南海深水相渐新统及其生烃潜力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择南海ODP184航次1148站渐新统泥岩为研究对象,利用扫描电镜、X射线衍射、化石分析、气相色谱-质谱、稳定同位素等多种手段,全面探讨了中国海区首次发现的深水相渐新统沉积特征、化石成岩作用以及油气前景。
     1148站位于南海北部陆坡最下部(18°50.17'N,116°33.94'E,水深3294 m,进尺859.45m),靠近陆壳与洋壳的界线,是184航次惟一钻遇渐新统的站位。岩性主要为钙质超微粘土。井深460 m以下为渐新世沉积,早晚渐新世界线位于井深488 m,井底年龄不超过32.8 Ma。分析表明,南海扩张初期已处于深海环境。根据岩性、全岩稳定同位素、化石组合和地球化学组分变化,将1148站渐新世分为32 Ma~<32.8 Ma、25.5 Ma~32 Ma和24.0 Ma~25.5 Ma三个阶段:32 Ma~<32.8 Ma(710 m~859.45 m),堆积速率高,浊流沉积明显,可能代表了南海早期扩张的快速扩张;25.5 Ma~32 Ma (475 m~710 m),岩性较为单一,早期28.5 Ma~32 Ma(488 m~710 m)沉积物堆积速率相对稳定,地球化学组份、孢粉浓度、沟鞭藻含量等总体变化不大,可能为南海平稳扩张阶段,但晚期25.5 Ma~28.5Ma(475 m~488 m)堆积速率降低,并在488 m与478 m出现沉积间断;24.0 Ma~25.5 Ma(460 m~475 m),堆积速率低,滑塌沉积明显,本阶段和第二阶段晚期可能代表了海底扩张加剧阶段。
     全岩稳定氧、碳同位素突变界线与沉积间断、地层界线相一致。全岩碳同位素在井深475m(25.5Ma)和710m(32Ma)出现明显变轻,并与地震剖面的强反射界面相对应。通过与珠江口盆地化石对比、参考本站全岩碳同位素事件,提出珠江口盆地珠海组的顶界年龄为25.5Ma,恩平组顶界年龄为32Ma。
     与低纬度开放性大洋氧同位素变化明显不同,1148站数值模拟计算以及浮游有孔虫压扁壳、充填壳和剥离次生方解石氧同位素比较都证实,受成岩作用影响,钙质壳体稳定氧同位素值将变轻。同位素比较结果还表明,成岩作用过程中,钙质壳体碳同位素将变重,而并非原来认为的基本不受成岩作用影响。
     观察发现,井深475 m-600 m之间,硅质化石主要表现为蛋白石-CT。随着深度增加,硅质破壳率增大,蛋白石-CT的X射线衍射峰强度减弱,自生石英的衍射峰则相应增强,反映了蛋白石-CT向石英的转变。井深620 m附近,硅质化石完全溶解,蛋白石-CT衍射峰消失,蛋白石-CT全部转变为石英。X射线衍射定量也同样表明了这一转变过程。样品取芯率在470 m处从近100%降到485 m处的8%,可能是硅质成岩作用,尤其是蛋白石-A向蛋白石-CT的转变影响所致。而取心率的降低,则是此井未能观察到蛋白石-A/蛋白石-CT转变界线的部分原因。
     渐新统有机质含量普遍较高,670 m之下多超过0.5%,710 m以下平均含量超过0.59%。镜下观察证实,壳质体与孢质体组成的Ⅱ类有机质与主要来自陆地植物的木质体和煤质体组成的Ⅲ类数量相当,来自水生生物的壳质体也占相当比例。但岩石热解、GC/MS等分析表明,有机质成熟较低。尽管如此,由于1148所揭示的深海相渐新统厚度超过400 m,有机碳丰度大于0.5%的沉积厚度也逾100 m,因此,我们认为南海北部的这套深水相渐新统具有较强的生烃能力。
In the past decade, many oil companies have shifted their exploration from the continental shelf to deep-water area. Inspirited by the giant reservoirs discovered in the Cenozoic passive margin submarine fans, particularly in the Gulf of Mexico and Angola, oil companies focus on the exploration in the turbidity and related systems.
     The paper has dealt with the Oligocene nannofossil clay in the ODP Site 1148 by means of scanning electronic microscopy, X-ray diffraction, paleontological analysis, gas chromatograph-mass spectrometry, Rock-Eval pyrolysis and stable isotopic analysis, with a purpose to understand the sedimentological characteristics of the deep-water Oligocene that was discovered for the first time in China Seas, and to discuss its hydrocarbon potential.
     ODP Site 1148, located on the northern slope of the South China Sea (18°50.17'N, 116°33.94'E, water-depth 3294 m, and core length 859.45 m), reveals a late Cenozoic sequence from the earliest Oligocene (ca. 32.8 Ma) to the Holocene (Wang et al. 2000). The upper boundary of the Oligocene is at the depth of 460 m. The micropaleontological results indicate consistent deep-water condition at Site 1148 even since the earliest Oligocene. Based on the data of lithology, fossil assemblages, sedimentation and accumulation rates, bulk rock stable isotope and geochemistry, the Oligocene depositional history can be subdivided into<32.8~32 Ma (859.5-710 m), 32~25.5 Ma (710-475 m) and 25.5~24.0 Ma (460-475m) three stages. Stage 1 represents the incipient spreading of the South China Sea Basin with rapid accumulation and distal fine-grained turbidites, stage 2 the relative stable spreading with lower accumulation and homogenous nannofossil clay, in its earliest and middle period (32-28.5 M), and the later stage 2 and stage 3 the accelerated spreading with lowest accumulation, convolute bedding and slumping.
     There exist two negative excursions in bulk carbon isotope at 475 m (~25.5 Ma) and 710 m (~32 Ma) respectively, that are coincident with the statigraphic boundaries and seismic reflection profiles. Based on the comparison of the Oligocene sequences between Site 1148 and the Pearl Mouth Basin, the age of the upper boundaries of Zhuhai Formation and Enping Formation are suggested as~25.5 Ma and~32 Ma B.P. respectively.
     The Oligocene oxygen isotope of at Site 1148 shifts lighter during the diagenesis. It is opposite to the diagenetic effect happened in the low latitude open sea where the oxygen isotope shifts heavier. Our results also show that the carbon isotope of carbonate test shifts heavier, that differs from the previous work in which the carbon isotope is considered to be lesser sensitive to the diagenetic effects.
     X-ray diffraction and scanning electron microscopy analyses were performed and the resultsshow that the opal-A of siliceous fossils has been transformed into opal-CT in the interval between 475 m and 600 m. With the depth increasing, the fragmentation of siliceous fossils increased, the X-ray peaks of authigenic quartz became more prominent and the X-ray peaks of opal-CT reduced in intensity, indicating the occurrence of the opal-CT in quartz transformation in this interval. The opal-CT intensity peak disappears in samples below 600 m, suggesting that the opal-CT had been completely transformed into quartz. The abrupt decrease in core recovery from nearly 100% above 470 m to 8% in the interval of 470 m~485 m at Site 1148 is likely to be related to the silica diagenesis, particularly to the transformation of opal-A to opal-CT. The opal-A/opal-CT boundary, however, has not been determined in this work mainly due to the poor core recovery.
     The Oligocene sediments at Site 1148 contain a relatively abundant organic matter, with a content more than 0.5% below depth 670 m and more than 0.59% below depth 710 m. Rock-Eval pyrolysis and observation under microscope reveal that the typesⅡandⅢof Kerogen is mainly from terrestrial higher plants, and partly from the aquatic. However, the pyrolysis Tmax values and GC/MS data indicate the gross thermal immaturity. Nevertheless, the 400 m-thick Oligocene and the 100 m-thick sediments with TOC>0.5% are undoubted facts from that the deep-water Oligocene of the northern South China Sea is considered as a higher potential in the hydrocarbon generation.
引文
① 中海石油研究中心南海东部研究院,国外深水扇勘探调研(内部资料),2002。
    1.王汝建等.南海北部陆坡渐新世的蛋白石沉积[J].中国科学(D辑),2001,31(10):867~872.
    2.王苏民等.贷海——湖泊环境与气候变化.中国科技大学出版社,1990,142~147
    3.王铁冠,钟宁宁,侯读杰,黄光辉,包建平,李贤庆等.低熟油气形成机理与分布.石油工业出版社,1995,1~233
    4.中国科学院地球化学研究所有机地球化学与沉积学研究室.有机地球化学.科学出版社,1982,1~342.
    5.冯志强等.南海北部准被动大陆边缘含油气盆地与变格运动.见:张渝昌等.中国含油气盆地原型分析.南京大学出版社,1997,397~417
    6.叶大年,金成伟.X射线粉末法及其在岩石学中的应用.科学出版社,1984,1~373.
    7.叶得泉等.中国油气区第三系(Ⅰ)总论.石油工业出版社,1993,1~327.
    8.地矿部广州海洋地质调查局,福建省地质矿产局.台湾海峡中、新生代地质构造及油气地质.福建科学技术出版社,1993,1~141
    9.地质矿产部广州海洋地质调查局.南海盆地形成与演化研究(内部资料),1995
    10.李平鲁.珠江口盆地新生代构造运动.中国海上油气(地质),1993,7(6):11~17
    11.李思田等.南海北部大陆边缘盆地幕式裂陷的动力过程及10Ma以来的构造事件.科学通报,1998,43f8):797~810
    12.刘本培主编.地史学教程.地质出版社,1986.
    13.刘传联.南海大洋钻探研究新进展.科学通报,2002,47(8):640~640
    14.同济大学海洋地质系.古海洋学概论.同济大学出版社,1989,1~316.
    15.邬立言等.生油岩热解快速定量评价.科学出版社,1986,1~198.
    16.许仕策等.珠江口盆地东部第三系沉积特征.海上油气,1988,2(3):19~27
    17.朱芳冰.辽河盆地西部凹陷源岩特征及低熟油分布规律研究.地球科学,2002,27(1):25~29
    18.陈式溥.古生态学教程.地质出版社,1995.
    19.里丁著,周明鉴等译.沉积环境和相.科学出版社,1986,1~597
    20.汪小兰.有机化学.高等教育出版社,2001,1~335.
    21.汪品先等.中国近海第三纪古湖泊及烃源条件研究(内部资料),1999
    22.汪品先等.珠江口盆地古湖泊及烃源条件的比较研究(内部资料),1996
    23.吴世敏,周蒂,丘学林.南海北部陆缘的构造属性问题.高校地质学报,2001,7(4):419~426
    24.杨式溥.遗迹化石与沉积环境.见:冯增昭等.中国沉积学.石油工业出版社,1994,317~342
    25.John B.,Sangree Peter R.Vail著,张宏逵等译.应用层序地层学.石油大学出版社,1992,1~114
    26.张水昌,梁狄刚,张大江.关于古生界烃源岩有机质丰度的评价标准.石油勘探与开发,2002,29(2):8~12
    27.张祥毅,黄慈流.南海新生界地震地层与前新生界基底.见:龚再升,李思田等著,南海北部大陆边缘盆地分析与油气聚集.科学出版社,1997,27~40
    28.张训华等.南海海盆形成演化模式初探,海洋地质与第四纪地质,1997,17(2):1~7
    29.房殿勇等.南海深海相渐新统硅质成岩作用,海洋地质与第四纪地质,2002,22(2):75~79
    30.金庆焕主编.南海地质与油气资源.地质出版社,1989,1~414
    31.拉萨格,柯克帕特里克著,朱金初等译.地球化学过程动力学.科学出版社,1989,1~240
    32.郑永飞,陈江峰.稳定同位素地球化学.科学出版社,2000,1~313.
    33.郭舜玲,李晋超,尚慧云.有机地球化学和荧光显微镜技术.石油工业出版社,1990,72~80
    34.郝诒纯,徐钰林,徐仕策等.南海珠江口盆地第三纪微体古生物及古海洋学.中国地质大学出版社,1996,1~136,
    35.洪阿实等.1994年夏季南海东北部海水氧同位素分布特征.热带海洋,1997,16(4):82~89
    36.胡建芳.3万年来南沙海区古气候、古环境演变:分子有机地球化学研究(博士论文).2001
    37.南海东部石油公司勘探开发研究所.珠江口盆地(东部)石油地质科研报告集(内部资料),1991
    38.姚伯初.南海北部陆缘的地壳结构及构造意义.海洋地质与第四纪地质,1998,18(2):1~16
    39.姚伯初.南海海盆新生代的构造演化史.海洋地质与第四纪地质,1996,16(2):1~13
    40.姚伯初.南海西北海盆的构造特征及南海新生代的海底扩张.热带海洋,1999,18(1):7~15
    41.姚伯初等.中美合作调研南海地质专报.中国地质大学出版社,1994,1~201
    42.赵其渊等.海洋地球化学.地质出版社,1989,1~277.
    43.赵泉鸿等.南海北部晚新生代氧同位素地层学.中国科学(D),31(10):800~807
    44.顾家裕,周兴熙等.塔里木盆地轮南潜山岩溶及油气分布规律.石油工业出版社,2001,1~268.
    45.顾家裕等.沉积相与油气.石油工业出版社,1994,1~309
    46.Edwards J.D.,P A.Santogrossi编,梁绍全,梁红译.离散或被动大陆边缘盆地.石油工业出版社,2000,1~232.
    47.秦国权.珠江口盆地BY7-1-1井晚渐新世浮游有孔虫的发现及其地质意义.海洋地质与第四纪地质,1992,12(2):21~32
    48.菲尔普著,傅家谟,盛国英译.化石燃料生物标志物——应用与谱图.科学出版社,1987,1~264.
    49.龚再升,李思田等.南海北部大陆边缘盆地分析与油气聚集.科学出版社,1997,1~498
    50.龚再升等.珠江口盆地地质构造及演化特征.见:朱夏,徐旺.中国新生代沉积盆地,石油工业出版社,1990,263~286.
    51.黄第藩.成烃理论的发展——(Ⅰ)未成熟及有机质成烃演化模式.地球科学进展,1996,11(4):327~335
    52.黄第藩.成烃理论和陆相生油研究的进展.石油勘探开发研究院,2001,1~24
    53.程克明.生油岩定量评价.石油勘探开发研究院主编.中国陆相油气生成.石油工业出版社,1982,175~188
    54.蒂索,威尔特著,徐永元等译.石油形成和分布.石油工业出版社,1989,1~469
    55.傅家谟,秦匡宗.干酪根地球化学.广东科技出版社,1995,1~637.
    56.雷作淇.论珠江口盆地恩平组的时代归属.地层学杂志,1993,17(2):94~105
    57. Abelmann A, U Brathauer, R Gersode. Radiolarian-based transfer function for the estimation of sea-surface temperatures in the Southern Ocean (Atlantic sector). Paleoceanography, 1999, 14(3): 410~421.
    58. Archer D., Emerson S., Reimers C. Dissolution of calcite in deep-sea sediments: pH and O_2 microelectrode results. Geochemica et Cosmochimica Acta, 1989, 53:2831~2845
    59. Baker P. A. et al. Large-scale lateral advection of seawater through oceanic crust in the central equatorial Pacific. Earth and Planetary Science Letters, 1991, 105: 522-533
    60. Baker P. A. Pore-water chemistry of carbonate-rich sediments, Lord Howe Rise, Southeast Pacific Ocean. In: Kennett J. P., von der Borch C. C, et al. Init. Repts. DSDP, 90: Washington (U. S. Govt. Printing office), 1995, 1249-1256
    61. Baker P. A., Gieskes J. M., Elderfield H. Diagenesis of carbonates in deep-sea sediments-evidence from Sr/Ca ratios and interstitial dissolved Sr2+ data. Journal of Sedimentary Petrology, 1982, 52(1): 71-82
    62. Barrera et al. Antarctic marine temperatures: late Campanian Through early Paleocene. Paleoceanography, 1987, 2(1): 21-47
    63. Berner R. A. Early diagenesis: a theoretical approach. Princeton University Press, 1980, 1-224.
    64. Berggren W. A. et al. A revised Cenozonic geochronology and chronostratigraphy. In: Geochronology time scales and global stratigraphic correlation, SEPM special Publication, 1995, 129-212
    65. Bordowskiy O. O. Sources of organic matter in marine basins. Marine Geology, 1965, 3: 5-31
    66. Bouderau B. P. A steady-state diagenetic model for dissolved carbonate species and pH in the porewaters of oxic and suboxic sediments. Geochemica et Cosmochimica Acta, 1987, 51: 1985-1996
    67. Bouderau B. P. Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. American Journal of Science, 1986, 286: 161-198
    68. Bouderau B. P. Mathematics of tracer mixing in sediments: II. Nonlocal mixing and biological conveyor-belt phenomena. American Journal of Science, 1986, 286: 199-238
    69. Bouderau B. P. The dependece of bacterial sulfate reduction on sulfate concentration in marine sediments. Geochemica et Cosmochimica Acta, 1984, 48: 2503-2516
    70. Bouderau B. P., Imboden D. M. Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments. American Journal of Science, 1987, 287: 693-719
    71. Boudreau B. P. Diagenetic models and their implementation: modeling transport and reactions in aquatic sediments. Springer, 1996, 1-360
    72. Briais A., Patriat P. & Tapponier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for Tertiary Tectonics of Southeast Asia. Journal of Geological Research, 1993, 98(B4): 6299-6328
    73. Brooks J. C, Cornford C, Archer R. The role of hydrocarbon source rocks in petroleum exploration. In: Broods J., Fleet A. J. (Eds) Marine petroleum source rocks, 1987, 17-46
    74. Bruland K. W. Oceanographic distributions of cadmium, zinc, nickel and copper in the North Pacific. Earth Pant. Sci. Lett, 1980, 47: 176-198
    75. Buggisch, Werner. Carbon isotope analysis of early to middle Devonian carbonates from the Prague Syncline, Alpa, and the Montagne Noire (Czech Republic, Austria, and France)(Abstract), Global Change in the late Paleozoic. Earth System Processes, Session 25, 17.
    76. Canfield D. E. Reactive iron in marine sediments. Geochemica et Cosmochimica Acta, 1989, 53: 619-632
    77. Charisi S. D., Schmitz B. Stable(δ~(13)C, δ~(18)O) and strontium (~(87)Sr/~(86)Sr) isotopes through the Paleocene at Gebel Aweina, eastern Tethyan region. Paleogeography, Paleoclimatology, Paleoecology, 1995(116): 103-129.
    78. Christensen E. R. Mixing, sedimentation rates and age dating for sediment cores—comment. Marine Geology, 1983, 52: 291-297
    79. Corefield R. M, Cartlidge J. E. Whole-rock oxygen and carbon isotope stratigraphy of the Paleogene and Cretaceous/Tertiary boundary in Hole 807C. In: Berger W. H., Kroenke L. W., Mayer L. A. et al. Proc. ODP. Sci. Results. 1993, 130: 259-268
    80. Elderfield H., et al. ~(87)Sr/~(86)Sr and ~(18)O/~(16)O, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau. Geochemica et Cosmochimica Acta, 1982, 46: 2259-2268
    81. Engel M. H., Macko S. A. (Eds). Organic Geochemistry: Principles and Applications. Plenum Prss, 1993, 1-827
    82. Fang Jiasong, Sassen R., et al. Organic geochemistry of sediments of the deep-water gulf of Mexico Basin. Organic Geochemistry, 1989, 14(6): 679-679
    83. Fraser A. J., Matthews S. J., Murphy R. W. Petroleum Geology of Southeast Asia. The geological society, London, 1997, 1-429
    84. Froelich P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochemica et Cosmochimica Acta, 1979, 43: 1075-1090
    85. Gehlen M., Mucci A., Bouderau B. Modelling the distribution of stable carbon isotopes in porewater of deep-sea sediments. Geochemica et Cosmochimica Acta, 1999, 63: 2763-2773
    86. Gieskes J. M., Lawrence J. R. Alteration of volcanic matter in deep sea sediments: evidence from the chemical composition of interstitial waters from deep sea drilling cores. Geochimica et Cosmochimica Acta, 1981,45: 1687-1703
    87. Graham D. W. et al. Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochimica et Cosmochimica Acta, 1982,46: 1281-1292
    88. Heath G R, Moberly R Jr. Cherts from the western Pacific, Leg 7, Deep Sea Drilling Project. DSDPInit. Repts. , 1971, 16: 991-1007.
    89. Hess J., Schilling J-G ~(87)Sr/~(86)Sr ratios of planktonic foraminifers and initerstitial waters, deep sea drilling project Leg 90, Site 593. In: Kennett J. P., von der Borch C. C, et al. Init. Repts. DSDP, 90: Washington (U. S. Govt. Printing office), 1995, 1257-1260
    90. Horrell M. Energy balance constraints on δ~(18)O based paleo-sea surface temperature estimates. Paleoceanography, 1990, 5(3): 339-348
    91. Isaksen G H., Wilkinson D. R., Hitchen K. Geochemistry of organic-rich Cretaceous and Jouassic mudstones in the West Lewis and West Flannan basins, Offshore north-west Scotland: Implications for source rock presence in the north-east Rockall Trough. Marine and Petroleum Geology, 2000, 17, 27-42
    92. Kastner M. Authigenic silicates in deep-sea sediments: formation and diagenesis. In: Emiliani C. (ed.), The Sea (Vol. 7): The Oceanic Lithosphere. New York (Wiley), 1981, 915-980.
    93. Katz B. J. Source quality and richness of deep sea drilling project site 535 sediments, southeastern gulf of Mexico. In: Buffer R. T., Schlager W, et al. Init. Repts. DSDP, 77, Washington( U. S. Govt. Printing Office), 445-4450
    94. Kennett J P. Marine Geology [M], Prentice-Hall, 1982, 1-813.
    95. Killingley J. S. Effects of diagenetic recrystallization on ~(18)O/~(16)O values of deep-sea sediments. Nature, 1983,301: 594-597
    96. Klemme H. D., Ulmishek G F. Effective petroleum source rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG, 1991, 75(12): 1809-1851
    97. Lancelot Y. Chert and silica diagenesis in sediments from the central Pacific. DSDP Init. Repts., 1973, 17:517-559.
    98. Lawrence J. R., Gieskes J. M. Constraints on water transport and alteration in the oceanic crust from the isotopic composition of pore water. Journal of Geophysical Research, 1981, 86(B9): 7924-7934
    99. Lecuyer C, Allemand P. Modelling of the oxygen isotope evolution of seawater: Implications for climate interpretation of the δ~(18)O of Marine sediments. Geochemica et Cosmochimica Acta, 1999,63:351-361
    100. Lecuyer C, O'Neil J. R. Stable isotope composition of fluid inclusions in biogenic carbonates. Geochemica et Cosmochimica Acta, 1994, 58: 353-363
    101. Linger G J, Packham G H. Relationships between diagenesis and physical properties of biogenic sediments of the Ontong-Java Plateau (sites 288 and 289), deep-sea drilling project. DSDP Init. Repts., 1975, 30: 443-482.
    102. Littke R, Fourtanier E, Thurow J et al. Silica diagenesis and its effects on lithification of Broken ridge deposits, central Indian Ocean. ODP Sci. Results, 1991, 121: 261-272.
    103. Magoo L.B., Henry M. H. Region 5 assessment summary-North America. In: U. S. Geological Survery Digital Data Series 60, 2000
    104. Miller K. G, Fairbanks R. G, Mountain G. S. Tertiary oxygen isotope synthesis, sea level history, and Continental margin erosion. Paleoceanography, 1987, 2(1): 1-19
    105. Mutti M. Bulk δ~(18)O and δ~(13)C records from Site 999, Colombian basin, and Site 1000, Nicaraguan Rise (latest Oligocene to middle Micene): diagenesis, link to sediment parameters, and paleoceanography. In: Leckie R. M. et al. (Eds) Proc. ODP, Sci. Results, 165: College Station, TX (Ocean Drilling Program), 2000, 275-283
    106. Nelson, B.K. and DePaolo, D.J. Application of Sm-Nd and Rb-Sr isotopic systematics to studies of provenance and basin analysis. J. Sediment. Petrol. 1988, 58: 348-357.
    107. Nobes D C, Mieenert J, Dirksen G J. Lithologic control of physical-property interrelationships. ODP Sci. Results, 1991, 114: 657-669.
    108. Nobes D C, Murry R W, Kuramoto S et al. Impact of silica diagenesis on physical properties variations. ODP Sci. Results, 1992, 127/128, Part 1:3-31.
    109. Officer C. B. Mixing, sedimentation rates and age dating for sediment cores. Marine Geology, 1982, 46: 261-278
    110. Oficer C. B., Lynch D. R. Determination of mixing parameters from tracer distributions in deep-sea sediment cores. Marine Geology, 1983, 52: 59-74
    111. Patton J. W., Choquette P. W., et al. Organic geochemistry and sedimentology of lower to mid-Cretaceous deep-sea carbonates, site 535 and 540, Leg 77. In: Buffer R. T., Schlager W., et al. Init. Repts. DSDP, 77, Washington( U. S. Govt. Printing Office), 417-443
    112. Pearson P. N. et al. Warm tropical sea surface temperatures in the late Cretaceous and Eocene epochs. Nature, 2001, 413: 481-487
    113. Perry C. C. Biogenic silica: A model of amorphous structure control. In: Jamtveil B., Meakin P. (eds.). Growth, dissolution and patten formation in Geosystems, 1999, 237-251
    114. Peters K. E., Cassa M. R. Applied source rock geochemistry. In: Magoon L. B., Dow W. G (ed) The petroleum system------from source to trap. AAPG Memoir 60, 1994, 93-120
    115. Peterson R. H., Cooke D. W. Deep-water northern Gulf of Mexico hydrocarbon plays. Gulf coast association of geological societies transactions, 1995, 45: 481-486
    116. Pisciotto K A. Diagenetic trends in the siliceous facies of the Monterey Shale in the Santa Maria region, California. Sedimentology. 1981, 28: 547-571.
    117. Radke M., Welte D. H. The Methylphenanthrene Index (MPI): a maturity parameter based on aromatic hydrocarbons. Advance in Organic Geochemistry, 1981, 504-512
    118. Radke M., Welte D. H., Willsch H. Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben. Chemical Geology, 1991, 93: 325-341
    119. Radke M., Welte D. H., Willsch H. Geochemical study on a well in the Western Canada Basin: relation of the aromatic distribution pattern to maturity of organic matter. Geochemica et Cosmochimica Acta, 1982,46: 1-10
    120. Radke M., Willsch H. Extractable alkyldibenzothiphenes in Posidonia Shale (Toarcian) source rocks: Relationship of yields to petroleum formation and expulsion. Geochemica et Cosmochimica Acta, 1994, 58: 5223-5244
    121. Richter F. M. Fluid flow in deep-sea carbonates: estimates based on porewater Sr. Earth and Planetary Science Letters, 1993, 119: 133-141
    122. Richter F. M., DePaolo D. J. Numerical models for diagenesis and the Neogene Sr isotopic evolution of seawater from DSDP site 590B. Earth Planet. Sci. Lett. 1987, 83: 27-38
    123. Richter F. M., Liang Yan. The rate and consequences of Sr diagenesis in deep-sea carbonates. Earth and Planetary Science Letters, 1993, 117: 553-565
    124. Richter F. M., Rowley D. B., DePaolo D. J. Sr isotope evolution of seawater: the role of tectonics. Earth and Planetary Science Letters, 1992, 109: 11-23
    125. Sakai S., Kano A. Original oxygen isotopic composition of planktic foraminifers preserved in diagenetically altered Pleistocene shallow-marine carbonates. Marine Geology, 2001, 17: 197-204
    126. Schrag D. P. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chemical Geology, 1999, 161: 215-224
    127. Schrag D. P., DePaolo D. J., Richter F. M. Oxygen isotope exchange in a two-layer model of oceanic crust. Earth and Planetary Science Letters, 1992, 111: 305-317
    128. Schrag D. P., DePaolo D. J., Richter F. M. Reconstructing past sea surface temperatures: Correcting for diagenesis of bulk marine carbonate. Geochemica et Cosmochimica Acta, 1995, 59:2265-2278
    129. Schulz H. D., et al. Early diagenetic processes, fluxes and reaction rates in sediments of the South Atlantic. Geochemica et Cosmochimica Acta, 1994, 58: 2041-2060
    130. Seni S. Chronostratigraphic hydrocarbon plays and depositonal styles in the northern Gulf of Mexico.
    131. Shackleton N. J. et al. High-resolution stable isotope stratigraphy from bulk sediment. Paleoceanography, 1993,8: 141-148
    132. Shackleton N. J., Kennett J. P. Late Cenozoic oxygen and carbon isotopic change at DSDP site 284: Implication for glacial history of the Northern Hemisphere and Antarctica. Init. Repts. of DSDP, 29:801-807
    133. Shackleton N. J., Kennett J. P. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: Oxygen and carbon isotopic analyses in DSDP sites 277, 279, 281. Init. Repts. of DSDP, 29: 743-755
    134. Shanmugam G. 50 years of the turbidite paradigm (1950s- 1990s): deep-water processes and facies models------ a critical perspective. Marine and Petroleum Geology, 2000, 17, 285-342
    135. Stow D. A. V., Huc A. -Y., Bertrand P. Depositional processes of black shales in deep water. Maine and Petroleum Geology, 2001, 18(4): 491-498
    136. Stow D. A. V., Johansson M. Deep-water massive sands: nature, origin and hydrocarbon implications. Marine and Petroleum Geology, 2000, 17, 145-174
    137. Stow D. A. V., Mayall M. Deep-water sedimentary systems: new models for the 21st century. Marine and Petroleum Geology, 2000, 17, 125-135
    138. Taylor B., Hayes D. E. Origin and history of South China Sea basin. In: Hayes D. E. (ed.). The tectonic and Geological Evolution of Southeast Asia Seas and Islands part2. American Geophysical Union Geophysical Monograph, 1983, 27: 23-56
    139. Traverse A. Paleopalynology. Unwin Hyman Ltd., 1988, 394-411
    140. Tromp T. K., Van Cappellen P., Key R. M. A global model for the early diagenesis of organic carbon and organic phosphorus in marine sediments. Geochemica et Cosmochimica Acta, 1995, 59: 1259-1284
    141. Wang P, Prell W, Blum P et al. Proceeding of the Ocean Drilling Program, Init. Rept. , College Station TX (Ocean Drilling Program)[CD-ROM], 2000, 184.
    142. Williams L, Cerar D. Silica diagenesis, I. Solubility controls. Journal of Sedimentary Petrology, 1985, 55(3): 301-311.
    143. Williams L, Cerar D. Silica diagenesis, II. General mechanism. Journal of Sedimentary Petrology, 1985, 55(3): 313-321.
    144. Wise S W, Weaver F M. Chertication of oceanic sediments. Spec. Publs. int. Ass. Sediment. 1974, 1:301-326.
    145. Zachos J. C, Stott L. D., Lohmann K. Y. Evolution of early Cenozoic marine temperatures. Paleoceanography, 1994, 9(2): 353-387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700