. 1994, 98, 13695.
    [28] S. Jeon, P. V. Braun, Hydrothermal synthesis of Er-doped luminescent TiO_2 nanoparticles [J]. Chem. Mater. 2003, 15, 1256.
    [29] H. Xin, R. Ma, L. Wang, et al., Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions [J]. Appl. Phys. Lett. 2004, 85, 4187.
    [30] K. L. Frindell, M. H. Bartl, M. R. Robinson, et al., Visible and near-IR luminescence via energy transfer in rare earth doped mesoporous titania thin films with nanocrystalline walls [J]. J. Solid State Chem. 2003, 172, 81.
    [31] C. Fu, T. Li, J. Qi, et al., Theoretical study on the electronic and optical properties of Ce3+-doped TiO_2 photocatalysts [J]. Chem. Phys. Lett. 2010, 494, 117.
    [32] B. Wen, C. Liu, Y. Liu, Bamboo-shaped Ag-doped TiO_2 nanowires with heterojunctions [J]. Inorg. Chem. 2005, 44, 6503.
    [33] S. Kim, S. J. Hwang, W. Choi, Visible light active platinum-ion-doped TiO_2 photocatalyst [J]. J. Phys. Chem. B 2005, 109, 24260.
    [34] Y. Bessekhouad, D. Robert, J. Weber, et al., Effect of alkaline-doped TiO_2 on photocatalytic efficiency [J]. J. Photochem. Photobiol., A: Chem. 2004, 167, 49.
    [35] P. Peumans, S. R. Forrest, Separation of geminate charge-pairs at donor-acceptor interfaces in disordered solids [J]. Chem. Phys. Lett. 2004, 398, 27.
    [36] K. E. Karakitsou, X. E. Verykios, Effects of altervalent cation doping of titania on its performance as a photocatalyst for water cleavage [J]. J. Phys. Chem. 1993, 97, 1184.
    [37] C. x. Li, Z. z. Yang, Y. f. Gu, et al., Preparation of composite photocatalyst Fe/ZnO-TiO_2 and its photocatalytic activity [J]. J. Lanzhou University of Technol. 2008, 34, 29.
    [38] Y. Jin, G. Li, Y. Zhang, et al., Photoluminescence of anatase TiO_2 thin films achieved by the addition of ZnFe2O4 [J]. J. Phys.: Condens. Matter. 2001, 13, L913.
    [39] Z. Yuan, characterization and photocatalyticactivity of ZnFe2O4/TiO_2 nanocomposite [J]. J. Mater. Chem. 2001, 11, 1265.
    [40] Y. Hou, X. Y. Li, Q. D. Zhao, et al., Electrochemical Method for Synthesis of a ZnFe2O4/TiO_2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity [J]. Adv. Funct. Mater. 2010, 20, 2165.
    [41] J. Yin, L. J. Bie, Z. H. Yuan, Photoelectrochemical property of ZnFe2O4/TiO_2 double-layered films [J]. Materials research bulletin 2007, 42, 1402.
    [42] G. Li, Y. Jin, Y. Zhang, et al., Fine structures of photoluminescence spectra of TiO_2 thin films with the addition of ZnFe2O4 [J]. J. Phys. D: Appl. Phys. 2002, 35, L37.
    [43] X. d. Lu, C. z. Jiang, Preparation and Photocatalytic Activities of Low Amount Eu3+ / Gd3+ Codoped TiO_2 [J]. Transactions of Shenyang Ligong University 2009, 28(1),
    [44] Y. Zhou, K. L. Huang, Z. P. Zhu, et al., Preparation and Photocatalysis Activity of Eu2+/Gd3+ codoped Nano-TiO_2 Multiplex Photocatalyst from Sol-Gel Process Catalyzed with Acid [J]. J. Inorg. Mater. 2008, 23, 1085.
    [45] Z. Luo, Q. H. Gao, Decrease in the photoactivity of TiO_2 pigment on doping with transition metals [J]. J. Photochem. Photobiol., A: Chem. 1992, 63, 367.
    [46] C. z. Jiang, X. d. Lu, Preparation and Photocatalytic Activities of Low Amout Gd3+ and Fe3+ Co-doped TiO_2 Composite Nano-Powders [J]. Non-Ferrous Min. Metall. 2009, 25(4), 40.
    [47] N. Guo, K. Guo, Y. Sheng, et al., Optical Properties and Energy Transfer Mechanism of Tb3+ / Gd3+ Co-doped Nanometer TiO_2 Thin Film [J]. J. Jilin University (Science Edition) 2009, 47(2), 367.
    [48] C. N. Zhang, J. G. Li, Y. H. Leng, et al., (Eu3+ _ Nb5+)-codoped TiO_2 nanopowders synthesized via Ar/O2 radio frequency thermal plasma oxidation processing: Phase composition and photoluminescence properties through energy transfer [J]. Thin Solid Films 2010, 518, 3531.
    [49] W. Luo, R. Li, Y. Liu, et al., Sensitized Luminescence of Sm3+, Eu3+-Codoped TiO_2 Nanoparticles [J]. J. Nanosci. Nanotechnol. 2010, 10, 1693.
    [50] S. Sato, Photocatalytic activity of NOx-doped TiO_2 in the visible light region [J]. Chem. Phys. Lett. 1986, 123, 126.
    [51] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titaniumoxides [J]. Science 2001, 293, 269.
    [52] D. Li, H. Haneda, S. Hishita, et al., Visible-light-driven NF-codoped TiO_2 photocatalysts. 2. Optical characterization, photocatalysis, and potential application to air purification [J]. Chem. Mater. 2005, 17, 2596.
    [53] W. Ho, J. C. Yu, S. Lee, Synthesis of hierarchical nanoporous F-doped TiO_2 spheres with visible light photocatalytic activity [J]. Chem. Commun. 2006, 1115.
    [54] N. Todorova, T. Giannakopoulou, G. Romanos, et al., Preparation of fluorine-doped TiO_2 photocatalysts with controlled crystalline structure [J]. Int. J. Photoenergy 2008, 534038.
    [55] N. Todorova, T. Giannakopoulou, T. Vaimakis, et al., Structure tailoring of fluorine-doped TiO_2 nanostructured powders [J]. Mater. Sci. Eng.: B 2008, 152, 50.
    [56] Y. Cui, H. Du, L. S. Wen, Investigation of Electronic Structures of F-doped TiO_2 by First-principles Calculation [C]. Materials Science Forum 2009, 620-622, 647.
    [57] H. Xu, Z. Zheng, L. Zhang, et al., Hierarchical chlorine-doped rutile TiO_2 spherical clusters of nanorods: Large-scale synthesis and high photocatalytic activity [J]. J. Solid State Chem. 2008, 181, 2516.
    [58] W. Su, Y. Zhang, Z. Li, et al., Multivalency iodine doped TiO_2: preparation, characterization, theoretical studies, and visible-light photocatalysis [J]. Langmuir 2008, 24, 3422.
    [59] Y. Ma, J. W. Fu, X. Tao, et al., Low temperature synthesis of iodine-doped TiO_2 nanocrystallites with enhanced visible-induced photocatalytic activity [J]. J. F. Chen, Appl. Surf. Sci. 2011.
    [60] X. Hong, Z. Wang, W. Cai, et al., Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chem. Mater. 2005, 17, 1548.
    [61] S. Usseglio, A. Damin, D. Scarano, et al., (I2) n Encapsulation inside TiO_2: A Way To Tune Photoactivity in the Visible Region [J]. J. Am. Chem. Soc. 2007, 129, 2822.
    [62] S. Matsushima, K. Takehara, H. Yamane, et al., First-principles energy band calculation for undoped and S-doped TiO_2 with anatase structure [J]. J. Phys. Chem. Solids 2007, 68, 206.
    [63] F. H. Tian, C. B. Liu, DFT description on electronic structure and optical absorption properties of anionic S-doped anatase TiO_2 [J]. J. Phys. Chem. B 2006, 110, 17866.
    [64] T. Ohno, Preparation of visible light active S-doped TiO_2 photocatalysts and their photocatalytic activities [J]. Water Sci. Technol. 2004, 49, 159.
    [65] T. Umebayashi, T. Yamaki, S. Tanaka, et al., Visible light-induced degradation of methylene blue on S-doped TiO_2 [J]. Chem. Lett. 2003, 32, 330.
    [66] T. Ohno, T. Mitsui, M. Matsumura, Photocatalytic activity of S-doped TiO_2 photocatalyst under visible light [J]. Chem. Lett. 2003, 32, 364.
    [67] J. C. Yu, W. Ho, J. Yu, et al., Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environ. Sci. Technol. 2005, 39, 1175.
    [68] T. Ohno, M. Akiyoshi, T. Umebayashi, et al., Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light [J]. Appl. Catal. A: Gen. 2004, 265, 115.
    [69] W. Ho, J. C. Yu, S. Lee, Low-temperature hydrothermal synthesis of S-doped TiO_2 with visible lightphotocatalytic activity [J]. J. Solid State Chem. 2006, 179, 1171.
    [70] S. Liu, X. Chen, A visible light response TiO_2 photocatalyst realized by cationic S-doping and its application for phenol degradation [J]. J. Hazard. Mater. 2008, 152, 48.
    [71] Y. Liu, J. Liu, Y. Lin, et al., Simple fabrication and photocatalytic activity of S-doped TiO_2 under low power LED visible light irradiation [J]. Ceram. Int. 2009, 35, 3061.
    [72] X. Tang, D. Li, Sulfur-doped highly ordered TiO_2 nanotubular arrays with visible light response [J]. J. Phys. Chem. C 2008, 112, 5405.
    [73] Y. Cui, H. Du, L. Wen, Origin of visible-light-induced photocatalytic properties of S-doped anatase TiO_2 by first-principles investigation [J]. Solid State Commun. 2009, 149, 634.
    [74] D. Chen, D. Yang, Q. Wang, et al., Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles [J]. Ind. Eng. Chem. Res. 2006, 45, 4110.
    [75] M. Bettinelli, V. Dallacasa, D. Falcomer, et al., Photocatalytic activity of TiO_2 doped with boron and vanadium [J]. J. Hazard. Mater. 2007, 146, 529.
    [76] S. In, A. Orlov, R. Berg, et al., Effective visible light-activated B-doped and B, N-codoped TiO_2 photocatalysts [J]. J. Am. Chem. Soc. 2007, 129, 13790.
    [77] A. Zaleska, J. W. Sobczak, E. Grabowska, et al., Preparation and photocatalytic activity of boron-modified TiO_2 under UV and visible light [J]. Appl. Catal. B: Environ 2008, 78, 92.
    [78] N. Lu, H. Zhao, J. Li, et al., Characterization of boron-doped TiO_2 nanotube arrays prepared by electrochemical method and its visible light activity [J]. Sep. Purif. Technol. 2008, 62, 668.
    [79] K. Yang, Y. Dai, B. Huang, Origin of the photoactivity in boron-doped anatase and rutile TiO_2 calculated from first principles [J]. Phys. Rev. B 2007, 76, 195201.
    [80] S. U. M. Khan, M. Al-Shahry, W. B. Ingler, Efficient photochemical water splitting by a chemically modified n-TiO_2 [J]. Science 2002, 297, 2243.
    [81] S. Sakthivel, H. Kisch, Daylight Photocatalysis by Carbon- Modified Titanium Dioxide [J]. Angew. Chem. Int. Ed. 2003, 42, 4908.
    [82] H. Irie, Y. Watanabe, K. Hashimoto, Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalyst [J]. Chem. Lett. 2003, 32, 772.
    [83] C. Di Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide [J]. Chem. Mater. 2005, 17, 6656.
    [84] J. H. Park, S. Kim, A. J. Bard, Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano lett. 2006, 6, 24.
    [85] L. Mai, C. Huang, D. Wang, et al., Effect of C doping on the structural and optical properties of sol-gel TiO_2 thin films [J]. Appl. Surf. Sci. 2009, 255, 9285.
    [86] Y. Park, W. Kim, H. Park, et al., Carbon-doped TiO_2 photocatalyst synthesized without using an external carbon precursor and the visible light activity [J]. Appl. Catal. B: Environ 2009, 91, 355.
    [87] J. Yu, M. Zhou, B. Cheng, et al., Preparation, characterization and photocatalytic activity of in situ N, S-codoped TiO_2 powders [J]. J. Mol. Catal. A: Chem. 2006, 246, 176.
    [88] J. Yang, H. Bai, X. Tan, et al., IR and XPS investigation of visible-light photocatalysis—Nitrogen -carbon-doped TiO_2 film [J]. Appl. Surf. Sci. 2006, 253, 1988.
    [89] D. G. Huang, S. J. Liao, J. M. Liu, et al., Preparation of visible-light responsive NF-codoped TiO_2 photocatalyst by a sol-gel-solvothermal method [J]. J. Photochem. Photobiol., A: Chem. 2006, 184, 282.
    [90] Y. Cong, F. Chen, J. Zhang, et al., Carbon and nitrogen-codoped TiO_2 with high visible light photocatalytic activity [J]. Chem. Lett. 2006, 35, 800.
    [91] T. Ohno, T. Tsubota, Y. Nakamura, et al., Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light [J]. Appl. Catal. A: Gen. 2005, 288, 74.
    [92] D. Li, N. Ohashi, S. Hishita, et al., Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and NF-codoped TiO_2 powders by means of experimental characterizations and theoretical calculations [J]. J. Solid State Chem. 2005, 178, 3293.
    [93] J. Y. Lee, J. Park, J. H. Cho, Electronic properties of N- and C- doped TiO_2 [J]. Appl. Phys. Lett. 2005, 87, 011904.
    [94] T. Tachikawa, S. Tojo, K. Kawai, M. Endo, M. Fujitsuka, et al., Photocatalytic oxidation reactivity of holes in the sulfur-and carbon-doped TiO_2 powders studied by time-resolved diffuse reflectance spectroscopy [J]. J. Phys. Chem. B 2004, 108, 19299.
    [95] H. Liu, L. Gao, (Sulfur, Nitrogen)-Codoped Rutile-Titanium Dioxide as a Visible-Light-Activated Photocatalyst [J]. J. Am. Ceram. Soc. 2004, 87, 1582.
    [96] D. Li, H. Haneda, S. Hishita, et al., Visible-light-driven N-F-codoped TiO_2 photocatalysts. 1. Synthesis by spray pyrolysis and surface characterization [J]. Chem. Mater. 2005, 17, 2588.
    [97] E. A. Reyes-Garcia, Y. Sun, D. Raftery, Solid-state characterization of the nuclear and electronic environments in a boron-fluoride co-doped TiO_2 visible-light photocatalyst [J]. J. Phys. Chem. C 2007, 111, 17146.
    [98] Y. Su, X. Zhang, S. Han, et al., FB-codoping of anodized TiO_2 nanotubes using chemical vapor deposition [J]. Electrochem. Commun. 2007, 9, 2291.
    [99] X. Chen, C. Burda, The electronic origin of the visible-light absorption properties of C-, N-and S-doped TiO_2 nanomaterials [J]. J. Am. Chem. Soc. 2008, 130, 5018.
    [100] X. Chen, X. Zhang, Y. Su, et al., Preparation of visible-light responsive PF-codoped TiO_2 nanotubes [J]. Appl. Surf. Sci. 2008, 254, 6693.
    [101] N. O. Gopal, H. H. Lo, S. C. Ke, Chemical state and environment of boron dopant in B, N-codoped anatase TiO_2 nanoparticles: An avenue for probing diamagnetic dopants in TiO_2 by electron paramagnetic resonance spectroscopy [J]. J. Am. Chem. Soc. 2008, 130, 2760.
    [102] X. Li, S. Liu, Characterization of Visible Light Response NF Codoped TiO_2 Photocatalyst Prepared by Acid Catalyzed Hydrolysis [J]. Acta Phys.-Chim. Sinica 2008, 24, 2019.
    [103] Y. Li, G. Ma, S. Peng, et al., Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution [J]. Appl. Surf. Sci. 2008, 254, 6831.
    [104] Q. Ling, J. Sun, Q. Zhou, Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen [J]. Appl. Surf. Sci. 2008, 254, 3236.
    [105] Y. Xie, X. Zhao, Y. Li, et al., CTAB-assisted synthesis of mesoporous FN-codoped TiO_2 powders with high visible-light-driven catalytic activity and adsorption capacity [J]. J. Solid State Chem. 2008, 181, 1936.
    [106] J. H. Xu, J. Li, W. L. Dai, et al., Simple fabrication of twist-like helix N, S-codoped titania photocatalyst with visible-light response [J]. Appl. Catal. B: Environ 2008, 79, 72.
    [107] T. Yamada, Y. Gao, M. Nagai, Hydrothermal synthesis and evaluation of visible-light-active photocatalyst of (N, F)-codoped anatase TiO_2 from an F-containing titanium chemical [J]. J. Ceram. Soc. Jpn. 2008, 116, 614.
    [108] J. Yang, H. Bai, Q. Jiang, et al., Visible-light photocatalysis in nitrogen-carbon-doped TiO_2 films obtained by heating TiO_2 gel-film in an ionized N2 gas [J]. Thin Solid Films 2008, 516, 1736.
    [109] G. Zhang, X. Ding, Y. Hu, et al., Photocatalytic degradation of 4BS dye by N, S-codoped TiO_2 pillared montmorillonite photocatalysts under visible-light irradiation [J]. J. Phys. Chem. C 2008, 112, 17994.
    [110] Y. Ao, J. Xu, D. Fu, et al., Visible-light responsive C, N-codoped Titania hollow spheres for X-3B dye photodegradation [J]. Microporous Mesoporous Mater. 2009, 118, 382.
    [111] M. Pelaez, A. A. de la Cruz, E. Stathatos, et al., Visible light-activated NF-codoped TiO_2 nanoparticles for the photocatalytic degradation of microcystin-LR in water [J]. Catal. Today 2009, 144, 19.
    [112] Y. Shen, T. Xiong, H. Du, et al., Investigation of Br-N Co-doped TiO_2 photocatalysts: preparation and photocatalytic activities under visible light [J]. J. Sol-Gel Sci. Technol. 2009, 52, 41.
    [113] C. Wen, Y. J. Zhu, T. Kanbara, et al., Effects of I and F codoped TiO_2 on the photocatalytic degradation of methylene blue [J]. Desalination 2009, 249, 621.
    [114] C. Yu, J. C. Yu, A Simple Way to Prepare C-N-Codoped TiO_2 Photocatalyst with Visible-Light Activity [J]. Catal. lett. 2009, 129, 462.
    [115] S. Y. Guo, B. Chi, J. B. Sun, et al., reparation, Characterization of N, P Codoped TiO_2 Nanoparticles with their Excellent Photocatalystic Properties [J]. Adv. Mater. Res. 2010, 113, 2162.
    [116] F. Wei, L. Ni, P. Cui, Preparation and characterization of NS-codoped TiO_2 photocatalyst and its photocatalytic activity [J]. J. Hazard. Mater. 2008, 156, 135.
    [117] D. Chen, Z. Jiang, J. Geng, et al., Carbon and nitrogen co-doped TiO_2 with enhanced visible-light photocatalytic activity [J]. Ind. Eng. Chem. Res. 2007, 46, 2741.
    [118] W. Zhao, W. Ma, C. Chen, et al., Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO_2-x Bx under Visible Irradiation [J]. J. Am. Chem. Soc. 2004, 126, 4782.
    [119] C. Gao, H. Song, L. Hu, et al., Luminescence enhancement in bromine and samarium co-doped TiO_2 semiconductor nanocrystalline powders [J]. J. Lumin. 2008, 128, 559.
    [120] H. Wei, Y. Wu, N. Lun, et al., Preparation and photocatalysis of TiO_2 nanoparticles co-doped with nitrogen and lanthanum [J]. J. Mater. Sci. 2004, 39, 1305.
    [121] Y. Sakatani, J. Nunoshige, H. Ando, et al., Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N Co-doped TiO_2 [J]. Chem. Lett. 2003, 32, 1156.
    [122] T. Ohno, T. Tsubota, M. Toyofuku, et al., Photocatalytic activity of a TiO_2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light [J]. Catal. Lett. 2004, 98, 255.
    [123] K. Y. Song, M. K. Park, Y. T. Kwon, et al., Preparation of transparent particulate MoO3/TiO_2 and WO3/TiO_2 films and their photocatalytic properties [J]. Chem. Mater. 2001, 13, 2349.
    [124] B. Gao, Y. Ma, Y. Cao, et al., Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide [J]. J. Phys. Chem. B 2006, 110, 14391.
    [125] R. Long, N. J. English, First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania [J]. Appl. Phys. Lett. 2009, 94, 132102.
    [126] R. Long, N. J. English, Synergistic Effects on Band Gap-Narrowing in Titania by Codoping from First-Principles Calculations [J]. Chem. Mater. 2010, 22, 1616.
    [127] R. Long, N. J. English, Electronic properties of F/Zr co-doped anatase TiO_2 photocatalysts from GGA+U calculations [J]. Chem. Phys. Lett. 2010, 498, 338.
    [128] Y. Gai, J. Li, S. S. Li, et al., Design of Narrow-Gap TiO_2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J]. Phys. Rev. Lett. 2009, 102, 36402.
    [129] W. Zhu, X. Qiu, V. Iancu, et al., Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity [J]. Phys. Rev. Lett. 2009, 103, 226401.
    [130] R. Long, N. J. English, Band gap engineering of (N, Ta)-codoped TiO_2: A first-principles calculation [J]. Chem. Phys. Lett. 2009, 478, 175.
    [131] G. Pan, Z. Xuejun, Z. Wenfang, et al., First-principle study on anatase TiO_2 codoped with nitrogen and ytterbium [J]. J. Semicond. 2010, 31, 032001.
    [132] W. Pingxiao, T. Jianwen, D. Zhi, Preparation and photocatalysis of TiO_2 nanoparticles doped with nitrogen and cadmium [J]. Mater. Chem. Phys. 2007, 103, 264.
    [133] S. T. Gu, X. Wang, Q. Liu, et al., Photocatalytic Reduction of Methyl Orange Using Titania Photocatalyst Codoped with Nitrogen and Gadolinium under Visible Light Illumination [J]. Adv. Mater. Res. 2009, 79, 2127.
    [134] J. Zhang, C. Pan, P. Fang, et al., Mo+C Codoped TiO_2 Using Thermal Oxidation for Enhancing Photocatalytic Activity [J]. ACS Appl. Mater. Interfaces 2010, 2, 1173.
    [135] C. Burda, Y. Lou, X. Chen, et al., Enhanced nitrogen doping in TiO_2 nanoparticles [J]. Nano lett. 2003, 3, 1049.
    [136] T. Ihara, M. Miyoshi, Y. Iriyama, et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Appl. Catal. B: Environ 2003, 42, 403.
    [137] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-x Nx Powders [J]. J. Phys. Chem. B 2003, 107, 5483.
    [138] T. Lindgren, J. M. Mwabora, E. Avendao, et al., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J. Phys. Chem. B 2003, 107, 5709.
    [139] S. Z. Chen, P. Y. Zhang, D. M. Zhuang, et al., Investigation of nitrogen doped TiO_2 photocatalyticfilms prepared by reactive magnetron sputtering [J]. Catal. Commun. 2004, 5, 677.
    [140] O. Diwald, T. L. Thompson, T. Zubkov, et al., Photochemical Activity of Nitrogen-Doped Rutile TiO_2(110) in Visible Light [J]. J. Phys. Chem. B 2004, 108, 6004.
    [141] L. Miao, The improvement of optical reactivity for TiO_2 thin films by N2–H2 plasma surface-treatment [J]. J. Cryst. Growth 2004, 260, 118.
    [142] M. Mrowetz, W. Balcerski, A. Colussi, et al., Oxidative power of nitrogen-doped TiO_2 photocatalysts under visible illumination [J]. J. Phys. Chem. B 2004, 108, 17269.
    [143] S. Mohamed, O. Kappertz, T. Niemeier, et al., Effect of heat treatment on structural, optical and mechanical properties of sputtered TiOxNy films [J]. Thin Solid Films 2004, 468, 48.
    [144] J. M. Mwabora, T. Lindgren, E. Avenda o, et al., Structure, Composition, and Morphology of Photoelectrochemically Active TiO_2-x Nx Thin Films Deposited by Reactive DC Magnetron Sputtering [J]. J. Phys. Chem. B 2004, 108, 20193.
    [145] R. Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes [J]. J. Phys. Chem. B 2004, 108, 10617.
    [146] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2 [J]. J. Phys. Chem. B 2004, 108, 19384.
    [147] G. R. Torres, T. Lindgren, J. Lu, et al., Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation [J]. J. Phys. Chem. B 2004, 108, 5995.
    [148] M. C. Yang, T. S. Yang, M. S. Wong, Nitrogen-doped titanium oxide films as visible light photocatalyst by vapor deposition [J]. Thin Solid Films 2004, 469, 1.
    [149] S. Yin, H. Yamaki, Q. Zhang, et al., Mechanochemical synthesis of nitrogen-doped titania and its visible light induced NOx destruction ability [J]. Solid State Ionics 2004, 172, 205.
    [150] Y. C. Hong, C. U. Bang, D. H. Shin, et al., Band gap narrowing of TiO_2 by nitrogen doping in atmospheric microwave plasma [J]. Chem. Phys. Lett. 2005, 413, 454.
    [151] K. Kobayakawa, Y. Murakami, Y. Sato, Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxide and urea [J]. J. Photochem. Photobiol., A: Chem. 2005, 170, 177.
    [152] B. Kosowska, S. Mozia, A. W. Morawski, et al., The preparation of TiO_2-nitrogen doped by calcination of TiO_2 xH2O under ammonia atmosphere for visible light photocatalysis [J]. Sol. Energy Mater. Sol. Cells 2005, 88, 269.
    [153] P. G. Wu, C. H. Ma, J. Shang, Effects of nitrogen doping on optical properties of TiO_2 thin films [J]. Appl. Physics A: Mater. Sci. Process. 2005, 81, 1411.
    [154] V. Pore, M. Heikkila, M. Ritala, et al., Atomic layer deposition of TiO_2-xNx thin films for photocatalytic applications [J]. J. Photochem. Photobiol., A: Chem. 2006, 177, 68.
    [155] T. Tachikawa, Y. Takai, S. Tojo, et al., Visible light-induced degradation of ethylene glycol on nitrogen-doped TiO_2 powders [J]. J. Phys. Chem. B 2006, 110, 13158.
    [156] T. S. Yang, M. C. Yang, C. B. Shiu, et al., Effect of N2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation Appl. Surf. Sci. 2006, 252, 3729.
    [157] H. L. Qin, G. B. Gu, S. Liu, Preparation of nitrogen-doped titania using sol-gel technique and itsphotocatalytic activity [J]. Mater. Chem. Phys. 2008, 112, 346.
    [158] K. Prabakar, T. Takahashi, T. Nezuka, et al., Visible light-active nitrogen-doped TiO_2 thin films prepared by DC magnetron sputtering used as a photocatalyst [J]. Renewable Energy 2008, 33, 277.
    [159] T. C. Jagadale, S. P. Takale, R. S. Sonawane, et al., N-Doped TiO_2 Nanoparticle Based Visible Light Photocatalyst by Modified Peroxide Sol- Gel Method [J]. J. Phys. Chem. C 2008, 112, 14595.
    [160] Y. Nakano, T. Morikawa, T. Ohwaki, et al., Origin of visible-light sensitivity in N-doped TiO_2 films [J]. Chem. Phys. 2007, 339, 20.
    [161] S. Livraghi, M. Chierotti, E. Giamello, et al., Nitrogen-doped titanium dioxide active in photocatalytic reactions with visible light: a multi-technique characterization of differently prepared materials [J]. J. Phys. Chem. C 2008, 112, 17244.
    [162] G. Liu, L. Wang, C. Sun, et al., Nitrogen-doped titania nanosheets towards visible light response [J]. Chem. Commun. 2009, 1383, 1383.
    [163] K. A. Michalow, D. Logvinovich, A. Weidenkaff, et al., Synthesis, characterization and electronic structure of nitrogen-doped TiO_2 nanopowder [J]. Catal. Today 2009, 144, 7.
    [164] J. Wang, D. N. Tafen, J. P. Lewis, et al., [J]. J. Am. Chem. Soc. 2009, 131, 12290.
    [165] J. Wang, N. Wu, J. P. Lewis, Visible light photocatalytic activity in nitrogen-doped TiO_2 nanobelts Appl. Phys. Lett. 2009, 94, 093101.
    [166] M. Sathish, B. Viswanathan, R. Viswanath, et al., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO_2 nanocatalyst [J]. Chem. Mater. 2005, 17, 6349.
    [167] S. Sato, R. Nakamura, S. Abe, Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping [J]. Appl. Catal. A: Gen. 2005, 284, 131.
    [168] S. Livraghi, M. C. Paganini, E. Giamello, et al., Origin of photoactivity of nitrogen-doped titanium dioxide under visible light [J]. J. Am. Chem. Soc. 2006, 128, 15666.
    [169] C. Di Valentin, G. Pacchioni, A. Selloni, et al., Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations [J]. J. Phys. Chem. B 2005, 109, 1414.
    [170] Z. Lin, A. Orlov, R. M. Lambert, et al., New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2 [J]. J. Phys. Chem. B 2005, 109, 20948.
    [1] W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechanical relations [J]. Z. Phys. 1925, 33, 879.
    [2] E. Schr(o|¨)dinger, Quantization as an Eigenvalue Problem [J]. Ann. der. Phys. 1926, 79, 361.
    [3] W. Heitler, F. London, Wechselwirkung neutraler Atome und hom?opolare Bindung nach der Quantenmechanik [J]. Z. Phys. 1927, 44, 455.
    [4] L. Pauling, The Nature of the Chemical Bond [M].Iehaca, New York: Cornell University Press 1960.
    [5] R. S. Mulliken, Bonding Power of Electrons and Theory of Valence [J]. Chem. Rev. 1931, 9, 347.
    [6] K. Fukui, H. Fujimoto, Frontier Orbitals and Reaction Paths: selected papers of Kenichi Fukui [M]. World Scientific: London., 1997.
    [7] P. Hohenberg, W. Kohn, Inhomogeneous electron gas [J]. Phys. Rev. 1964, 136, B 864.
    [8] D. M. Ceperley, B. Alder, Ground state of the electron gas by a stochastic method [J]. Phys. Rev. Lett. 1980, 45, 566.
    [9] J. P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev. B 1981, 23, 5048.
    [10] C. Von Weizs cker, Theory of nuclear masses [J]. Z. Phys. 1935, 96, 431.
    [11] F. Perrot, Hydrogen-hydrogen interaction in an electron gas [J]. J. Phys.: Condens. Matter 1994, 6, 431.
    [12] L. Wang, M. Teter, Critical Currents of Ideal Quantum Hall Superfluids [J]. Phys. Rev. B 1992, 45, 13397.
    [13] E. Smargiassi, P. A. Madden, Orbital-free kinetic-energy functionals for first-principles molecular dynamics [J]. Phys. Rev. B 1994, 49, 5220.
    [14] W. Kohn, L. Sham, Self-consistent equations including exchange and correlation effects [J]. Phys. Rev. 1965, 140, A1133.
    [15] M. Luders, A. Ernst, W. Temmerman, et al., Ab initio angle-resolved photoemission in multiple-scattering formulation [J]. J. Phys.: Condens. Matter 2001, 13, 8587.
    [16] R. Stowasser, R. Hoffmann, What do the Kohn-Sham orbitals and eigenvalues mean? [J]. J. Am. Chem. Soc. 1999, 121, 3414.
    [17] J. Muscat, A. Wander, N. Harrison, On the prediction of band gaps from hybrid functional theory [J]. Chem. Phys. Lett. 2001, 342, 397.
    [18] U. Barth, L. Hedin, A local exchange-correlation potential for the spin polarized case [J]. J. Phys. C: Solid State Phys. 1972, 5, 1629.
    [19] O. Gunnarsson, B. Lundqvist, Exchange and correlation in atoms, molecules, and solids by thespin-density-functional formalism [J]. Phys. Rev. B 1976, 13, 4274.
    [20] J. P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation [J]. Phys. Rev. B 1986, 33, 8800.
    [21] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy [J]. Phys. Rev. B 1992, 45, 13244.
    [22] Y. M. Juan, E. Kaxiras, Application of gradient corrections to density-functional theory for atoms and solids [J]. Phys. Rev. B 1993, 48, 14944.
    [23] X. Xu, W. A. Goddard III, Bonding properties of the water dimer: A comparative study of density functional theories [J]. J. Phys. Chem. A 2004, 108, 2305.
    [24] C. Filippi, C. Umrigar, M. Taut, Comparison of exact and approximate density functionals for an exactly soluble model [J]. J. Chem. Phys. 1994, 100, 1290.
    [25] H. Huang, G. H. Gilmer, T. D. de la Rubia, An atomistic simulator for thin film deposition in three dimensions [J]. J. Appl. Phys. 1998, 84, 3636.
    [26] J. White, D. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations [J]. Phys. Rev. B 1994, 50, 4954.
    [27] J. P. Perdew, J. Chevary, S. Vosko, et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B 1992, 46, 6671.
    [28] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple [J]. Phys. Rev. Lett. 1996, 77, 3865.
    [29] B. Hammer, L. B. Hansen, J. K. N rskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Phys. Rev. B 1999, 59, 7413.
    [30] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41, 7892.
    [31] K. Laasonen, A. Pasquarello, R. Car, et al., Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials [J]. Phys. Rev. B 1993, 47, 10142.
    [32] J. Lin, A. Qteish, M. Payne, et al., Optimized and transferable nonlocal separable ab initio pseudopotentials [J]. Phys. Rev. B 1993, 47, 4174.
    [33] R. King-Smith, M. Payne, J. Lin, Real-space implementation of nonlocal pseudopotentials for first-principles total-energy calculations [J]. Phys. Rev. B 1991, 44, 13063.
    [34] D. R. Hamann, M. Schlüter, C. Chiang, Norm-conserving pseudopotentials [J]. Phys. Rev. Lett. 1979, 43, 1494.
    [35] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations [J]. Phys. Rev. B 1976, 13, 5188.
    [36] J. D. Pack, H. J. Monkhorst,“pecial points for Brillouin-zone integrations”-a reply [J]. Phys. Rev. B 1977, 16, 1748.
    [1] A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode [J]. Nature 1972, 238, 37.
    [2] S. Hager, R. Bauer, Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide [J]. Chemosphere 1999, 38, 1549.
    [3] H. Al-Ekabi, D. Ollis, Photocatalytic purification and treatment of water and air [J]. The Netherland: Elsevier Sci. Publishers 1993, 321.
    [4] J. C. Ireland, P. Klostermann, E. Rice, et al., Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation [J]. Appl. Env. Microbiol. 1993, 59, 1668.
    [5] F. Salih, Enhancement of solar inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation [J]. J. Appl. Microbiol. 2002, 92, 920.
    [6] Z. Luo, Q. H. Gao, Decrease in the photoactivity of TiO_2 pigment on doping with transition metals [J]. J. Photochem. Photobiol., A: Chem. 1992, 63, 367.
    [7] C. Delerue, M. Lannoo, Description of the trends for rare-earth impurities in semiconductors [J]. Phys. Rev. Lett. 1991, 67, 3006.
    [8] K. Wilke, H. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania [J]. J. Photochem. Photobiol., A: Chem. 1999, 121, 49.
    [9] W. Choi, A. Termin, M. R. Hoffmann, The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics [J]. J. Phys. Chem. 1994, 98, 13669.
    [10] M. Rahman, K. Krishna, T. Soga, et al., Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO_2 thin films [J]. J. Phys. Chem. Solids 1999, 60, 201.
    [11] S. T. Martin, C. L. Morrison, M. R. Hoffmann, Photochemical mechanism of size-quantized vanadium-doped TiO_2 particles [J]. J. Phys. Chem. 1994, 98, 13695.
    [12] P. Peumans, S. R. Forrest, Separation of geminate charge-pairs at donor-acceptor interfaces in disordered solids [J]. Chem. Phys. Lett. 2004, 398, 27.
    [13] S. Kim, S. J. Hwang, W. Choi, Visible light active platinum-ion-doped TiO_2 photocatalyst [J]. J. Phys. Chem. B 2005, 109, 24260.
    [14] S. Sato, J. White, Photodecomposition of water over Pt/TiO_2 catalysts [J]. Chem. Phys. Lett. 1980, 72, 83.
    [15] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 2001, 293, 269.
    [16] Y. C. Hong, C. U. Bang, D. H. Shin, et al., Band gap narrowing of TiO_2 by nitrogen doping in atmospheric microwave plasma [J]. Chem. Phys. Lett. 2005, 413, 454.
    [17] X. Chen, C. Burda, Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J]. J. Phys. Chem. B 2004, 108, 15446.
    [18] J. L. Gole, J. D. Stout, C. Burda, et al., Highly Efficient Formation of Visible Light Tunable TiO_2-x N x Photocatalysts and Their Transformation at the Nanoscale [J]. J. Phys. Chem. B 2004, 108, 1230.
    [19] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-x Nx Powders [J]. J. Phys. Chem. B 2003, 107, 5483.
    [20] T. Lindgren, J. M. Mwabora, E. Avenda o, et al., Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering [J]. J. Phys. Chem. B 2003, 107, 5709.
    [21] C. Di Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO_2 [J]. Phys. Rev. B 2004, 70, 085116.
    [22] K. Yang, Y. Dai, B. Huang, Study of the nitrogen concentration influence on N-doped TiO_2 anatase from first-principles calculations [J]. J. Phys. Chem. C 2007, 111, 12086.
    [23] M. Batzill, E. H. Morales, U. Diebold, Influence of Nitrogen Doping on the Defect Formation and Surface Properties of TiO_2 Rutile and Anatase [J]. Phys. Rev. Lett. 2006, 96, 026103.
    [24] M. Kitano, K. Funatsu, M. Matsuoka, et al., Preparation of nitrogen-substituted TiO_2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiatio [J]. J. Phys. Chem. B 2006, 110, 25266.
    [25] Z. Lin, A. Orlov, R. M. Lambert, et al., New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2 [J]. J. Phys. Chem. B 2005, 109, 20948.
    [26] Y. Nakano, T. Morikawa, T. Ohwaki, et al., Deep-level optical spectroscopy investigation of N-doped TiO_2 films [J]. Appl. Phys. Lett. 2005, 86, 132104.
    [27] A. K. Rumaiz, J. Woicik, E. Cockayne, et al., Oxygen vacancies in N doped anatase TiO_2: Experiment and first-principles calculations [J]. Appl. Phys. Lett. 2009, 95, 262111.
    [28] C. Di Valentin, G. Pacchioni, A. Selloni, et al., Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations [J]. J. Phys. Chem. B 2005, 109, 11414.
    [29] J. Wang, N. Wu, J. P. Lewis, Visible light photocatalytic activity in nitrogen-doped TiO_2 nanobelts [J]. Appl. Phys. Lett. 2009, 94, 093101.
    [30] J. Wang, D. N. Tafen, J. P. Lewis, et al., Origin of photocatalytic activity of nitrogen-doped TiO_2 nanobelts [J]. J. Am. Chem. Soc. 2009, 131, 12290.
    [31] L. Mi, P. Xu, H. Shen, et al., First-principles calculation of N: H codoping effect on energy gap narrowing of TiO_2 [J]. Appl. Phys. Lett. 2007, 90, 171909.
    [32] R. Long, N. J. English, First-principles calculation of nitrogen-tungsten codoping effects on the band structure of anatase-titania [J]. Appl. Phys. Lett. 2009, 94, 132102.
    [33] Y. Gai, J. Li, S. S. Li, et al., Design of Narrow-Gap TiO_2: A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J]. Phys. Rev. Lett. 2009, 102, 36402.
    [34] W. Zhu, X. Qiu, V. Iancu, et al., Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity [J]. Phys. Rev.Lett. 2009, 103, 226401.
    [35] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41, 7892.
    [36] K. Laasonen, A. Pasquarello, R. Car, et al., Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials [J]. Phys. Rev. B 1993, 47, 10142.
    [37] J. P. Perdew, J. Chevary, S. Vosko, et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B 1992, 46, 6671.
    [38] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations [J]. Phys. Rev. B 1976, 13, 5188.
    [39] J. D. Pack, H. J. Monkhorst,“Special points for Brillouin-zone integrations”-a reply [J]. Phys. Rev. B 1977, 16, 1748.
    [40] M. Payne, M. Teter, D. Allan, et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys. 1992, 64, 1045.
    [41] J. K. Burdett, T. Hughbanks, G. J. Miller, et al., Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K [J]. J. Am. Chem. Soc. 1987, 109, 3639.
    [42] M. Lazzeri, A. Vittadini, A. Selloni, Structure and energetics of stoichiometric TiO_2 anatase surfaces [J]. Phys. Rev. B 2001, 63, 155409.
    [43] R. Shirley, M. Kraft, O. R. Inderwildi, Electronic and optical properties of aluminium-doped anatase and rutile TiO_2 from ab initio calculations [J]. Phys. Rev. B 2010, 81, 075111.
    [44] V. I. Anisimov, J. Zaanen, O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I [J]. Phys. Rev. B 1991, 44, 943.
    [45] V. I. A. I. V. Solovyev, M. Korotin, M. Czyzyk, et al., Density-functional theory and NiO photoemission spectra [J]. Phys. Rev. B 1993, 48, 16929.
    [46] I. Solovyev, P. Dederichs, V. Anisimov, Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb [J]. Phys. Rev. B 1994, 50, 16861.
    [47] R. Sanjines, H. Tang, H. Berger, et al., Electronic structure of anatase TiO_2 oxide [J]. J. Appl. Phys. 1994, 75, 2945.
    [48] M. Sathish, B. Viswanathan, R. Viswanath, et al., Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO_2 nanocatalyst [J]. Chem. Mater. 2005, 17, 6349.
    [49] M. Xing, J. Zhang, F. Chen, New approaches to prepare nitrogen-doped TiO_2 photocatalysts and study on their photocatalytic activities in visible light [J]. Appl. Catal. B: Environ. 2009, 89, 563.
    [1] A. L. Linsebigler, G. Lu, J. T. Yates Jr, Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev. (Washington, D.C. ) 1995, 95, 735.
    [2] M. Li, W. Hebenstreit, L. Gross, et al., Oxygen-induced restructuring of the TiO_2 (110) surface: a comprehensive study [J]. Surf. Sci. 1999, 437, 173.
    [3] U. Diebold, M. Li, O. Dulub, et al., The relationship between bulk and surface properties of rutile TiO_2 (110) [J]. Surf. Rev. Lett. 2000, 7, 613.
    [4] O. Carp, C. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide [J]. Prog. Solid State Chem. 2004, 32, 33.
    [5] T. L. Thompson, J. T. Yates Jr, Surface science studies of the photoactivation of TiO_2 new photochemical processes [J]. Chem. Rev. (Washington, D.C. ) 2006, 106, 4428.
    [6] U. Diebold, The surface science of titanium dioxide [J]. Surf. Sci. Rep. 2003, 48, 53.
    [7] C. Di Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide [J]. Chem. Mater. 2005, 17, 6656.
    [8] V. I. Anisimov, F. Aryasetiawan, A. Lichtenstein, [J]. J. Phys.: Condens. Matter 1997, 9, 767.
    [9] S. A. Chambers, Lichtenstein.First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method [J]. Surf. Sci. Rep. 2006, 61, 345.
    [10] V. Anisimov, M. Korotin, I. Nekrasov, et al., The role of transition metal impurities and oxygen vacancies in the formation of ferromagnetism in Co-doped TiO_2 [J]. J. Phys.: Condens. Matter 2006, 18, 1695.
    [11] V. E. Henrich, R. L. Kurtz, Surface electronic structure of TiO_2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen [J]. Phys. Rev. B 1981, 23, 6280.
    [12] D. Cronemeyer, Infrared Absorption of Reduced Rutile TiO_2 Single Crystals [J]. Phys. Rev. 1959, 113, 1222.
    [13] M. A. Henderson, W. S. Epling, C. L. Perkins, et al., Interaction of molecular oxygen with the vacuum-annealed TiO_2 (110) surface: molecular and dissociative channels [J]. J. Phys. Chem. B 1999, 103, 5328.
    [14] C. Di Valentin, G. Pacchioni, A. Selloni, Phys. Electronic Structure of Defect States in Hydroxylated and Reduced Rutile TiO_2 (110) Surfaces [J]. Rev. Lett. 2006, 97, 166803.
    [15] S. Na-Phattalung, M. Smith, K. Kim, et al., First-principles study of native defects in anatase TiO_2 [J]. Phys. Rev. B 2006, 73, 125205.
    [16] P. Lindan, N. Harrison, M. Gillan, et al., First-principles spin-polarized calculations on the reduced and reconstructed TiO_2 (110) surface [J]. Phys. Rev. B 1997, 55, 15919.
    [17] C. J. Calzado, N. C. Hernández, J. F. Sanz, Effect of on-site Coulomb repulsion term U on theband-gap states of the reduced rutile (110) TiO_2 surface [J]. Phys. Rev. B 2008, 77, 045118.
    [18] G. Mattioli, F. Filippone, P. Alippi, et al., Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO_2 [J]. Phys. Rev. B 2008, 78, 241201.
    [19] E. Cho, S. Han, H. S. Ahn, et al., First-principles study of point defects in rutile TiO_2-x [J]. Phys. Rev. B 2006, 73, 193202.
    [20] M. M. Islam, T. Bredow, A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO_2 from first principles [J]. Phys. Rev. B 2007, 76, 045217.
    [21] M. Cococcioni, S. De Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+ U method [J]. Phys. Rev. B 2005, 71, 035105.
    [22] H. Iddir, S. Ogut, P. Zapol, et al., Diffusion mechanisms of native point defects in rutile TiO_2: Ab initio total-energy calculations [J]. Phys. Rev. B 2007, 75, 073203.
    [23] J. He, R. Behera, M. Finnis, et al., Prediction of high-temperature point defect formation in TiO_2 from combined ab initio and thermodynamic calculations [J]. Acta Mater 2007, 55, 4325.
    [24] E. Finazzi, C. Di Valentin, G. Pacchioni, et al., Excess electron states in reduced bulk anatase TiO_2: Comparison of standard GGA, GGA+ U, and hybrid DFT calculations [J]. J. Chem. Phys. 2008, 129, 154113.
    [25] K. Yang, Y. Dai, B. Huang, et al., Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO_2 [J]. Phys. Rev. B 2010, 81, 033202.
    [26] J. M. Sullivan, S. C. Erwin, Theory of dopants and defects in Co-doped TiO_2 anatase [J]. Phys. Rev. B 2003, 67, 144415.
    [27] H. Peng, J. Li, S. S. Li, et al., Possible origin of ferromagnetism in undoped anatase TiO_2 [J]. Phys. Rev. B 2009, 79, 092411.
    [28] N. H. Hong, J. Sakai, N. Poirot, et al., Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B 2006, 73, 132404.
    [29] B. J. Morgan, G. W. Watson, Polaronic trapping of electrons and holes by native defects in anatase TiO_2 [J]. Phys. Rev. B 2009, 80, 233102.
    [30] E. Serwicka, M. Schlierkamp, R. Schindler, Localizations of Conduction Band Electrons in Polycrystallin TiO_2 Studied by ESR [J]. Zeitschrift Naturforschung Teil A 1981, 36, 226.
    [31] A. Linsebigler, G. Lu, J. T. Yates Jr, CO photooxidation on TiO_2 (110) [J]. J. Phys. Chem. 1996, 100, 6631.
    [32] D. Dvoranova, V. Brezova, M. Mazur, et al., Investigations of metal-doped titanium dioxide photocatalysts [J]. Appl. Catal. B: Environ. 2002, 37, 91.
    [33] M. Anpo, M. Takeuchi, The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J. Catal. 2003, 216, 505.
    [34] Z. Lin, A. Orlov, R. M. Lambert, et al., New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2 [J]. J. Phys. Chem. B 2005, 109, 20948.
    [35] Y. Nakano, T. Morikawa, T. Ohwaki, et al., Deep-level optical spectroscopy investigation of N-doped TiO_2 films [J]. Appl. Phys. Lett. 2005, 86, 132104.
    [36] C. Di Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO_2 [J]. Phys. Rev. B 2004, 70, 085116.
    [37] H. Noda, K. Oikawa, T. Ogata, et al., Preparation of titanium (IV) oxides and its characterization [J]. Bull. Chem. Soc. Jpn. 1986, 1084.
    [38] I. Justicia, P. Ordejón, G. Canto, et al., Designed Self-Doped Titanium Oxide Thin Films for Efficient Visible-Light Photocatalysis [J]. Adv. Mater. 2002, 14, 1399.
    [39] I. Nakamura, N. Negishi, S. Kutsuna, et al., Role of oxygen vacancy in the plasma-treated TiO_2 photocatalyst with visible light activity for NO removal [J]. J. Photochem. Photobiol., A: Chem. 2000, 161, 205.
    [40] T. Ihara, M. Miyoshi, Y. Iriyama, et al., Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Appl. Catal. B: Environ. 2003, 42, 403.
    [41] T. Ihara, M. Ando, S. Sugihara, Preparation of visible light active TiO_2 photocatalysis using wet method [J]. Photocatal. 2001, 5, 19.
    [42] A. K. Rumaiz, J. Woicik, E. Cockayne, et al., Oxygen vacancies in N doped anatase TiO_2: Experiment and first-principles calculations [J]. Appl. Phys. Lett. 2009, 95, 262111.
    [43] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-x Nx Powders [J]. J. Phys. Chem. B 2003, 107, 5483.
    [44] J. Wang, D. N. Tafen, J. P. Lewis, et al., Origin of photocatalytic activity of nitrogen-doped TiO_2 nanobelts [J]. J. Am. Chem. Soc. 2009, 131, 12290.
    [45] K. Terakura, T. Oguchi, A. R. Williams, et al., Band theory of insulating transition-metal monoxides: Band-structure calculations [J]. Phys. Rev. B 1984, 30, 4734.
    [46] I. P. R. Moreira, F. Illas, R. L. Martin, Effect of Fock exchange on the electronic structure and magnetic coupling in NiO [J]. Phys. Rev. B 2002, 65, 155102.
    [47] V. I. Anisimov, J. Zaanen, O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I [J]. Phys. Rev. B 1991, 44, 943.
    [48] V. I. Solovyev, M. A. Korotin, M. T. Czyzyk, et al., Density-functional theory and NiO photoemission spectra [J]. Phys. Rev. B 1993, 48, 16929.
    [49] I. Solovyev, P. Dederichs, V. Anisimov, Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb [J]. Phys. Rev. B 1994, 50, 16861.
    [50] S. Dudarev, G. Botton, S. Savrasov, et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J]. Phys. Rev. B 1998, 57, 1505.
    [51] A. I. Liechtenstein, V. I. Anisimov, J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators [J]. Phys. Rev. B 1995, 52, 5467.
    [52] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41, 7892.
    [53] K. Laasonen, A. Pasquarello, R. Car, et al., Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials [J]. Phys. Rev. B 1993, 47, 10142.
    [54] J. P. Perdew, J. Chevary, S. Vosko, et al., Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation [J]. Phys. Rev. B 1992, 46, 6671.
    [55] M. Payne, M. Teter, D. Allan, et al., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys. 1992, 64, 1045.
    [56] K. Kobayakawa, Y. Murakami, Y. Sato, Visible-light active N-doped TiO_2 prepared by heating of titanium hydroxide and urea [J]. J. Photochem. Photobiol., A: Chem. 2005, 170, 177.
    [1] R. Asahi, T. Morikawa, T. Ohwaki, et al., Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 2001, 293, 269.
    [2] W. Zhu, X. Qiu, V. Iancu, et al., Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codoping for Enhanced Visible-Light Photoactivity [J]. Phys. Rev. Lett. 2009, 103, 226401.
    [3] R. Vitiello, J. Macak, A. Ghicov, et al., N-Doping of anodic TiO_2 nanotubes using heat treatment in ammonia [J]. Electrochem. Commun. 2006, 8, 544.
    [4] P. Xu, L. Mi, P. N. Wang, Improved optical response for N-doped anatase TiO_2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture [J]. J. Cryst. Growth 2006, 289, 433.
    [5] S. Yin, Y. Aita, M. Komatsu, et al., Visible-light-induced photocatalytic activity of TiO_2-xNy prepared by solvothermal process in urea-alcohol system [J]. J. European Ceramic Soc. 2006, 26, 2735.
    [6] J. Yuan, M. Chen, J. Shi, et al., Preparations and photocatalytic hydrogen evolution of N-doped TiO_2 from urea and titanium tetrachloride [J]. Int. J. hydrogen Energy 2006, 31, 1326.
    [7] X. Fang, Z. Zhang, Q. Chen, et al., Dependence of nitrogen doping on TiO_2 precursor annealed under NH3 flow [J]. J. Solid State Chem. 2007, 180, 1325.
    [8] I. C. Kang, Q. Zhang, J. Kano, et al., Synthesis of nitrogen doped TiO_2 by grinding in gaseous NH3 [J]. J. Photochem. Photobiol. A: Chem. 2007, 189, 232.
    [9] J. Wang, D. N. Tafen, J. P. Lewis, et al., Origin of photocatalytic activity of nitrogen-doped TiO_2 nanobelts [J]. J. Am. Chem. Soc. 2009, 131, 12290.
    [10] J. Wang, N. Wu, J. P. Lewis, Visible light photocatalytic activity in nitrogen-doped TiO_2 nanobelts [J]. Appl. Phys. Lett. 2009, 94, 093101.
    [11] C. Trapalis, N. Todorova, M. Anastasescu, et al., Atomic force microscopy study of TiO_2 sol-gel films thermally treated under NH3 atmosphere [J]. Thin Solid Films 2009, 517, 6243.
    [12] L. Miao, S. Tanemura, H. Watanabe, Y et al., The improvement of optical reactivity for TiO_2 thin films by N2-H2 plasma surface-treatment [J]. J. Cryst. Growth 2004, 260, 118.
    [13] O. Diwald, T. L. Thompson, T. Zubkov, et al., Photochemical activity of nitrogen-doped rutile TiO_2 (110) in visible light [J]. J. Phys. Chem. B 2004, 108, 6004.
    [14] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO_2-x Nx Powders [J]. J. Phys. Chem. B 2003, 107, 5483.
    [15] B. Wawrzyniak, A. W. Morawski, [Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO_2 photocatalyst containing nitrogen J]. Appl. Catal. B: Environ. 2006, 62, 150.
    [16] T. Ihara, M. Miyoshi, Y. Iriyama, et al., Visible-light-active titanium oxide photocatalyst realized by anoxygen-deficient structure and by nitrogen doping [J]. Appl. Catal. B: Environ. 2003, 42, 403.
    [17] H. Li, J. Li, Y. Huo, Highly active TiO_2N photocatalysts prepared by treating TiO_2 precursors in NH3/ethanol fluid under supercritical conditions [J]. J. Phys. Chem. B 2006, 110, 1559.
    [18] M. Okada, Y. Yamada, P. Jin, et al., Fabrication of multifunctional coating which combines low-e property and visible-light-responsive photocatalytic activity [J]. Thin Solid Films 2003, 442, 217.
    [19] L. Mi, P. Xu, H. Shen, et al., First-principles calculation of N: H codoping effect on energy gap narrowing of TiO_2 [J]. Appl. Phys. Lett. 2007, 90, 171909.
    [20] C. Di Valentin, G. Pacchioni, A. Selloni, Origin of the different photoactivity of N-doped anatase and rutile TiO_2 [J]. Phys. Rev. B 2004, 70, 085116.
    [21] A. K. Rumaiz, J. Woicik, E. Cockayne, et al., Oxygen vacancies in N doped anatase TiO_2: Experiment and first-principles calculations [J]. Appl. Phys. Lett. 2009, 95, 262111.
    [22] C. Di Valentin, G. Pacchioni, A. Selloni, et al., Characterization of paramagnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations [J]. J. Phys. Chem. B 2005, 109, 11414.
    [23] L. Mi, Y. Zhang, P. N. Wang, First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO_2 [J]. Chem. Phys. Lett. 2008, 458, 341.
    [24] S. P. Russo, I. E. Grey, N. C. Wilson, Nitrogen/hydrogen codoping of anatase: A DFT study [J]. J. Phys. Chem. C 2008, 112, 7653.
    [25] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev. B 1990, 41, 7892.
    [26] K. Laasonen, A. Pasquarello, R. Car, et al., Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials [J]. Phys. Rev. B 1993, 47, 10142.
    [27] J. P. Perdew, J. Chevary, S. Vosko, et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation [J]. Phys. Rev. B 1992, 46, 6671.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700