缺磷对两个冬小麦品种磷吸收、体内分配和循环的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
养分在植物体内的循环和再利用,对植物维持正常生长,提高养分利用效率有重要作用。本论文通过营养液和石英砂培养方法,在不同时期缺磷条件下,研究了冬小麦CA9325和晋麦2号(JM2)的生长、对磷的吸收和在木质部及韧皮部中的运输和循环、籽粒对体内磷的利用及与库强的关系,并比较了两个小麦品种籽粒利用体内磷的差异。主要结果和结论如下:
     1.在室内培养条件下,小麦生长的适宜磷浓度为0.25-1.0 mmol·L~(-1)。吸收H_2PO_4~-的动力学研究表明,CA9325和JM2幼苗在含有不同磷水平的营养液中培养23 d并耗竭48 h后,缺磷培养的CA9325根系对H_2PO_4~-的吸收快,亲合力高,耐低磷能力强。用传递函数模型能够模拟小麦幼苗根系对H_2PO_4吸收的动态过程。
     2.只保留主茎条件下,在旗叶展开期开始缺磷。处理后30 d内对CA9325和JM2整株的干重净增量影响不大,但加速了穗部干物质和磷的积累。供磷植株中,处理后第一阶段(30 d),两个小麦品种木质部中运输的磷主要来自根系的吸收,在第二阶段(30-60 d),通过韧皮部再循环的磷量增加,占木质部中运输磷量的86%以上;缺磷植株中,籽粒磷几乎全部来自营养器官中磷的再转移,这部分磷并非直接经过韧皮部运至籽粒中,而是经过韧皮部循环至根中后,再通过木质部运输到达穗部。结果表明,植株中光合产物和磷向籽粒中的运输是相互独立的两个过程。虽然缺磷显著降低整株干重,但对两品种的最终籽粒磷含量没有影响。
     3.保留分蘖条件下,分别在拔节期和挑旗期开始缺磷。两品种的对照植株的总吸磷量基本相同,但CA9325在旗叶展开前的吸磷量低于JM2,而在挑旗-灌浆期的吸磷量高于JM2,并且这一时期的吸磷量多于植株在播种一挑旗期间吸磷量的总和。随着生长的延续,两品种供磷植株的主茎、有效分蘖和整株中的磷含量不断增加,峰值在灌浆期。在拔节期缺磷和挑旗期缺磷的两品种植株中,不仅无效分蘖和根系中的磷在生长后期向主茎中转移,而且有效分蘖中的部分磷也向主茎中转移。CA9325对照植株的主茎籽粒磷含量高于有效分蘖;JM2对照植株的主茎籽粒磷含量低于有效分蘖,这主要与JM2分蘖数多有关。缺磷植株的所有营养器官和颖壳中的磷含量均低于同一时期的对照植株,并且随着生长时间的延长不断下降。
     缺磷的两品种主茎和有效分蘖的籽粒磷含量均低于对照,但籽粒磷在相应的主茎和有效分蘖中所占比例高于对照。缺磷降低两品种的籽粒产量,缺磷时间越早,产量下降越多。综合结果表明,CA9325的吸磷效率高于JM2,缺磷的CA9325籽粒利用体内磷的能力强于JM2。
Nutrient cycling and recycling is important for maintaining plant growth and enhancing nutrient use efficiency. In the present study, two winter wheat cultivars (Triticum aestivum L.), CA9325 and JM2, were selected to investigate their growth, P uptake and recycling in xylem and phloem, translocation of P within plant to grains, and their relationships with sink strength as affected by P withdrawal at different developmental stages. The differences of P use ability by grains between two cultivars were compared. The plants were grown either in nutrient solution in lab under the controlled condition or in quartz sand in greenhouse. The main results were as followed:
    1. The appropriate P supply for wheat plant growth under the present condition was from 0.25 to 1.0 mmol L-1. Kinetics and mathematics simulation of H2PO4 uptake were studied using seedlings of the two cultivars grown in nutrient solution with different P levels for 23 days and depleted 48 h. The results showed that under P-deficient condition, CA9325 had greater P uptake rate, higher affinity to P and stronger endurance to low-P. The process of H2PO4 uptake by roots of wheat seedlings could be simulated using the transfer function model.
    2. After vernalization of both cultivars, all tillers were removed. P was withdrawn during the flag leaf expansion. After the treatment, the study period left was divided into two phases of one month each. In the first study period, net dry weight increments of whole plant in both cultivars were not influenced by P deficiency, while dry weight and P content accumulated into spike were accelerated. P transported in the xylem of the control plants came mainly from the roots' current uptake in both cultivars; while in the second study period, phloem retranslocation of P was increased, which accounted for 86% of P transported in xylem. In the P-deficient plants, however, almost all of the P deposition in grains was remobilized and exported from vegetative organs. These P were recycled to roots through phloem and then transported to spike via xylem, not directely transported to grains via phloem. The results suggested that dry matter and P allocation into grains were not synchronous, indicating independent regula
    tory processes. Although the finial dry weight of whole plant in both cultivars was markedly reduced by withdrawing P from the medium, the final P content of grains was not influenced.
    3. The studies were also carried out in greenhouse using both cultivars without moving tillers. P omitting from growth medium was performed either in jointing or in flagging stage. The results showed that in P-sufficient plants, total amount of P taken up by CA9325 was equal to JM2. However, CA9325 took up less P than JM2 between sowing and flagging stage, but more P than JM2 from flagging stage to grain filling stage. With the prolonged plant growth, the increase of P contents in main shoot, valid tillers and whole plants grown under P-sufficient conditions showed gradually increase and the peak of the P contents appeared at the grain filling stage. In the P-deficient plants of both cultivars with P omitting from medium either in jointing or flagging stage, P transferred into main shoot were not only
    
    
    from invalid tillers and roots, but also from valid tillers at the later growth stage. P contents in grains of main shoot in the P-sufficient CA9325 were higher than those in valid tillers; by contrast, that in the P-sufficient JM2 was reversed, since there were more tillers in JM2 than in CA9325. P contents in all vegetative organs and glumes of both cultivars with P omitting in jointing or flagging stage were lower than those in the P-sufficient plants, and gradually decreased with the prolonged plant growth.
    P contents of grains in the P-deficient plants were lower than those in the P-sufficient plants, but the percentage of P in grains to main shoot and valid tillers was higher in the P-deficient plant. At mature stage, P deficiency decreased the grain yields of both cultivars, especially in the plant with P withdrawi
引文
崔建宇,任理,王敬国,张福锁.2002.有机酸影响矿物钾释放的室内试验与数学模拟.土壤学报,39(3):341-350
    高翔,庞红喜,董俭.2002.小麦高产品种光合产物积累与分配及其籽粒灌浆特性研究.西北农林科技大学学报,30(4):24-28
    顾益初,钦绳武.1997.长期施用磷肥条件下潮土中磷素的积累形态转化和有效性.土壤,29(1):13-17
    郭程瑾,肖凯,李雁鸣,齐永青.2002.不同生态型小麦品种旗叶光合性能的研究.麦类作物学报,22(3):42-46
    郭文善,封超年,严九零.1995.小麦开花后源库关系分析.作物学报,21(3):334-340
    韩振海,王永章,王倩.1994.植物的离子吸收动力学研究的现状和前景(综述).北京农业大学学报,20(4):381-387
    姜东,于振文,李永庚,余松烈,孔兰静.2003.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响.作物学报,29(1):31-36
    蒋廷惠,郑绍建,石锦芹,胡霭堂,史瑞和,徐茂.1995.植物吸收养分动力学研究中的几个问题.植物营养与肥料学报,1(2):11-17
    李宾兴,肖凯,李雁鸣.2002.低磷胁迫条件下小麦光合特性的基因型差异.河北农业大学学报,25(1):5-9
    李庆逵,蒋柏藩,鲁如坤,著.1990.中国磷矿的农业利用.江苏:江苏科学技术出版社,12-16
    李志玉,郭庆元,武晓明,王汉中,廖星,徐学文.2001.油菜不同类型品种磷效率特性的研究.中国油料作物学报,23(4):57-61
    凌启鸿,谢建昌.1986.水稻群体“粒叶比”与高产栽培途径的研究.中国农业科学,3:1-7
    刘国栋,李继云,李振声.1998.低磷胁迫下小麦地上部某些性状的基因型差异.土壤学报,35(2):235-242
    刘建中,李振声,李继云.1994.利用植物自身潜力提高土壤中磷的生物有效性.生态农业研究,2(1):16-23
    刘芷宇.1992.植物的磷素和土壤磷的生物有效性.土壤,(2):97-101
    卢良恕主编.1992.中国小麦栽培研究新进展.中国小麦生产现状及发展前景的研究(黄佩民).北京:农业出版社,1
    鲁如坤,史陶钧.1980.土壤磷素在利用过程中的消耗和积累.土壤通报,(5):6-8
    吕滨(译者).1987.植物矿质营养遗传特性研究进展.国外农学—土壤肥料,3:3-6
    庞欣,李春俭,张福锁.2000.部分根系供磷对小麦幼苗生长及同化物的影响.作物学报,26(6):719-724
    
    
    庞欣.1999.植物对缺磷胁迫的感应及调控的机理研究:[博士学位论文].北京:中国农业大学
    任理,李保国,叶素萍,杨立国.1999.稳定流场中饱和均质土壤盐分迁移的传递函数解.水科学进展,10(2):107-112
    任理,刘兆光,李保国.2000.非稳定流条件下非饱和均质土壤溶质运移的传递函数解.水利学报,(2):7-15
    任理,袁福生,张福锁.2001.土壤中硝态氮淋洗的传递函数模拟和预报.水利学报,(4):21-27
    任正隆,李尧权.1981.小麦开花后的物质积累、籽粒相对生长率和灌浆速度在品种间的变异.中国农业科学,6(3):12-19
    沈善敏.1985.论我国磷肥的生产与应用.土壤通报,3:97-103
    史瑞和主编.1986.土壤农化分析.北京:农业出版社,216-218
    孙海国.1999.不同基因型小麦适应缺磷胁迫的根系形态及生理特征研究:[博士学位论文].北京:中国农业大学
    屠乃美,官春云.1995.作物源-库关系研究的现状.作物研究,9(2):44-48
    王兰珍,米国华,陈范俊,张福锁.2003.冬小麦品种的磷营养效率鉴定.中国农业大学学报,8(5):69-73
    王庆仁,李继云,李振声.1999.不同基因型小麦磷素营养阈值的研究.西北植物学报,19(3):363-370
    位东斌,东先旺主编.2001.作物栽培学.北京:中国农业大学出版社,2,16
    吴克宁,赵彦锋,吕巧灵,李玲.2002.潮土区灌浆水和施肥对冬小麦光合作用和产量的影响.植物营养与肥料学报,8(4):428-434
    许大全,李德耀,沈允钢,梁国安.1984.田间小麦叶片光合作用“午睡”现象的研究.植物生理学报,10(3):269-275
    许大全.1995a.气孔的不均匀关闭与光合作用的非气孔限制.植物生理学通讯,31(4):246-252
    许大全.1995b.光合作用气孔限制分析中的一些问题.植物生理学通讯,33(4):241-244
    杨文治主编.1992.黄土高原区域治理与评价.北京:科学出版社,125
    袁可能.1983.植物营养的土壤化学.北京:科学出版社,110-165
    岳寿松,余松烈,于振文.1998.小麦旗叶衰老期间光合作用与叶肉细胞超微结构变化.沈阳农业大学学报,29(1):1-5
    张锦熙,诸德辉,陈强生,方成凉,刘锡山,李鸿详,罗永泉.1981.小麦“叶龄指标促控法”的研究.中国农业科学,(2):1-13
    赵其国.1996.现代土壤学与农业持续发展.土壤学报,33(1):1-12
    赵致,陈坤玲,张军.1997.不同类型小麦品种抽穗后光合生理性状的变化.西南农业学报,10(4):20-26
    邹春琴,李振声,李继云.2001.小麦对钾高效吸收的根系形态学和生理学特征.植物营养与肥料学报,7(1):36-43
    
    
    Abel S., C. A.Ticconi, C. A. Delatorre. 2002. Phosphate sensing in higher plants. Physiol. Plant., 115: 1-8
    Aggarwal P. K., R. A. Fischer, S. P. Liboon. 1990. Source-sink relations and effects of post-anthesis canopy defoliation in wheat at low latitudes. J. Agri. Sci., 114:93-99
    Amijee F., P. B. Tinke, D. P. Stribley. 1989. Effects of phosphorus on morphology of VA mycorrhizal root system of leek (Allium porrum L.). Plant Soil, 119:334-336
    Andrews M. 1986. The partitioning of nitrate assimilation between root and shoot of higher plants. Plant, Cell and Environ., 9:511-519
    Anghinoni I., S. A. Barber. 1980. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agro. J., 72 (7-8): 685-688
    Armstrong M., E. A. Kirkby. 1979. Estimation of potassium recirculation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream. Plant Physiol., 63:1143-1148
    Atkinson D. 1973. Some general effects of phosphorus deficiency on growth and development. New Phytol., 72:101-111
    Aufhammer W., F. Bangerth. 1982. Growth regulator effects on ear and grain development in wheat. In Chemical Manipulation of Crop Growth and Development. McLaren J. S., Ed. London: Butterwoth Scientific, 359-373
    Baker D. A., F. Malek, F. D. Dehvar. 1980. Phloem loading of amino acids from the petioles of Ricinus leaves. Ber. Dtsch. Bot. Ges., 93:203-209
    Baker D. N., K. B. Musgrave. 1964. The effects of two level moisture stresses on the rate of apparent photosynthesis in corn. Crop Sci., 4:249-253
    Bangerth F., W. Aufhammer, O. Baum. 1985. IAA level and dry matter accumulation at different positions within a wheat ear. Physiol. Plant., 63:121-125
    Barber S. A., A. D. Mackay. 1986. Root growth and potassium uptake by two corn genotypes in the field. Fert. Res., 10:217-231
    Barriga B. P., A. J. Fuentealba, T. N. Manquian. 1998. Capacity for phosphorus uptake and use in wheat genotypes. Agro. Sur., 26 (1): 1-10
    Batten G. D. 1993. A review of phosphorus efficiency in wheat. In Genetic Aspects of Plant Mineral Nutrition. Dordrecht: Kluwer Academic Publishers, 215-220.
    Batten G. D., I. F. Wardlaw, M. J. Aston. 1986. Growth and the distribution of phosphorus in wheat developed barley grass. Phosphorus and temperature regimes. Aust. J. Agric. Res., 37:459-469
    Batten G. D., I. F. Wardlaw. 1987a. Senescence and grain development in wheat plants grown with contrasting phosphorus regimes. Aust. Jo Plant Physiol., 14:253-265
    Batten G. D., I. F. Wardlaw. 1987b. Redistribution of ~(32)p and ~(14)C from the flag leaf during grain
    
    development in wheat. Aust. J. Plant Physiol., 14:267-275
    Batten G. D., M. A. Khan. 1987. Uptake and utilization of phosphorus and nitrogen by bread wheats grown under natural rainfall. Aust. J. Exp. Agric., 27:405-410
    Bhat K. K. S., P. H. Nye. 1974. Diffusion of phosphate to plant roots in soil. Ⅱ. Uptake along the roots at different times and the effect of different levels of phosphorus. Plant Soil, 41:365-382
    Bhatti A. S., S. Steinert, G. Sarwar, A. Hilpert, W. D. Jeschke. 1993. Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth. New Phytol., 123:539-545
    Biding F., R. B. Muscrave, R. A. Fisher. 1977. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature, 270:431-433
    Bieleski R. L. 1973. Phosphate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol., 24:225-252
    Blacklow W. M., L. D. Incoll. 1981. Nitrogen stress of winter wheat changed the determinants of yield and the distribution of nitrogen and total dry matter during grain filling. Aust. J. Plant Physiol., 9: 641-646
    Borch K., T. J. Bouma, J. P. Lynch, K. M. Brown. 1999. Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant, Cell and Environ., 22:425-431
    Brenner M. L., N. Cheikh. 1995. The role of hormones in photosynthate partitioning and seed filling. In Plant Hormones. Davies J., Ed. Dordrecht: Kluwer Academic Publishers, 649-697
    Buchanan-Wolleston V. 1997. The molecular biology of leaf senescence. J. Exp. Bot., 48:181-199
    Buwalda F., M. Warmenhoven. 1999. Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce. J. Exp. Bot., 50:813-821
    Cakmak I., H. Christine. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus potassium and magnesium deficiency. J. Exp. Bot., 45 (278): 1245-1250
    Chapin F. S., I. F. Wardlaw. 1988. Effect of phosphorus deficiency on source-sink interaction between the flag leaf and developing grain in barley. J. Exp. Bot., 39 (199): 165-177
    Ciereszko I., A. Gniazdowska, M. Mikulska, A. M. Rychter. 1996. Assimilate translocation in bean plants (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol., 149:343-348
    Claassen N., S. A. Barber. 1974. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. J. Plant Physiol., 54:564-568
    Clarkson D. T., C. B. Scattergood. 1982. Growth phosphate transport in barley and tomato plant during the development of recovery from phosphate stress. J. Exp. Bot., 33:865-875
    Clarkson D. T., J. B. Hanson. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol., 31: 239-298
    Collins M., S. H. Duke, 1981. Influence of potassium-fertilization rate and form on photosynthesis and
    
    N_2 fixation of alfalfa. Crop Sci., 21:481-485
    Cook M. G., L. T. Evans. 1983. The roles of sink size and location in the partitioning of assimilates in wheat ears. Aust. J. Plant Physiol., 10 (3): 313-327
    Cooper H. D., D. T. Clarkson. 1989. Cycling of amino-nitrogen and other nutrients between shoots and roots in cereal-a possible mechanism integrating shoot and root in the regulation of nutrient uptake. J. Exp. Bot., 40:753-762
    Crafts-Brandner S. J. 1992. Significance of leaf phosphorus remobilization in yield production in soybean. Crop Sci., 32:420-424
    Daram P., S. Brunner, C. Rausch, C. Steiner, N. Amrhein, M. Bucher. 1999. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell, 11:2153-2166
    Drew M. C., J. Webb, L. R. Saker. 1990. Regulation of K~+ uptake and transport to the xylem in barley roots: K~+ distribution determined by electron probe X-ray microanalysis of frozen hydrated cells. J. Exp. Bot., 41:815-825
    Drew M. C., L. R. Saker. 1978. Nutrient supply and the growth of the seminal root system in barley. J. Exp. Bot., 29 (109): 435-451
    Drew M. C., L. R. Saker. 1984. Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley roots: evidence of non-allosteric regulation. Planta, 160:500-507
    Elliott D. E., D. J. Reuter, G. D. Reddy, R. J. Abbot. 1997. Phosphorus nutrition of spring wheat (Triticum aestivum L.) I. Effects of phosphorus supply on plant symptoms, yield, components of field, and plant phosphorus uptake. Aust. J. Agric. Res., 48:855-867
    Engels C., H. Marschner. 1992. Adaption of potassium translocation into the shoot of maize (Zea may) to shoot demand: evidence for xylem loading as a regulating step. Physiol. Plant., 86:263-268
    Engels C., H. Marschner. 1996. Effect of root zone temperature and shoot demand on nitrogen translocation from the roots to the shoot in maize supplied with nitrate or ammonium. Plant Physiol. Biochem., 34:753-742
    Epstein E. C., E. Hagea. 1952. Kinetic study of absorption of alkalt cation by barley roots. Plant Physiol., 27:457-474
    Ericsson T., T. Ingestad. 1988. Nutrition of birth seedlings at varied relative phosphorus addition rates. Physiol. Plant., 72:227-235
    Evans L. T., J. Bingham, P. Jackson, J. Sutherland. 1972. Effects of awns and drought on the supply of photosynthate and its distribution within the wheat ears. Ann. Appl. Bot., 70:67-76
    Fageria N. K., V. C. Baligar. 1997. Phosphorus use efficiency by corn genotypes. J. Plant Nutr., 20 (10): 1267-1277
    Fageria N. K., V. C. Baligar. 1999. Phosphorus use efficiency in wheat genotypes. J. Plant Nutr., 22 (2):
    
    331-340
    Farquhar G. D., T. D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol., 33:317-323
    Farrar J. F. 1993. Sink strength: what is it and how do we measure it? A summary. Plant, Cell and Environ., 16:1013-1046
    Fitter A. H., R. Nichols, M. L. Harvey. 1991. Architectural analysis of plant root systems. I. Architectural correlates of exploitation efficiency. New Phytol., 118:375-382
    Fhse D., N. Claassen, A. Jungk. 1991. Phosphorus efficiency of plants. Plant Soil, 132:261-272
    Frangmeier A., B. Chrost, P. H6gy, K. Krupinska. 2000. CO_2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. J. Exp. Bot., 44:151-164
    Fredeen A. L., I. M. Rao, N. Terry. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol., 89:225-230
    Fujita K., M. Okada, K. Lei, J. Ito, K. Ohkura, J. J. Adu-Gyamfi, P. K. Mohapatra. 2003. Effect of P-deficiency on photoassimilate partitioning and rhythmic changes in fruit and stem diameter of tomato (Lycopersicon esculentum) during fruit growth. J. Exp. Bot., 54:2519-2528
    Gahoonia T. S., N. E. Nielsen. 1996. Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant Soil, 178:223-230
    Gahoonia T. S., N. E. Nielsen. 1997. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica, 98:177-181
    Gallagher J. N., P. V. Biscoe, B. Hunter. 1976. Effects of drought on grain growth. Nature, 264:541-542
    Garcia M., J. Ascencio. 1992. Root morphology and acid phosphatase activity in tomato plants during development of recovery from phosphorus stress. J. Plant Nutr., 15 (11): 2491-2503
    Gardiner D. T., N. W. Christensen. 1990. Characterization of phosphorus efficiencies of two winter wheat cultivars. Soil Sci. Soc. Am. J., 54:1337-1340
    Glass A. D. M. 1993. Regulation if ion transport. Annu. Rev. Plant Physiol., 34:311-356
    Grover A., P. Mohanty. 1993. How do senescing leaves lose photosynthetic activity? Curr. Sci., 64: 226-234
    Grusak M. A. 1995. Whole root iron (Ⅲ) reductase activity throughout the life grown Pisum sativum L. (Fabaceae): relevance to the iron nutrition of developing seeds. Planta, 197:111-117
    Gummuluru S., L. A. Hobbss, S. Jana. 1989. Physiological responses of drought tolerant and drought susceptible durum wheat genotypes. Photosynthetica, 23:479-485
    Hahn S. K. 1977. A quantitative approach to source potentials and sink capacities among reciprocal grafts of sweet potato varieties. Crop Sci., 17:559-562
    Hajabbasi M. A., T. E. Schumacher. 1994. Phosphorus effects on root growth and development in two maize genotypes. Plant Soil, 158:39-46
    
    
    Hartt C. E. 1969. Effect of potassium deficiency upon translocation of ~(14)C in attached blades and entire plants of sugarcane. J. Plant Physiol., 44:1461-1469
    Hartung W., W. D. Jeschke. 1999. Abacisic acid: a long distance stress signal in salt-stresses plants. In: plants response to environmental stresses. Lerner H. R., Ed. New York: Marcel Dekerker, 333-348
    Hartung W., W. J. Davies. 1991. Drought induced changes in physiology and ABA. In Abacisic Acid. Physiology and Biochemistry. Davies W. J., H. G. Jones, Eds. Oxford: Bios Scientific Publishers, 63-79
    Hayashi H., M. Chino. 1990. Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol., 31:247-251
    He C., P. W. Morgan, M. C. Drew. 1992. Enhanced sensitivity to ethylene in nitrogen or phosphate starved roots of Zea mays L. during aerencyhma formation. Plant Physiol., 98:137-142
    Hercshbach C., H. Rennenberg. 1994. Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J. Exp. Bot., 45:1069-1076
    Heuwinkel H., E. A. Kirkby, B. J. Le, H. Marschner. 1992. Phosphorus deficiency enhances molybdenum uptake by tomato plants. J. Plant Nutr., 15:549-568
    Hibberd J. M., W. P. Quick, M. C. Press, J. D. Scholes, W. D. Jeschke. 1999. Solution fluxes from tobacco to the parasitic angiosperm orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant, Cell Environ., 22:937-947
    Horst W. J., M. Abdou, F. Wieler. 1993. Difference between wheat cultivars in acquisition and utilization of phosphorus. Angenommen, 18, July
    Hunt R. 1975. Further observations on root-shoot equilibria in perennial ryegrass (Lolium perenne L.). Ann. Bot., 39:745-755
    Itho S., W. D. Barber. 1983. Phosphorus uptake by six plant species as related to root hairs. Agron. J., 75: 457-461
    Jeschke W. D., A. D. Peuke, E. A. Kirkby, J. S. Pate, W. Hartung. 1996. Effects of P deficiency on the uptake, flows and utilization of C, N, and H_2O within intact plants of Ricinus communis L. J. Exp. Bot., 47 (304): 1737-1754
    Jeschke W. D., A. D. Peuke, J. S. Pate, W. Hartung. 1997b. Synthesis, transport and catabolism of abscisic acid in a single plant of castor bean (Ricinus communis L.) under moderate salinity and phosphate deficiency. J. Exp. Bot., 48 (314): 1737-1747
    Jeschke W. D., C. A. Atkins, J. S. Pate. 1986. Effects of NaC1 salinity on growth, development, ion transport and ion storage in white lupin (Lupinus albus L. cv. Ultra.). J. Plant Physiol., 124: 257-274
    Jeschke W. D., E. A. Kirekby, A. D. Peuke, J. S. Pate, W. Hartung. 1997a. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus
    
    communis L.). J. Exp. Bot., 48 (306): 75-91
    Jeschke W. D., J. S. Pate, C. A. Atkins. 1987. Partitioning of K~+, Na~+, Mg~(2+), and Ca~(2+) through xylem sap and phloem to component organs of nodulated white lupin under mild salinity. J. Plant Physiol., 128:77-93
    Jeschke W. D., J. S. Pate. 1991a. Cation and chloride partitioning through xylem and phloem within the whole plant of Ricinus communis L. under condition of salt stress. J. Exp. Bot., 42 (242): 1105-1116
    Jeschke W. D., J. S. Pate. 1991b. Modeling of the partitioning, assimilation and storage of nitrate within root and shoot organs of castor bean (Ricinus communis L.). J. Exp. Bot., 42 (242): 1091-1103
    Jeschke W. D., J. S. Pate. 1991c. Modeling the uptake, flow and utilization of C, N and H20 within whole plants ofRicinus communis L. based on empirical data. J. Plant Physiol., 137:488-498
    Jeschke W. D., J. S. Pate. 1992. Temporal patterns of uptake, flow and utilization of nitrate, reduced nitrogen and carbon in a leaf of salt-treated castor bean (Ricinus communis L.). J. Exp. Bot., 43 (248): 393-402
    Jeschke W. D., O. Wolf. 1988. External potassium supply is not required for root growth in saline conditions: experiments with Ricinus communis L. growth in a reciprocal split-root system. J. Exp. Bot., 39:1149-1167
    Jeschke W. D., S. Klagges, A. Hilpert, A. S. Bhatti, G. Sarwar. 1995. Partitioning and flows of ions and nutrients in salt-treated plants ofLeptochloafusca L. Kunth. (I Cations, and Chloride). New Phytol., 130:23-35
    Jiang F., C. J. Li, W. D. Jeschke, F. S. Zhang. 2001. Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants. J. Exp. Bot., 52: 2143-2150.
    Jiang F., W. D. Dieter, W. Hartung. 2003. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgate. J. Exp. Bot., 54 (389): 1985-1993
    Jonnes P. D., R. S. Jessop, G. J. Blair. 1992. Alternative methods for the selection of phosphorus efficiency in wheat. Field Crops Res., 30:20-40
    Judel G. K., K. Mengel. 1982. Effect of shading on nonstructural carbohydrates and their tureover in culms and leaves during the grain filling period of spring wheat. Crop Sci., 22:958-962
    Jungk J., C. J. Asher, D. G. Edwards. 1990. Influence of phosphate status on phosphate uptake kinetics of maize (Zea mays) and soybean (Glyline max). Plant Soil, 124:175-182
    Khamis S., S. Chaillou, T. Lamaze. 1990. CO_2 assimilation and partitioning of carbon in maize plants deprived of orthophosphate. J. Exp. Bot., 41:1619-1625
    King R. W., I. F. Wardlaw, L. T. Evans. 1967. Effect of assimilate utilization on photosynthetic rate in wheat. Planta, 77:261-276
    
    
    Kirkby E. A., A. H. Knight. 1977. Influence of the level of nitrate nutrition on ion uptake and assimilation, organic acid accumulation, and cation-anion balance in whole tomato plants. Plant Physiol., 60:349-353
    Klagges S., A. S. Bhatti, G. Sarwar, A. Hilpert, W. D. Jeschke. 1993. Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth (Kallar grass). New Phytol., 125:521-528
    Komor E. 1994. Regulation of futile cycle: the transport of carbon and nitrogen in plants. In: Schulze E. D., ed. Flux control in biological system from enzymes to populations and ecosystems. London: Academic Press, 153-210
    Koshkin E. I., V. V. Tararina. 1989. Yield and source/sink relations of spring wheat cultivars. Field Crops Res., 22:297-306
    Li C. J., X. Pang, F. S. Zhang. 2003. Comparison on responses of different phosphorus-efficient wheat varieties to phosphorus-deficiency stress. Acta Bot. Sinica, 45 (8): 936-943
    Lima J. D., F. M. D. Matta, P. R. Mosquim. 2000. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. J. Plant Nutr., 23 (7): 937-947
    Longnecker N. E., N. E. Marcar, R. D. Graham. 1991. Increased manganese content of barley seeds can increase grain yield in manganese-deficient conditions. Aust. J. Agric. Res., 42:1065-1074
    Lynch J. P., S. E. Beebee. 1995. Adaption of beans (Phaseolus vulgaris L.) to low phosphorus availability. Hort. Sci., 30:1165-1171
    Ma Y. Z., C. T. Mackown, D. A. V. Sanford. 1990. Sink manipulation in wheat: compensatory changes in kernel size. Crop Sci., 30:1099-1105
    Machado C. T., J. G. M. Guerra, D. L. Almeida, A. T. Machado. 1999. Variability among maize genotypes to phosphorus efficiency use. Bragantia, 58 (1): 109-124
    Manske G. B., J. I. Ortiz-Monasterio, M. V. Ginkel, R. M. Gonzalez. 2000. Traits associated with improve P-uptake efficiency in CIMMYT's semi-dwarf spring bread wheat grown on an acid Andisol in Mexico. Plant Soil, 221:189-204
    Marschner H. 1995. Mineral Nutrition of Higher Plants. 2nd edn. London: Academic Press
    Marschner H., E. A. Kirkby, C. Engels. 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot., 47 (Special issue): 1255-1263
    Marschner H., E. A. Kirkby, C. Engels. 1997. Importance of cycling and recycling of mineral nutrients within plants for growth and development. Boto Acta, 110:265-273
    Marshall C., I. F. Wardlaw. 1973. A comparative study of speed of movement of ~(14)C assimilates and foliar-applied ~(32)P-labelled phosphate in wheat. Aust. J. Biol. Sci., 26:1-13
    Mass F. M., D. A. M. Watering, M. L. Beusichem, H. F. Bienfait. 1988. Characterization of phloem iron
    
    and its possible role in the regulation of Fe-efficiency reactions. Plant Physiol., 87:167-171
    Mengel K., H. E. Haeder. 1977. Effect of potassium supply on the rate of phloem sap exudation and the composition of phloem sap of Ricinus communis. Plant Physiol., 59:282-284
    Mi G. H., L. Tang, F. S. Zhang, J. H. Zhang. 2000. Is nitrogen uptake after anthesis in wheat regulated by sink size? Field Crops Res., 68:183-190
    Mimura T., K. Sakano, T. Shimmen. 1996. Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant, Cell and Environ., 19:311-320
    Mohamed G. E. S., C. Marshall. 1979. The pattern of distribution of phosphorus and dry matter with time in spring wheat. Ann. Bot. (London), 44:721-730
    Mollier A., S. Pellerin. 1999. Maize root system growth and development as influenced by phosphorus deficiency. J. Exp. Bot., 50:487-497
    Müller B., A. G. Touraine. 1992. Inhibition of NO_3~- uptake by various phloem translocated amino acids in soybean seedlings. J. Exp. Bot., 43:617-623
    Muthy K. K., M. Singh. 1979. Photosynthesis, chlorophyll content and ribulose diphosphate carboxylase activity in relation to yield in wheat genotypes. Agri. Sci., 93 (1): 635-640
    Nielsen K. L., A. Eshel, J. P. Lynch. 2001. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus Vulgaris L.) genotypes. J. Exp. Bot., 52:329-339
    Nielsen N. E., S. A. Barber. 1978. Ddifference among genotype of corn in the kinetics of P uptake. Agron. J., 70:695-698
    Nielson A. E., J. K. SchjΦrring. 1983. Efficiency and kinetics of phosphorus uptake from soil by various barley genotypes. Plant Soil, 72:225-230
    Patterson T. G., D. N. Moss. 1979. Senescence in field-grown wheat. Crop Sci., 19:635-640
    Paul M. J., M. Stitt. 1993. Effects of nitrogen and phosphorus deficiencies on levels of carbohydrates, respiratory enzymes and metabolites in seedlings of tobacco and their response to exogenous sucrose. Plant, Cell Environ., 16:1047-1057
    Peuke A. D., J. Glaab, W. M. Kaiser, W. D. Jeschke. 1994a. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. (Ⅳ). Flow and metabolism of inorganic nitrogen and malate depending on nitrogen nutrient and salt treatment. J. Exp. Bot., 45 (275): 741-747
    Peuke A. D., W. D. Jeschke. 1993. The uptake and flow of C, N and ions between roots and shoots in Ricinus cornmunis L. J. Exp. Bot., 44 (264): 1167-1176
    Peuke A. D., W. Hartung, W. D. Jeschke. 1994b. The uptake and flow of C, N and ions between roots and shoots in Ricinus communis L. (Ⅱ). Grown with low or high nitrate supply. J. Exp. Bot., 45 (275): 733-740
    Pheloung P. C., K. H. M. Siddique. 1991. Contribution of stem dry matter to grain yield in wheat cultivars. Aust. J. Plant Physiol., 18:53-64
    
    
    Phillips I. D. J. 1968. Nitrogen, phosphorus and potassium distribution in relation to apical dominance in dwarf bean (Phaseolus vulgaris, c.v. Canadian Wonder). J. Exp. Bot., 19:617-627
    Pieters A. J., M. J. Paul, D. W. Lawlor. 2001. Low sink demand limits photosynthesis under pi deficiency. J. Exp. Bot., 52 (358): 1083-1091
    Pilbeam D. J., I. Cakmak, H. Marschner, E. A. Kirkby. 1993. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant Soil, 154:111-117
    Raghothama K. G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol., 50:665-693
    Raghothama K. G. 2000. Phosphate transport and signaling. Curr. Opin. Plant Biol, 3:182-187
    Rao I. M., N. Terry. 1989. Leaf phosphorus status, photosynthesis and carbon partitioning in sugar beet. Plant Physiol., 25:2491-2499
    Rawson H. M., L. T. Evans. 1971. The contribution of stem reserves to grain development in a range of wheat cultivars of different height. Aust. J. Agric. Res., 22:851-863
    Rengel Z., R. D. Graham. 1995. Importance of seed Zn content for wheat growth on Zn deficient soil: Ⅰ. Vegetative growth. Plant Soil, 173:259-266
    Riley M. M., K. G. Adcock, M. D. A. Bolland. 1993. A small increase in the concentration of phosphorus in the seed increased the early growth of wheat. J. Plant Nutr., 16:851-864
    Rodriguez D., H. F. Andrade, J. Goudriaan. 1999. Effect of phosphorus nutrition on tiller emergence in wheat. Plant Soil, 202:283-295
    Rodriguez D., J. Goudriaan. 1995. Effects of phosphorus and drought stresses on dry matter and phosphorus allocation in wheat. J. Plant Nutr., 18:2501-2517
    Rodríguez D., W. G. Keltjens, J. Goudriaan. 1998. Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant Soil, 200:227-240
    Romera F. J., E. Alcantara. 1994. Iron deficiency stress responses in cucumber (Cucumis sativus L.) roots. Plant Physiol., 105:1133-1138
    Saleque M. A., M. J. Abedin, G. M. Panaullah, N. I. Bhuiyan. 1998. Yield and phosphorus efficiency of some lowland rice varieties at different levels of soil-available phosphorus. Commun. In Soil Sci. Plant Anal., 29 (19-20): 2905-2916
    SAS Institute Inc. 1987. SAS/STAT Guide for Personal Computers. 6th edn. Cary, NC.
    Seel W. E., M. C. Press. 1993. Influence of the host on three sub-arctic facultative root- hemiparasites Ⅰ. Growth, mineral accumulation and above ground dry matter partitioning. New Phytol., 125: 131-138
    Seel W. E., W. D. Jeschke. 1999. Simultaneous collection of xylem sap from Rhinanthus minor and the hosts Hordeum and Trifolium: hydraulic properties, xylem sap composition and effects of attachment. New Phytol., 143:281-298
    Seth A. K., P. F. Wareing. 1967. Hormone-directed transport of metabolites and its possible role in plant
    
    senescence. J. Exp. Bot., 18:65-77
    Sicher R. C., D. F. Kremer. 1988. Effect of phosphate deficiency on assimilation partitioning. Plant Sci., 57:9-17
    Siebrecht S., R. Tischner. 1999. Changes in the xylem exudates composition of poplar (Populus tremula P. Alba) - dependent on the nitrogen and potassium supply. J. Exp. Bot., 50:1979-1806
    Simpson R. J., H. Lambers, M. Dalling. 1983. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). Plant Physiol., 71:7-14
    Simpson R. J., H. Lambers, M. J. Dalling. 1982, Translocation of nitrogen in a vegetative wheat plant (Triticum aestivum). Physiol. Plant., 56:11-17
    Sinclair T. R., V. Vadez. 2002. Physiological traits for crop yield improvement in low N and P environments. Plant Soil, 245:1-15
    Slafer G. A., R. Savin. 1994. Source-sink relationships and grain mass at different positions within the spike in wheat. Field Crops Res., 37:39-49
    Smith F. W. 2001. Sulphur and phosphate systems in plants. Plant Soil, 232:109-118
    Smith F. W., S. R. Mudge, A. L. Rae, D. Glassop. 2003. Phosphate transport in plants. Plant Soil, 248: 71-83
    Snapp S. S., J. P. Lynch. 1996. Phosphorus distribution and remobilization in bean plants as influenced by phosphorus nutrient. Crop Sci,, 36:929-935
    Snyder G. W., D. J. Sammons, R. C. Sicher. 1993. Spike removal effects on dry matter production, assimilate distribution and grain yields of three soft red winter wheat genotypes. Field Crops Res., 33:1-11
    Takeda T. 1961. Studies on the photosynthesis and production of dry matter in the community of rice plants. Jpn. J. Bot., 17:403-437
    Tanaka A., K. Fujita. 1974. Nutrio-physiological studied on the tomato plant Ⅵ. Source-sink relation and structure of the source-sink unit. Soil Sci. Plant Nutr., 20:305-315
    Tenant D. 1976. Root growth of wheat. Ⅰ. Early patterns of multiplication and extension of wheat roots including effects of levels of nitrogen, phosphorus and potassium. Aust. J. Agri, Res., 27:183-196
    Thorne G. N., A. F. Evans. 1964. Influence of tops and roots on net assimilation rate of sugar-beet and spinach beet and grafts between them. Ann. Bot., 28:499-508
    Usuda H., K. Shimogawara. 1991. Phosphate deficiency in maize I. Leaf phosphate status, growth, photosynthesis and carbon partitioning. Plant Cell Physiol., 32:497-504
    Vance C. P. 2001. Symbiotic nitrogen fixation and phosphorus acquisition.plant nutrition in world of declining renewable resources. Plant Physiol., 127:390-397
    Wang G. Y., C. J. Li, F. S. Zhang. 2003. Effects of different nitrogen forms and combination with foliar spraying with 6-benzylaminopurine on growth, transpiration, and water and potassium uptake and
    
    flow in tobacco. Plant Soil, 256:169-178
    Wardlaw I. E 1990. The control of carbon partitioning in plants. New Phytol., 116:341-381
    Wardlaw I. F., L. Moncur. 1976. Source, sink and hormonal control of translocation in wheat. Planta, 128:93-100
    White R. E. 1987. A transfer function model for the prediction of nitrate leaching under field condition. J. Hydrol., 92:207-222
    White R. E., J. S. Dyson, R. A. Haigh. 1986. A transfer function model of solute transport through soil. 2 Illustrative applications, Water Res., 22:248-254
    Wittenbath V. A. 1979. Ribulose bisphosphate carboxylase and proteolytic activity in wheat leaves from anthesis through senescence. Plant Physiol., 64:604-608
    Wolf O., W. D. Jeschke, W. Hartung. 1990. Long transport of abscisic acid in salt stressed Lupinus albus plants. J. Exp. Bot., 41:593-600
    Wolf O., W. D. Jeschke. 1987. Modeling of sodium and potassium flows via phloem and xylem in the shoot of salt-stressed barley. J. Plant Physiol., 128:371-386
    Woolhouse H. W. 1984. The biochemistry and regulation of senescence in chloroplasts. Cana. J. Bot., 62: 2934-2942
    Yan X. L., J. P. Lynch, S. E. Beebee. 1995. Phosphorus efficiency in common bean genotypes in contrasting soil types. Ⅰ. Vegetative response. Crop Sci., 35:1086-1093
    Yan X. L., J. E Lynch, S. E. Beebee. 1996. Utilization of phosphorus substrates by contrasting common bean genotypes. Crop Sci., 36 (4): 936-941
    Yang J. C., J. H. Zhang, Z. L. Huang, Q. S. Zhu, L. Wang. 2000. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci., 40 (6): 1645-1655
    Yang J. C., J. H. Zhang, Z. Q. Wang, Q. S. Zhu, L. J. Liu. 2001. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron. J., 93 (1): 196-206
    Yoshida S. 1973. Effects of CO_2 enrichment at different stages of panicle development on field components and yield of rice. Soil Sci. Plant Nutr., (19): 311-316
    Zhang Y. J., J. P. Lynch, K. M. Brown. 2003. Ethylene and phosphorus availability have interacting yet distinct effects on root hair development. J. Exp. Bot., 54 (391): 2351-2361

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700