新型结构旋转床吸收混合气中二氧化碳的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,经济的发展使得人类对化石燃料的需求量不断增加,导致CO2的排放量不断提高,造成越来越严重的地球温升问题。2005年2月16日,《京都议定书》正式生效,CO2作为主要的温室气体,其减排问题引起全球范围的广泛关注,另一方面CO2又广泛的应用于食品、工业、农业、医疗、商业、运输等各个领域,具有潜在的利用价值,如何从废气中更高效、更经济地回收CO2具有长远意义。
     超重力旋转床作为新型高效的多相流接触装置,可以极大地强化传质过程,已被广泛应用于化工分离和制备纳米材料等领域。本文从结构上对传统旋转床进行了创新性的改进,在转子外侧的壳体空腔内安装了一个厚1.5cm左右的静态环形挡板。采用一乙醇胺(MEA)水溶液为吸收剂,在新型结构旋转床中进行了CO2吸收实验,考察了床内静态环形挡板、超重力因子、吸收液温度、系统压力、气液比等对二氧化碳吸收率的影响。结果表明:静态环形挡板的加入使得CO2的吸收率提高了10%左右;CO2的吸收率随着超重力因子的增加而上升,当超重力因子超过125以后,CO2吸收率则趋于稳定;随着吸收液温度的升高,CO2的吸收率先升后降,当吸收液温度在40℃左右吸收率达到最高;CO2的吸收率随着系统压力和吸收液浓度的升高而升高;进口浓度对CO2吸收率的影响与超重力水平有关;随着气液比的增大,CO2的吸收率逐渐降低;哌嗪的加入使CO2吸收率得到了明显的提升。得到CO2的吸收率和各操作条件的经验关联式:η=O.088β0.058(G/L)-0.219T0.65P0.123x0323y-0.027,拟合偏差小于5%。分别计算了填料主体区和静态环形挡板部分的体积传质系数,结果表明填料主体区的体积传质系数随着气液比和超重力因子的增加而增加;而静态环形挡板的体积传质系数随着气液比和超重力因子的不断变化却变化不大。
Recently, as the development of economy, the demand of energy supply expanded. A large amount of carbon dioxide emitted to atmosphere from combustion of fossil fuels causes severe environment damage and greenhouse effect. On February 16,2005, the Kyoto Protocol that aims at reducing the emission of CO2 became effective, which made the reducing of the main greenhouse gas-CO2 a serious problem in several countries. On the other hand, CO2 is a potential resource which is widely used in food industry, chemical industry, agriculture, medical, business, transportation and some other fields. How to recover the CO2 effectively and economically from flue gas has long-term meaning.
     As an entirely new type and efficient multiphase flow contact device, Rotating Packed Bed can greatly enhance the process of mass transfer and has been widely used in chemical separation and the preparation of nano-materials. In this paper, innovative improvements of the structure of the traditional rotating packed bed were carried out, and a static annular baffle with a thickness of about 1.5cm was installed in the space between the rotor and shell. The absorption of CO2 from a mixing gas by chemical absorption with alkanolamine solutions in this new type rotating packed bed was investigated. The absorption efficiency was related to the static annular baffle, high gravity factor, absorbent temperature, pressure and gas-liquid ratio,etc. The results of pilot plant studies indicated that CO2 absorption efficiency increased significantly owing to the static annular baffle in RPB, bringing an increase about 10% in absorption efficiency. CO2 absorption efficiency first increases with the rising high gravity factor and then stabilizes when the high gravity factor is higher than 125. CO2 absorption efficiency increased first and decreased subsequently with the absorbent temperature, and an absorbent temperature of about 40℃was suggested in this research. It is found that the CO2 absorption efficiency increased with pressure and the absorbent concentration, but reduced with gas liquid ratio. The effect of inlet gas concentration on the CO2 absorption efficiency was relevant to the high gravity factor. With the addition of piperazine, a rate activator, CO2 absorption efficiency was significantly improved. Based on a lot of experimental data, the empirical correlations of CO2 absorption efficiency was given:η=0.088β0.058(G/L)-0.219T0.65P0.123x0.323y-0.027,and the fitting error was less than 5%. Moreover, the volumetric mass transfer coefficient of the main area and the static annular baffle was calculated respectively, and the results showed that the KGa of the main area increased with gas liquid ratio and high gravity factor, however, the KGa of static annular baffle had not changed much with gas liquid ratio and high gravity factor.
引文
[1]李京.中国减少温室气体排放的策略研究[D].北京:北京工业大学,2001.
    [2]张卫风,俞光明,方梦祥.温室气体CO2的回收技术[J].能源与环境.2006,3:26-28.
    [3]晏水平,方梦祥,张卫风,骆仲泱,岑可法.烟气中C02化学吸收法脱除技术分析与进展[J].化工进展.2006,25(9):1018-1025.
    [4]Yeh J T, Pennline H W, Resnik K P. Study of CO2 Absorption and Desorption in a Packed Column[J]. Energy& Fuels.2001,15(2):274-278.
    [5]彭淑婧.烟气中二氧化碳化学吸收法回收技术的研究[D].河北科技大学,2007.
    [6]卢敏,武斌,朱家文,杨安.醇胺有机溶液吸收和解吸CO2的研究[J].石油与天然气化工.2006(02).
    [7]王泉清.有机胺溶液吸收CO2的研究评述[J].山东师范大学学报(自然科学版).2008(01).
    [8]尹文萱,刘建周,王志华,高丽平,许红娟.有机胺回收烟道气中二氧化碳的工艺研究[J].煤炭工程.2009(05).
    [9]Bai H, Yeh A C. Removal of CO2 Greenhouse Gas by Ammonia Scrubbing[J]. Ind. Eng. Chem. Res.1997,36(6):2490-2493.
    [10]张谋,陈汉平,赫俏,张世红,郑楚光.液氨法吸收烟气中CO2的实验研究[J].能源与环境.2007,4:81-84.
    [11]Yu G, Zhang S, Yao X, Zhang J, Dong K, Dai W, Mori R. Design of Task-Specific Ionic Liquids for Capturing CO2:A Molecular Orbital Study[J]. Ind. Eng. Chem. Res.2006, 45(8):2875-2880.
    [12]项菲,施耀,李伟.混合有机胺吸收烟道气中CO2的实验研究[J].环境污染与防治.2003(04).
    [13]钟战铁.有机胺溶液吸收二氧化碳基础研究[D].浙江大学,2002.
    [14]谭大志.溶液法富集C02的基础研究[D].大连理工大学,2005.
    [15]盖群英.醇胺溶液富集CO2的研究[D].大连理工大学,2008.
    [16]Dragos L, Nada O, Flueraru C, Scarlat N. Romanian researches for CO2 recovery[J]. Energy Conversion and Management.1996,37(6-8):923-928.
    [17]Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on Molecular Sieves and Activated Carbon[J]. Energy&Fuels.2001,15(2):279-284.
    [18]Merel J, Clausse M, Meunier F. Experimental Investigation on CO2 Post-Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites[J]. Ind. Eng. Chem. Res.2008,47(1):209-215.
    [19]Ishibashi M, Ota H, Akutsu N, Umeda S, Tajika M, Izumi J, Yasutake A, Kabata T, Kageyama Y. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method[J]. Energy Conversion and Management.1996,37(6-8): 929-933.
    [20]Demontigny D, Tontiwachwuthikul P, Chakma A. Comparing the Absorption Performance of Packed Columns and Membrane Contactors[J]. Ind. Eng. Chem. Res. 2005,44(15):5726-5732.
    [21]Liu L, Chakma A, Feng X. CO2/N2 Separation by Poly(Ether Block Amide) Thin Film Hollow Fiber Composite Membranes[J]. Ind. Eng. Chem. Res.2005,44(17):6874-6882.
    [22]陈建峰.超重力技术及应用——新一代反应与分离技术[M].北京:化学工业出版社,2003.
    [23]张君.超重场强化氨水脱除CO2生成碳酸氢铵晶体的研究[D].淮南:安徽理工大学,2006.
    [24]Ramshaw C. HIGEE Distillation-an Example of Process Intensification[J]. Chemical Engineer (London).1983,389:13-14.
    [25]易飞.超重力技术脱除二氧化碳的实验和模拟研究[D].北京化工大学,2008.
    [26]邹海魁,邵磊,陈建峰.超重力技术进展——从实验室到工业化[J].化工学报.2006,57(8):1811-1818.
    [27]刘思周.超重力旋转填充床的机理及其应用[J].大同职业技术学院学报.2004,18(2).
    [28]郭锴.超重机转子填料内液体流动的观测与研究[D].北京:北京化工大学,1996.
    [29]Burns J R, Ramshaw C. Process intensification:Visual study of liquid maldistribution in rotating packed beds[J]. Chemical Engineering Science.1996,51(8):1347-1352.
    [30]Kumar M P, Rao D P. Studies on a High-Gravity Gas-Liquid Contactor[J]. Ind Eng. Chem. Res.1990,29:917-920.
    [31]Liu H, Lin C, Wu S, Hsu H. Characteristics of a Rotating Packed Bed[J]. Industrial& Engineering Chemistry Research.1996,35(10):3590-3596.
    [32]李振虎,郭锴,陈建铭,周绪美,郑冲.旋转填充床气相压降特性研究[J].北京化工大学学报.1999,26(4):5-11.
    [33]李振虎.旋转床内传质过程的模型化研究[D].北京化工大学,2000.
    [34]李振虎.旋转床气相压降特性的研究[D].北京化工大学,1997.
    [35]Cohen Y, Dudukovic M P. Mass transfer in centrifugal gas-liquid contacting[J]. A.I.C.H.E.1985,10:22.
    [36]Munjal S, Dudukovc M P, Ramachandran P. Mass-transfer in rotating packed beds--Ⅰ. Development of gas--liquid and liquid--solid mass-transfer correlations[J]. Chemical Engineering Science.1989,44(10):2245-2256.
    [37]Munjal S, Dudukovic M P, Ramachandran P. Mass-transfer in rotating packed beds--Ⅱ. Experimental results and comparison with theory and gravity flow[J]. Chemical Engineering Science.1989,44(10):2257-2268.
    [38]郭奋.错流旋转床内流体力学与传质特性的研究[D].北京:北京化工大学,1996.
    [39]张政,张军.旋转床填料空间液体的液相传质分析[J].工程热物理学报.1998,19(1):86-89.
    [40]张军.旋转床内流体流动与传质的实验研究与计算模拟[D].北京:北京化工大学,1996.
    [41]Keyvani M, Gardner N C. Operating Characteristics of Rotating Beds[J]. Chemical Engineering Progress.1989(Sept):48-52.
    [42]燕为民.旋转填料床气液传质特性的研究[D].北京:北京化工大学,2000.
    [43]Chen Y S, Lin C C, Liu H S. Mass Transfer in a Rotating Packed Bed with Viscous Newtonian and Non-Newtonian Fluids[J]. Ind. Eng. Chem. Res.2005,44(4):1043-1051.
    [44]刘有智.超重力化工过程与技术[M].北京:国防工业出版社,2009.
    [45]Chen Y S, Lin C C, Liu H S. Mass Transfer in a Rotating Packed Bed with Various Radii of the Bed[J]. Ind. Eng. Chem. Res.2005,44(20):7868-7875.
    [46]王玉红,贾志谦,陈建峰,郑冲.超重力场中合成超微细CaCO3的粒度控制研究[J].材 料科学与工程.1998,16(2):65-67.
    [47]王玉红,郭锴,陈建峰,郑冲.超重力技术及其应用[J].金属矿山.1999(4):25-29.
    [48]张健.旋转床超重力场分离气溶胶的研究[D].北京:北京化工大学,1994.
    [49]Yi F, Zou H, Chu G, Shao L, Chen J. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed[J]. Chemical Engineering Journal.2009, 145(3):377-384.
    [50]郭锴,李幸辉,邹海魁,初广文,杨春基,陈建峰.超重力法脱除变换气中的CO2[J].化工进展.2008(07):1070-1073.
    [51]邢银全,刘有智,崔磊军.超重力旋转床强化吸收烟道气中CO2试验研究[J].现代化工.2007,27(S2):470-474.
    [52]邢银全,刘有智,王其仓,尚海茹.超重力法脱除合成氨原料气中二氧化碳的实验研究[J].天然气化工(C1化学与化工).2008(01).
    [53]邢银全,刘有智,王其仓,尚海茹.旋转填料床用于合成氨原料气脱碳的试验研究[J].中氮肥.2008(03).
    [54]邢银全,刘有智,王其仓,尚海茹.超重力旋转填料床中混合胺回收低分压二氧化碳的传质行为研究[J].天然气化工(C1化学与化工).2008(03).
    [55]张君,公茂利,荚江霞,陈明功.超重场强化氨水吸收烟道气中CO2的研究[J].安徽理工大学学报(自然科学版).2006,26(1):48-52.
    [56]Lin C, Liu W T, Tan C S. Removal of Carbon Dioxide by Absorption in a Rotating Packed Bed[J]. Ind. Eng. Chem. Res.2003,42(11):2381-2386.
    [57]Tan C, Chen J. Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed[J]. Separation and Purification Technology.2006,49(2):174-180.
    [58]Cheng H, Tan C. Carbon dioxide capture by blended alkanolamines in rotating packed bed[J]. Energy Procedia.2009,1(1):925-932.
    [59]Caplow M. Kinetics of carbamate formation and breakdown[J]. J.Am.Chem.Soc.1968, 90:2723-2734.
    [60]Danckwerts P V. The reaction of CO2 with ethanolamines[J]. Chem.Eng.Sci.1979,34(4): 443-446.
    [61]Samanta A, Bandyopadhyay S S. Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol[J]. Chemical Engineering Science. 2009,64(6):1185-1194.
    [62]Cullinane J T, Rochelle G T. Kinetics of Carbon Dioxide Absorption into Aqueous Potassium Carbonate and Piperazine[J]. Ind. Eng. Chem. Res.2006,45(8):2531-2545.
    [63]Zhang X, Zhang C, Qin S, Zheng Z. A Kinetics Study on the Absorption of Carbon Dioxide into a Mixed Aqueous Solution of Methyldiethanolamine and Piperazine[J]. Ind. Eng. Chem. Res.2001,40(17):3785-3791.
    [64]仲伟龙.CO2化学吸收技术研究[D].浙江大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700