热带西太平洋边缘晚第四纪以来的古环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用取自热带太平洋边缘的5个柱状岩芯Ph05-5、WP3、MD2908、Z14-6和WP7,通过对其微体古生物和生物地球化学成分的分析,结合浮游有孔虫氧、碳同位素数据、AMS14C测年结果和已有的研究资料,分别研究了热带西太平洋边缘晚第四纪以来的钙质超微化石群落特征、碳酸盐旋回、超微化石氧碳同位素特征、古生产力和上层海水结构演化以及高分辨率东亚夏季风指标,并探讨了碳酸盐旋回、古生产力和上层海水结构演化、全新世东亚夏季风强弱变化的控制机制,以及钙质超微化石下透光带属种Florisphaera profunda的相对百分含量变化在热带太平洋边缘的古环境指示意义及不同环境条件下的控制机制。
     西菲律宾海Ph05-5岩芯和台湾东南部WP3岩芯中CaCO3和钙质超微化石碳酸盐溶解指数、初级生产力指标的变化显示约190 kyr BP以来CaCO3含量整体上都表现为冰期高、间冰期低的“太平洋型”旋回特征,但菲律宾以东海区在末次冰期(MIS 4~2期)内部又显示出间冰段含量高、冰段含量低的“大西洋型”旋回特征。碳酸盐旋回的主要控制因素在菲律宾以东海区是碳酸盐溶解作用,而台湾东南海区则是初级生产力变化引起的钙质生物输入量的波动。
     西菲律宾海Ph05-5岩芯中190 kyr BP以来的钙质超微化石δ18O值在末次间冰期(MIS 5e)和全新世明显低于末次冰期(MIS 5d~2)和倒数第二次冰期(MIS 6)。超微化石δ18O值与浮游和底栖有孔虫δ18O值都呈明显的正相关关系,但是超微化石的δ18O平均值重于表层浮游有孔虫Globigeriniodes rubber,轻于中层Neogloboquadrina dutertrei。超微化石δ13C值变化与其绝对丰度变化表明西菲律宾海区大约在MIS 6和MIS 5e期,表层海水初级生产力相当稳定且显著低于其它各时期;约从MIS 5d期开始表层初级生产力显著上升,并一直持续到末次冰期;在MIS1、2期,表层初级生产力有所下降,但仍高于MIS 6和MIS 5e期。
     Ph05-5岩芯中钙质超微化石下透光带属种F. profunda相对百分含量和浮游有孔虫转换函数的温跃层深度变化表明西太平洋暖池北缘约190 kyr BP以来,营养跃层和温跃层冰期(MIS 6期和5d~2期)浅,间冰期(MIS5e)和全新世深,MIS5e期是最近两个冰期旋回中营养跃层和温跃层深度最深的时期。F. profunda百分含量初级生产力转换方程计算结果和与钙质超微化石绝对丰度的变化显示冰期初级生产力高,间冰期和全新世初级生产力低, MIS5e期初级生产力最低。此外,Δδ13C C. wullerstorf-coccolith和Δδ13C C. wullerstorf-N. dutertrei差值的变化也说明190 kyr BP以来冰期表层输出生产力高于间冰期,其中最为突出的特征也是MIS5e期为生产力输出的最低值期。上层海水结构和生产力的上述变化特征与现代La Niňa事件爆发时的海洋环境相当类似,该海区MIS5e期可能是La Niňa事件频繁爆发的一段时期,可以与现代La Niňa现象类比。同时,根据Wyrtki提出的信风张弛理论推测MIS5e期,由于La Niňa事件的频繁爆发黑潮主流应该是增强的。
     热带西太平洋暖池核心区WP7岩芯中250 kyr BP以来的初级生产力在间冰期明显低于冰期,间冰期生产力相对稳定,冰期(MIS6,4和2)生产力升降幅度较大;冰期向间冰期过渡的冰消期内生产力的降低是相对缓慢的,而间冰期向冰期过渡时生产力的增加是迅速的。初级生产力指标的交叉频谱分析显示出偏心率、斜率、岁差(半岁差)、30kyr和50kyr周期。说明暖池区晚第四纪以来古生产力变动除了受全球冰量变动控制以外,低纬区的岁差驱动也是主要控制因子。约250 kyr BP以来古生产力的变化与Vostok冰心的CO2记录在30kyr周期上高度相关,低CO2值与高生产力相对应,印证了大洋初级生产力在全球碳循环中扮演了重要的“吸收者”的角色,30kyr周期是赤道太平洋地区生物生产力ENSO式变化特征的体现,这也证明了低纬地区生物泵在控制大气CO2浓度方面的重要作用。另外,在岁差周期段,底栖有孔虫U+B含量和N. dutertreiδ13C代表的生产力变动领先于有孔虫δ18O代表的冰体积变化约2.6~7kyr(0.5kyr,2.6 kyr,4.2 kyr, 7kyr),表明在千年时间尺度上日射是该区生产力变化的直接驱动力,两极冰体积变化(δ18O)没有明显的影响低纬气候波动。
     对热带西太平洋边缘海区WP7、Ph05-5、WP3和Z14-6四个岩芯中晚第四纪以来超微化石下透光带属种F. profunda相对百分含量变化进行横向对比研究表明,F. profunda百分含量分布并非简单受水深控制,而是由海水上层复杂的生态因素所决定;F. profunda相对百分含量变化曲线与浮游有孔虫N. dutertrei氧同位素曲线呈不同程度的相关性,N. dutertrei氧同位素越轻,对应的F. profunda相对百分含量越高;冲绳海槽中部的Z14-6岩芯中F. profunda相对含量变化的主控因子是黑潮流的强弱变化;WP7和Ph05-5两个岩芯中F. profunda相对含量变化与低纬地区暖池变化特征密切相关。
     6800 yr BP以来台湾东北部MD2908岩芯中F. profunda相对百分含量变化与太阳黑子数量呈明显的反相关关系,而且3700 yrBP以来更为明显。由于F. profunda相对百分含量变化与该地区东亚夏季风引起的降雨量密切相关,所以推测6800 yr BP以来东亚夏季风受太阳活动影响,其中的纽带是IZCT的纬向位置变动。
Cores Ph05-5, WP3, MD2908, Z14-6 and WP7, retrieved from the tropical Western Pacific margin region, respectively, are used to reconstruct CaCO3 cycle, oxygen and carbon stable isotopic character of calcareous nannofossils, paleoproductivity and upper water structure changes of the tropical Western Pacific margin region during the late Quaternary (~250-0 kyr BP)based on a multi-proxy approach including micropaleontological and geochemical proxies, combined with detailed AMS14C dates, stable isotope and other data acquired by previous studies.
     Two deep sea cores Ph05-5 and WP3 retrieved from the western Philippine Sea and Southeast of Taiwan respectively were selected to carry out the CaCO3 and calcareous nannofossil faunas study during the last 190 kyr BP. The carbonate contents showed higher values in the glacial periods and lower during the interglacial and Holocene periods, which characteristics was similar to the tendency of“Pacific Type”carbonate cycle. However, there were high carbonate contents in the warm period and low values during the cold interval, which displayed the same tendency with the“Atlantic Type”carbonate cycle during the last glacial period (MIS4-2) in the east of Phillipines. The variations of primary productivity and carbonate dissolution index indicated that the carbonate dissolution was a major factor controlling the carbonate content in the east of Philippines, and the variations in carbonate contents were mainly affected by the productivity of calcareous organism in the Southeast of Taiwan. The“Atlantic Type”carbonate cycle in the east of Phillipines during the last glacial period (MIS4-2) was an effect of the process of dissolution combined with the change of primary productivity.
     Theδ18O andδ13C values of calcareous nannofossils have been analyzed for the core Ph05-5. Theδ18O values of calcareous nannofossils were obviously lower in Holocene and the last interglaciation than those in the last and the penultimate glaciation. The nannofossilδ18O values during the last 190 kyr BP were positively correlated with those of planktonic and benthic foraminifera from the same core. But the averageδ18O value of nannofossils was higher than that of planktonic foraminifera Globigeriniodes ruber and was lower than that planktonic foraminifera Neogloboquadrina dutertrei, all which were much lower than that of benthic foraminifera Cibicides wullerstorfi. The similar trends forδ13C records and absolute abundance of calcareous nannofossils in core Ph05-5 corporately reflected the primary productivity variations in the western Philippine Sea. The primary productivity kept a stable but relatively low station at MIS 6 and MIS 5d. There was an abrupt rise at the beginning of MIS 5d for the primary productivity which retains high until the end of MIS 3. The prinary productivity showed a slight decline during MIS 2 and MIS 1, but still higher than that of MIS 6 and MIS 5.
     The deep sea core Ph05-5 was selected to carry out calcareous nannofossil and foraminifera study. Based on nannofossil and foraminifera indexes, the variations of upper water structure and paleoproductivity were reconstructed and its control factors and paleoceangraphy implications were discussed in this region during the last 190 kyr BP. The down core changes of Florisphaera profunda percentage content and DOT (depth of thermocline) estimated using planktonic foraminifera transfer function inferred that the nutricline and thermocline were shallower in glacial periods (MIS 6 and 5d~2) and deeper in interglacial periods (MIS 5e and Holocene), and the nutricline and thermocline shown the deepest depth in the MIS 5e during the last two glacial cycles. On a glacial-interglacial time scale, the primary productivity variations calculated from F. profunda conversion equation showed that the primary productivity was higher in glacial periods and lower in interglacial periods. Similarly, the lowest primary productivity appeared at MIS5e, which could be confirmed by the variations of absolute abundance of calcareous nannofossils. Theδ13C difference between benthic foraminifera Cibicides wullerstorfi and calcareous nannofissils (Δδ13CC. wullerstorf-coccolith), and theδ13C difference between benthic foraminifera C. wullerstorfi and planktonic foraminifera Neogloboquadrina dutertrei (Δδ13CC. wullerstorf-N. dutertrei) both clearly showed that the lower export productivity in interglacial periods and the higher in glacial periods. Also, the export productivity is remarkable low during MIS 5e. The paleoproductivity and upper water structure characters during MIS 5e in core Ph05-5 were consistent with modern La Niňa activity. So, during MIS 5e La Niňa might happen with a high frequency in the northern margin region of WPWP. Furthermore, we presume that the main current of Kuroshio should be intensified during MIS5e based on the trade wind fluctuation theory (Wyrtki, 1975).
     The productivity indexes based on calcareous nannofossils transfer function and benthic foraminifer’s accumulation rate calculation function showed that the productivity was higher in glacial periods than interglacial periods in the WPWP during MIS 7 which was confirmed by the abundance and accumulation rate of benthic foraminifera, and the productivity was relatively stable during interglacial periods (MIS7, 5, 3 and the Holocene) than during glacial periods (MIS 6, 4 and 2). The decreases of productivity from glacial to interglacial were relatively slower than the increases from interglacial to glacial. Cross-spectral analyses of the two productivity proxies (U+B and N. dutertreiδ13C) showed obvious 100kyr, 41kyr and 23 (19) kyr periods, which indicated that the ice volume changes and the precession drive of the low latitude were both the controlling factors of productivity of WPWP. The paleoproductivity variations reflected by U+B and N. dutertreiδ13C were highly negatively correlated with CO2 concentration recorded in Vostok ice core on 30 kyr period bond during the last 250 kyr BP, which indicated that the primary productivity was the important“absorber”in global carbon cycle, and the 30 kyr period was the exhibition of the ENSO-like oscillation of marine productivity in the Equator Pacific. And, the productivity indexes of U+B and N. dutertreiδ13C led the ice volume variations about 2.6-7kyr (0.5kyr,2.6 kyr,4.2 kyr, 7kyr) on precession bond, which suggested that the sun irradiation was the directed deriver of productivity changes in low latitude region on millennial time scales. Cross-spectral analyses between productivity proxies (U+B andδ13C) and planktonic foraminiferaδ18O indicated highly significant coherence (all>90%) at 51ka period, and we had a hypothesis that the 51ka period was synthesized by 41 and 23ka period (1/23-1/41=1/52), which should attribute to a shift of energy from the 23 period to 51ka modulated by the 41ka period.
     Based on cross contrasting analysis of relative abundance of F. profunda in core WP7, Ph05-5, WP3 and Z14-6, we had made such conclusion: 1 the relative abundance of F. profunda was controlled by variations of upper water structure; 2 there was similarity between the relative abundance of F. profunda variation and foraminifer’sδ18O curve, and higher abundance corresponding to lighterδ18O; 3 the relative abundance variations of F. profunda in the middle of Okinawa Trough were still mainly controlled by the oscillation of Kuroshio Current based on contrast with core RN89-PC3, RN87-PC4 and KT84-14P1 in Ryukyu Island Arc; 4 the F. profunda relative abundance in core WP7 and Ph05-5 was correlated with WPWP variation. The relative abundance of F. profunda of core MD2908 was negatively correlated with the number of sun macula in northeast of Taiwan during the last 6800 yr BP which was obviously during the last 3700 yr BP. We hypothesized that EASM was mainly controlled by sun activity across the latitude variation of ITCZ based on the correlation between the relative abundance of F. profunda and the number of sun macula.
引文
卞云华, 汪品先, 郑连福, 1992. 南海北部湾第四纪浮游有孔虫的溶解旋回. 南海晚第四纪古海洋学研究. 青岛海洋大学出版社, 青岛, 261-273.
    王惠中, 翦知湣, 1992. 南海晚第四纪古海洋学研究. 南海晚第四纪古海洋学研究. 青岛海洋大学出版社, 青岛, 283-294.
    石学法, 陈丽蓉, 1995. 西菲律宾海晚第四纪沉积地球化学特征. 海洋与湖沼, 26(2): 124-131.
    同济大学地质系, 1989. 古海洋学概论. 同济大学出版社, 上海, 81-104.
    向荣, 李铁刚, 杨作升等, 2003. 冲绳海槽南部海洋环境改变的地质记录. 科学通报, 48(1): 78-82.
    向荣, 李铁刚, 阎军, 2005. 冲绳海槽北部陆坡 4.4 万年以来古海洋环境演化的地质记录. 海洋地质与第四纪地质, 25(1): 71-78.
    成鑫荣, 汪品先, 1998. 运用超微化石探索晚第四纪冲绳海槽上层海水垂向结构的变化. 中国科学 (D 辑), 28(2): 137-141.
    李克让, 1993. 中国近海及西北太平洋气候. 海洋出版社, 北京, 1-640.
    李崇银, 1988. 频繁强东亚大槽活动与 El Nino 的发生. 中国科学,B 辑, (6): 667-674.
    李崇银, 穆明权, 1998. 异常东亚冬季风激发 ENSO 的数值模拟研究. 大气科学, 22: 481-490.
    李崇银, 穆明权, 1999. 厄尔尼诺的发生与赤道西太平洋暖池次表层海温异常.大气科学, 23(5): 513-521.
    李崇银, 穆明权, 2000. 东亚冬季风-暖池状况-ENSO 循环的关系. 科学通报, 45(7): 678-685.
    李粹中, 1989. 南海深水碳酸盐沉积作用. 沉积学报, 7(2): 35-73.
    李薇等, 1998. 吕宋海峡海洋环流的基本特征. 青岛海洋大学学报, 28(3): 345-352.
    李学杰, 段威武, 魏国彦等, 1997. 近两万年来南海北部与西部碳酸盐旋回及其古海洋学意义. 海洋地质和第四纪地质, 17(2): 9-19.
    李铁刚, 李绍全, 苍树溪等, 2000. YSDP102 钻孔有孔虫动物群与南黄海东南部古水文重建. 海洋与湖沼, 31(6): 588-595.
    李铁刚, 薛胜吉, 1994. 全新世/冰期西赤道太平洋边缘海碳酸钙沉积旋回及其古海洋学意义. 海洋地质与第四纪地质, 14(4): 25-32.
    李铁刚, 阎军, 苍树溪, 1996. 冲绳海槽北部 Rd-82 和 Rd-86 孔氧同位素记录及其古环境分析. 海洋地质和第四纪地质, 16(2): 57-64.
    汪品先, 1998. 西太平洋边缘海的冰期碳酸盐旋回. 海洋地质和第四纪地质, 18(1): 1-11.
    汪品先等, 1988. 东海底质中的有孔虫和介形虫. 海洋出版社, 北京.
    周春平, 2001. 大洋暖池及其影响-与 El Nino、西太平洋副高、中国降水及中国沿海自然灾害的关系. 气象出版社, 北京, 141 pp.
    徐之平, 陈民本, 1984. 冲绳海槽南部晚更新统沉积物中之硅藻. 台湾大学海洋研究所研究报告, 15: 71-129.
    袁迎如, 陈冠球等, 1987. 冲绳海槽沉积物的特征. 海洋学报, 9(3): 363-360.
    巢纪平, 2002. 热带海洋和大气中和谐的海气相互作用现象. 海洋科学进展, 20(3): 1-8.
    曹家欣, 1983. 第四纪地质. 商务出版社, 北京.
    曾呈奎, 徐鸿儒, 王春林等, 2003. 中国海洋志. 大象出版社, 郑州, 167.
    潘志良, 石斯器, 1986. 冲绳海槽沉积物及其沉积作用的研究. 海洋地质与第四纪地质, 6(1): 17-28.
    潘志良, 梁寿生, 丁培民, 1988. 冲绳海槽位体生物群的地质意义. 地质矿产部海洋地质综合研究大队. 地质出版社, 北京, 119-144.
    翦知泯, Saito, Y., 汪品先, 李保华, 陈荣华, 1998. 黑潮主流轴近两万年来的位移. 科学通报, 43(5): 532-536.
    翦知泯, 李保华, Pflaumann, U., 汪品先, 1996. 西太平洋晚全新世变冷事件. 中国科学 (D 辑), 26(5): 461-466.
    翦知湣, 李保华, 王吉良, 2003. 从微体化石看西太平洋暖池的形成与演化. 第四纪研究, 23(2): 185~192.
    刘传联, 成鑫荣, 2001. 从超微化石看南沙海区近 2Ma 海水上层结构的变化. 中国科学,D 辑, 31(10): 834-839.
    刘传联, 成鑫荣, 王汝建, 翦知泯, 2005. 西太平洋暖池区第四纪钙质超微化石氧碳同位素特征及意义. 地球科学-中国地质大学学报, 30(5): 559-603.
    刘传联, 成鑫荣, 祝幼华, 田军, 夏佩芬, 2002. 南海南部近百万年来钙质超微化石氧、碳同位素记录. 科学通报, 47(5): 330-335.
    国家海洋局科技司, 1995. 黑潮调查研究综合报告. 海洋出版社, 北京, 1-62.
    张绪东, 张国友, 佟凯, 申辉, 2004. 黑潮源区海域水团分析. 海洋学报, 23(1): 15-21.
    杨怀仁, 1987. 第四纪地质. 高等教育出版社, 北京.
    汤毓祥, 李兴宰等, 1997. 东海东北部春季若干重要水文结构的分析. 东海海洋, 15, 1-10.
    苍树溪, 阎军, 1992. 西太平洋特定海域古海洋学. 青岛海洋大学出版社, 青岛, 74-100.
    苏纪兰等, 1996. 海洋水文. 中国海洋地理(王颖主编). 科学出版社, 北京, 93-129.
    蒋来宾, 翦知湣, 成鑫荣, 2004. 赤道西太平洋末次盛冰期以来的浮游有孔虫氧碳稳定同位素记录. 海洋地质与第四纪地质, 24(2): 67~71.
    许靖华, 1984. 古海洋学的历史与趋势. 海洋学报, 6(6): 830-842.
    谢英宗, 陈民本, 1990. 1989年6月横过台湾省东南外海黑潮海域200公尺内浮游有孔虫群落. 台湾省海洋学刊, 25: 87-98.
    赵其庚, 1999. 海洋环流及海气耦合系统的数值模拟. 气象出版社, 北京, 10-15.
    赵泉鸿, 汪品先, 1999. 南海第四纪古海洋学研究进展. 第四纪研究(6): 481-501.
    邹进上, 1989. 气候学研究-“天、地、生”相互影响问题. 气象出版社, 北京.
    阎军, 1989. 西太平陆源海沉积中的碳酸钙旋回. 海洋科学进展, 5: 28-32.
    陈文, 2002. El Nino 和 La Nina 事件对东亚冬、夏季风循环的影响. 大气科学, 26(5): 595-610.
    陈绵年, 何宜军, 许兰英, 宋贵霆, 2002. 西太平洋次表层海温异常与北赤道流异常海温西传. 水科学进展, 13(2): 133-140.
    Ahagon, N., Tanaka, Y. and Ujiie, H., 1993. Florisphaera profunda, a possible nannoplankton indicator of late Quaternary changes in sea-water turbidity at the northwestern margin of the Pacific. Marine Micropaleontology, 22(3): 255-273.
    Alley, R.B. and Clark, P.U., 1999. The deglaciation of the Northern Hemisphere: A global perspective. Annual Review of Earth and Planetary Science, 27: 149-182.
    Altenbach, A. and Sarnthein, M., 1989. Productivity in benthic foraminifera. Productivity of the Ocean: Present and Past. Jhon Widely & Sons, New York, 255-270 pp.
    Anderson, D.J. and Ravelo, A.C., 1997. Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Palaeoceanography, 12: 395-413.
    Anderson, T.F. and Cole, S.A., 1975. The stable isotope geochemistry of marine coccoliths: a preliminary comparison with planktonic foraminifera Journal of Foraminiferal Reaearch, 5: 188-192.
    Anderson, T.F. and Steinmetz, J.C., 1981. Isotopic and biostratigraphical records of calcareous nannofossils in a Pleistocene core. Nature, 294(5893): 741-744.
    Anderson, T.F. and Steinmetz, J.C., 1983. Stable isotopes in calcareous nannofossils: potential application to deep-sea palaeoenvironmental reconstructions during the Quaternary. Utrecht Micropleontol. Bull., 30: 189-204.
    Archer, D.E., 1991. Equatorial Pacific calcite preservation cycles: Production or dissolution? Palaegeography, 6: 561-571.
    Archer, D.E., 1996. An atlas of the distribution of calcium carbonate in sediments of the deep-sea. Global Biogeochemical Cycles, 10: 159-174.
    Archer, D.E., Emerson, S. and Reimers, C., 1989. Dissolution of calcite in deep-sea sediments: Ph and O2 miceoeletrode results. Geochim. Cosmochim. Acta, 53: 2831-2846.
    Arrhenius, G., 1988. Rate of production, dissolution, and accumulation of biogenic solids in the ocean. Palaeogeog. Palaeoclimatol. Palaeoecol., 67: 119-146.
    Arrhenius, G.O.S., 1952. Sediment cores from the east Pacific. Rep. Swedish Deep Sea Exp. 1947-1948, 5: 228.
    Atlas, E.B.f.M., 1992. Marine Atlas of the Bohai Sea, Yellow Sea and East China Sea: Hydrology. China Ocean Press, Beijing.
    Bard, E., 1988. Correlation of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceangraphy implications. Palaeogeography, 3: 635-645.
    Bassinot, F.C., Beaufort, L., Vincent, E. and al., e., 1997. Changes in the dynamics of western Equatorial Atlantic surface current and biogenic productivity at the "mid-Pleistocene revolution" (-930ka). Proceeding of the Ocean Drilling Program, Science Results, 154.
    Baumann, K.H., Andruleit, H.A. and Su, X., 1998. Comparison of different preparation techniques for quantitative nannofossil studies. Journal of Nannoplankton Reaearch, 20(2): 75-80.
    Bé, A.W.H., 1977. An ecological, Zoogeographic and taxonomic review of recent planktonic foraminifera. In: A.T.S. Ramsay (Editor), Ocean Micropaleontology. Academic press, London, pp. 1-100.
    Beaufort, L., de Garidel-Thoron, T., Linsley, B.K., Oppo, D.W. and Buchet, N., 2003.
    Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology, 201: 53-65.
    Beaufort, L., Garidel-Thoron, T., Mix, A.C. and Pisias, N.G., 2001. ENSO-like forcing on oceanic primary production during the Late Pleistocene. Science, 293(28): 2440-2444.
    Beaufort, L. and Heussner, S., 1999. Coccolithophorids on the continental slope of the Bay of Biscay - production, transport and contribution to mass fluxes. Deep Sea Research Part II: Topical Studies in Oceanography, 46(10): 2147-2174.
    Beaufort, L. et al., 1997a. Insolation cycles as a major control of equatorial Indian Ocean primary production. Science, 278: 1451-1454.
    Beaufort, L. et al., 1997b. Insolation cycles as a major control of Equatorial Indian Ocean primary production. Science, 278(21): 1451-1454.
    Bender, M.L. and Keigwin, L.D., 1979. Speculations about the Upper Miocene changes in abyssal Pacific dissolved bicarbonate δ13C. Earth and Planetary Science Letters, 45: 383-393.
    Berelson, W.M., Hammond, D.E., McManus, J. and al., e., 1994. Dissolution kinetics of calcium carbonate in equatorial Pacific sediments. Global Bilgeochem. Cycles, 8: 219-235.
    Berger, A., Loutre, M.F. and McIntyre, A., 1997. Intertropical latitudes, precessional and half-precessional cycles. Science, 278: 1476-1478.
    Berger, W.H., 1968. Planktonic foraminifera: selective solution and paleoclimate interpretation. Deep Sea Research, 15: 31-43.
    Berger, W.H., 1973. Deep-sea carbonates: evidence for a coccolith lysocline. Deep Sea Research and Oceanographic Abstracts, 20(10): 917-921.
    Berger, W.H., 1992. Pacific carbonate cycles revised: arguments for and against productivity control. Centenary of Japanese Micropaleontology. Terra Sci., Tokyo, 15-25 pp.
    Berger, W.H., 1993. Deep-sea carbonates: Pleistocene dissolution cycles. Journal of Foraminiferal Reaearch, 3: 187-195.
    Bigg, G.R., Wadley, M.R., Stevens, D.P. and Johnson, J.A., 1998. Simulations of two Last Glacial Maximum ocean states. Palaeoceanography, 13: 340-351.
    Blunier, T. and Brook, E.J., 2001. Timing of millennial-scale climate change in Antarctic and Greenland during the last glacial period. Science, 291: 109-112.
    Bollmann, J., 1997. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments. Marine Micropaleontology, 29(3-4): 319-350.
    Bollmann, J., Brabec, B., Cortes, M.Y. and Geisen, M., 1999. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method). Marine Micropaleontology, 38(1): 29-38.
    Bond, G. et al., 1993. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365: 143-147.
    Bond, G. and Lotti, R., 1995. Iceberg discharge into the North Atlantic on millennial time scales during the last glaciation. Science, 267(1): 1005-1010.
    Bond, G., Showers, W., Cheseby, M. and al., e., 1997. A pervasive millennial-scale cycle in north Atlantic Holocene and glacial climates. Science, 278: 1257-1266.
    Broecker, W.S., Bond, G.C., Klas, M. and al., e., 1992. Origin of the northern Atlantic's Heinrich events. Climate Dynamics, 6: 265-273.
    Bush, A.B.G. and Philander, S.G.H., 1998. The role of ocean-atmosphere interactions in tropical cooling during the Last Glacial Maximum. Science, 279: 1341-1344.
    Cane, M.A., 1998. A role for the tropical Pacific. Science, 282: 59-61.
    Castradori, D., 1993. Calcareous nannofossils and the origin of Eastern Mediterrean sapropel. Palaegeography, 8: 459-471.
    Chappell, J. et al., 1993. Synchronous changes between 40 and 8 kyr B P. Nature, 366: 443-445.
    Chen, M.-T. and Prell, W.L., 1998. Faunal distribution patterns of planktonic foraminifers in surface sediments of the low-latitude Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1-2): 55-77.
    Cheng, X., 1992. Calcareous nannofossils in surface sediments of the central and northern parts of the South China Sea. Journal of Micropalaeontology, 11: 167-176.
    Clemens, S., Prell, W., Murray, D., Shimmield, G. and Weedon, G., 1991. Forcing mechanisms of the Indian Ocean monsoon. Nature, 353(24): 720-725.
    Clement, A.C., Seager, R. and Cane, M.A., 1999. Orbital controls on the El Nino/Southern Oscillation. Palaeoceanography, 14(4): 441-456.
    Cobb, K.M., Charles, C.D., Cheng, H. and Edwards, L., 2003. El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature, 424: 271-276.
    Colmenero-Hidalgo, E., Flores, J.-A. and Sierro, F.J., 2002. Biometry of Emiliania huxleyi and its biostratigraphic significance in the Eastern North Atlantic Ocean and Western Mediterranean Sea in the last 20 000 years. Marine Micropaleontology, 46(3-4): 247-263.
    Coplen, T.B., Winograd, I.J., Landwehr, J.M. and al., e., 1994. Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science, 263: 361-365.
    Corliss, B.H. and Chen, C., 1988. Morphotype pattern of Norwegian Sea deep sea benthic foraminifera and ecological implication. Geology(16): 716-719.
    Cortes, M.Y., Bollmann, J. and Thierstein, H.R., 2001. Coccolithophore ecology at the HOT station ALOHA, Hawaii. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8-9): 1957-1981.
    Crowley, T.J., Kim, K.-Y., Mengel, J.G. and al., e., 1992. Modeling 100,000-year climate fluctuations in Pre-Pleistocene time series. Science, 255: 705-707.
    Curry, W.B., Duplessy, J.C., Labeyrie, L.D. and al., e., 1988. Changes in the distribution of 13C of deep water CO2 between the last glaciation and the Holocene. Palaegeography, 3: 317-341.
    Dahl-Jensen, D., Mosegarrd, K., Gundestrup, N. and al., e., 1998. Past temperatures directly from the Greenland Ice Sheet. Science, 282: 268-271.
    Dansgaard, W. et al., 1993. Evidence for general isntability of past climate from a 250-kyr ice-core record. Nature, 364: 218-220.
    Dansgaard, W., White, J.W.C. and Johnsen, S., 1989. The abrupt termination of the Younger Dryas climate event. Nature, 339: 532-533.
    David, W.L., 2002. The Glacial Tropical Pcific-Not Just a West Side Story. Science, 297(12): 202-203.
    de Garidel-Thoron, T., Beaufort, L., Linsley, B.K. and Dannen-mann, S., 2001. Millennial-scal dynamics of the East Asian winter monsoon during the last 200,000 years. Palaegeography, 16: 1-12.
    de Stigter, H.C., Jorissen, F.J. and Van der Zwaan, G.J., 1998. Bathymetric distribution and microhabitat partitioning of live benthic foraminifera along a shelf to deep sea transect in the southern Adriatic Sea. Journal of Foraminiferal Reaearch(28): 40-65.
    Dettinger, M.D. et al., 2001. Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. Interhemispheric Climate Linkages. Academic Press, San Diego, 1-6 pp.
    Dudley, W.C., Blackwelder, P., Brand, L. and Duplessy, J.C., 1986. Stable isotopic composition of coccoliths. Marine Micropaleontology, 10: 1-8.
    Dudley, W.C., Duplessy, J.C., Blackwelder, P.L., Brand, L.E. and Guillard, R.L., 1980. Coccoliths in Pleistocene-Holocene nannofossil assemblages. Nature, 285(5762): 222-223.
    Dudley, W.C. and Goodney, D.E., 1979. Oxygen isotope content of coccoliths grown in culture. Deep Sea Research Part A. Oceanographic Research Papers, 26(5): 495-503.
    Dudley, W.C. and Nelson, C.S., 1989. Quaternary surface-water stable isotope signal from calcareous nannofossils at DSDP Site 593, southern Tasman Sea. Marine Micropaleontology, 13(4): 353-373.
    Dumber, R.B., Wellington, G.M., Colgan, M.W. and Glynn, P.W., 1994. Eastern Pacific sea surface temperature since 1600 A.D.: The 18O record of climate variability in Galapagos corals. Palaegeography, 9: 291-315.
    Duplessy, J.C., Blanc, P.L. and Bé, A.W.H., 1981a. Oxygen-18 enrichment of planktonic foraminifera due to gametogenic calcification below the euphotic zone. Science, 213: 1247-1250.
    Duplessy, J.C. and Shackleton, N.J., 1985. Response of global deep-water circulation to earth's climate changes 135,000-107,000 years ago. Nature, 316: 500-507.
    Duplessy, J.C. et al., 1984. 13C record of benthic foraminifera in the last interglacial ocean: inplications for the carbon cycle and the global deep water circulation. Quaternary research, 21: 225-243.
    Elliot, M., Labeyrie, L. and al., e., 1998. Millennial-scale iceberg discharges in the Irminger Basin during the last glacial period: Relationship with the Heirinch events and environmental settings. Palaegeography, 13: 433-446.
    Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep sea circulation. Nature, 342: 637-642.
    Fairbanks, R.W. and Wiebe, P.H., 1980. Foraminifera and chorophyll maximun: Vertical distribution, seasonal succession, and paleoceanographic significance. Science, 209: 1524-1526.
    Farrell, J., Pedersen, T.F., Calvert, S.E. and Nielsen, B., 1995. Glacial-interglacial changes in the equatorial Pacific Ocean. Nature, 377: 514-517.
    Farrell, J.W. and Prell, W.L., 1989. Climatic change and CaCO3 preservation: An 800 000 years bathymetric reconstruction from the central equatorial Pacific Ocean. Palaegeography, 4: 447-466.
    Farrell, J.W. and Prell, W.L., 1991. Pacific CaCO3 preservation and 18O since 4 Ma. Palaegeography, 6: 485-498.
    Fedorov, A.V. and Philander, S.G., 2000. Is El Nino Changing? Science, 288(16): 1997-2002.
    Fedorow, A.V. and Philander, S.G., 2000. Is El Nino Changing? Science, 288(16): 1997-2002.
    Goodney, D.E., Margolis, S.V., Dudley, W.C., Kroopnick, P. and Williams, D.F., 1980. Oxygen and carbon isotopes of recent calcareous nannofossils as palaeoceanographic indicators. Marine Micropaleontology, 5: 31-42.
    Groetsch, J., Wu, G. and Berger, W.H., 1991. Carbonate saturation cycles in the western equatorial Pacific. Cycles and Events in Stratigraphy. Springer, Heidelberg, 110-125 pp.
    Haidar, A.T. and Thierstein, H.R., 2001. Coccolithophore dynamics off Bermuda (N. Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography, 48(8-9): 1925-1956.
    Harris, S.E. and Mix, A.C., 1999. Pleistocene Precipitation Balance in the Amazon Basin Recorded in the Deep Sediments. Quaternary Research, 51: 14-26.
    Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Rohl, U., 2001. Southward migration of the Intertropical Convergence Zone through the Holocene. Science, 293: 1304-1308.
    Hays, J.D., Imbrie, J. and Shackleton, N., J., 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194(4270): 1121-1132.
    Hays, J.D. and Perzza, A., 1972. The significance of calcium carbonate oscillations in Eastern Equatorial Atlantic deep sea sediments for the end of the Holocene warm interval. Quaternary Research, 2(3): 355-362.
    Heinrich, H., 1988. Original and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years. Quaternary Research, 29: 143-152.
    Helen, M.P., Christopher, D.C. and Ralph, F.K., 2002. Precessionally forced productivity variations across the equatorial Pacific. Palaegeography, 17(3).
    Henriksson, A.S., 2000. Coccolithophore response to oceanographic changes in the equatorial Atlantic during the last 200,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 156(1-2): 161-173.
    Herguera, J.C. and Berger, W.H., 1991. Paleoproductivity from benthic foraminifera abundance: Glacial to postglacial change in the west-equatorial Pacific. Geology, 19: 1173-1176.
    Herguera, J.C. and Berger, W.H., 1994. Glacial to postglacial drop in productivity in the western equatorial Pacific: Mixing rate vs. nutrient concentrations. Geology, 22: 629-632.
    Heusser, L.E. and Dirocko, F., 1997. Millennial pulsing of environmental changes in southern California from the past 24 k.y.: A record of Indo-Pacific ENSO events? Geology, 25: 243-246.
    Hirose, H., Lee, H.C. and Yoon, J.H., 1999. Surface heat flux in the East China Sea and the Yellow Sea. Journal of Physical Oceanography, 29(3): 401-417.
    Holbourn, A. et al., 2005. Orbitally-paced paleoproductivity variations in the Timor Sea and Indonesian Throughflow variability during the last 460-ky. Palaeoceanography, 20: PA3002.
    Houghton, S.D., 1988. Thermocline control on coccolith diversity and abundance in recent sediments from the Celtic Sea and English Channel. Marine Geology, 83(1-4): 313-319.
    Hsueh, Y., 2000. The Kuroshio in the East China Sea. Journal of Marine Systems, 24(1-2): 131-139.
    Hsueh, Y., Lie, H.J. and Ichikawa, H., 1996. On the Branching of the Kuroshio west of Kyushu. Journal of Geophysical Research, 101(C2): 3851-3857.
    Huang, R., 2000. The 1997/1998 ENSO cycle and its impact on summer climate anomalies in East Asia. Atmosphaere Science, 17: 346-362.
    Ijiri, A., Wang, L.J., Oba, T. and al., e., 2005. Paleoenviromental changes in the northern area of the East China Sea during the past 42,000 years. Palaegeography, Paleoclimatology, Paleoecology, 219: 239-261.
    Imbrie, J. and al., e., 1992. On the structure and origin of major glaciation cycles. 1. Linear responces to Milankovitch forcing. Paleoceanography, 7(6): 701-738.
    Indermuhle, A., Monnin, E., Stauffer, B. and Stocker, T.F., 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters, 27: 735-738.
    Isaac, J.W., Coplen, T.B., Landwehr, J.M. and al., e., 1992. Continuous 500.000-Year Climate Record from Vein Calcite. Science, 258: 255-256.
    Jian, Z., Chen, R.H. and Li, B.H., 1996a. Deep-sea benthic foraminiferal record of the paleoceanography in the Southern Okiniwa Trough over the last 20000 years. Science in China Ser. D, 39(5): 551-560.
    Jian, Z., HUang, B., Kuhnt, W. and Lin, H.-L., 2001. Late Quaternary upwelling intensity and east Asian monsoon forcing in the South China Sea. Quaternary Research, 55: 363-370.
    Jian, Z., Li, B.H., Pflaumann, U. and al., e., 1996b. Late Holocene cooling event in the western Pacific. Science in China Ser. D, 39(5): 543-550.
    Jian, Z., Saito, Y. and Wang, P., 1998. Shifts of the Kuroshio axis over the last 20000 years. Chinese Science Bulletin (in Chinese), 43(2): 1053-1056.
    Jian, Z., Wang, P., Kienast, M. and et al., 1999. Benthic foraminiferal paleoceanography of the South Sea over the last 40,000 years. Marine Geology, 156: 159-186.
    Jian, Z. et al., 2000. Holocene variability of the Kuroshio current in the Okinawa Trough, northweatern Pacific ocean. Earth and Planetary Science Letters, 184(1): 305-319.
    Johnsen, S.J. et al., 1992. Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359: 311-313.
    Kaiho, K., 1994. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. Geology, 22: 719-722.
    Kawahata, H. and Ohshima, H., 2004. Vegetation and envirmental record in the northern East China Sea during the Late Pleistocene. Global and Planetary Change, 41: 251-273.
    Keigwin, L.D., 1996. The Little ice age and medieval warm period in the Sargasso sea. Science, 274: 1504-1508.
    Kienast, M., Steinke, S., Stettegger, K. and Calvert, S.E., 2001. Synchronous tropical South China Sea SST change and Greenland warming during Deglaciation. Science, 291(16): 2132-2134.
    Kim, J.M. and Kennett, J.P., 1998. Paleoenvironmental changes associated with the Holocene marine transgression, Yellow Sea (Huanghai). Marine and Micropaleontology, 34: 71-89.
    Kim, J.M. and Kucera, M., 2000. Benthic foraminiferal record of environmental changes in the Yellow Sea (Huanghai) during the last 15 000. Quaternary Science Reviews, 19: 1067-1085.
    Kinkel, H., Baumann, K.H. and Cepek, M., 2000. Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability. Marine Micropaleontology, 39(1-4): 87-112.
    Knappertsbusch, M., 1993. Geographic distribution of living and Holocene coccolithophores in the Mediterranean Sea. Marine Micropaleontology, 21(1-3): 219-247.
    Koutavas, A., Lynch-Steieglitz, J., Marchitto Jr., T.M. and Sachs, J.P., 2002. El Nino like pattern in Ice Age Tropical Pacific Sea Surface Temperature. Science, 297(12): 226-230.
    Kroopnick, P., 1974. Correlations between 13C and [Sigma]CO2 in surface waters and atmospheric CO2. Earth and Planetary Science Letters, 22(4): 397-403. Kroopnick, P., 1985. The distribution of C-13 of TCO2 in the world oceans. Deep Sea Research, 32: 57-84.
    Labeyrie, P. and Duplessy, J.C., 1985. Changes in the oceanic 13C/12C ratio during the last 140 000 years: high-latitude surface water records. Palaeoclimatology and Palaeoecology, 50: 217-240.
    Laj, C., Mazaud, A. and Duplessy, J.C., 1996. Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50kyr. Geophys. Res. Lett., 23: 2045-2048.
    Lea, D.W., 2002. The glacial tropical Pcific-not just a west side story. Science, 297(12): 202-203.
    Lea, D.W., Pak, D.K. and Spero, H.J., 2000. Climate impact of late Quaternary Equatorial Pacific sea surface temperature variations. Science, 289: 1719~1724.
    Lewis, M.R., Harrison, W.G., Oakey, N.S., Herbert, D. and Platt, T., 1986. Vertical Nitrate fluxes in the oligotrophic Ocean. Science, 234: 870-873.
    Li, B.H., Zhao, H.Q., Wang, Y.J., Jian, Z.M. and Chen, R.H., 1998. Paleoceanographic events of the southern Okinawa Trough during last 20000 years. Acta Oceanological Sinica, 19(4): 90-98.
    Li, T., Xiang, R., Sun, R. and Cao, Q., 2005. Benthic foraminifera and bottom water evolution in the middle-southern Okiniwa Trough during the last 18 ka. Science in China Ser. D 48(6): 805-814.
    Li, T.G. et al., 2001. Heinrich event imprints in the Okinawa Trough: evidence from oxygen isotope and planktonic foraminifera. Paleegeography Palaeoclimatology Palaeoecology, 176(1-4): 133-146.
    Li, W.T. and Okada, H., 1985. Relations between floral composition of calcareous nannofossils and paleoceanographic environment observed in three piston cores obtained from the equatorial Pacific, East China Sea and Japan Sea. Bull. Yamagata Univ., Nat. Sci., Yamagata, II: 177-191.
    Lie, H.J. and Cho, C.H., 1994. On the origin of the Tsushima Warm Current. Journal of Geophysical Research, 99: 25081-25091.
    Lie, H.J. and Cho, C.H., 2002. Recent advantages in understanding the circulation and hydrography of the East China Sea. Fisheries Oceanography, 11(6): 318-328.
    Lie, H.J., Cho, C.H. and Lee, J.H., 1998. Separation of the Kuroshio water and its penetration onto the continental shelf west of Kyushu. Journal of Geophysical Research, 103(C2): 2963-2976.
    Liu, Z. et al., 1999. Millennial-scale paleoceanography in Okinawa Trough during late quatemary period. Chinese Science Bulletin, 44: 1705-1709.
    Lyle, M. et al., 1988. The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean. Palaeoceanography, 3: 39-59.
    Margolis, S.V., Kroopnick, P.M., Goodney, D.E., Dudley, W.C. and Mahoney, M.E., 1975. Oxygen and carbon isotopes from calcareous nannofossils as paleoceanographic indicators. Science, 189: 555-557.
    Martinson, D.G. et al., 1987. Age dating and the theory of the Ice Ages: Development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Researtch, 27: 1-29.
    Mayewski, P.A. and Bender, M., 1995. The GISP2 ice core record-Paleoclimate highlights. Reviews of Geophysics: 1287-1296.
    McManus, J.F., 2004. A great grand-daddy of ice cores. Nature, 429: 611-612.
    McManus, J.F., Oppo, D.W. and Cullen, J.L., 1999. A 0.5 million year record of millennial-scale climate variability in the North Atlantic. Science, 283: 971-975.
    Milankovitch, M.M., 1941. Canon of Insolation and the Ice-Age Problem, Chapter 121. Belgrade: Serbian Academy Special Publication (English Translation by the Israel Problem for Science Translation, Published for the U.S. Department of Commerce and the National Science Foundation), Washington, D.C., 567 pp.
    Mix, A.C., Morey, A.E. and Pisias, N.G., 1999. Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics. Palaeoceanography 14(3): 350-359.
    Molfino, B. and McIntyre, A., 1990a. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5: 997-1008.
    Molfino, B. and McIntyre, A., 1990b. Prosession forcing of nutricline dynamics in the equtorial Atlantic. Science, 249: 766-769.
    Molfino, B. and McIntyre, A., 1990a. Prosession forcing of nutricline dynamics in the equtorial Atlantic. Science, 249: 766-769.
    Molfino, B. and McIntyre, A., 1990b. Nutricline variation in the equatorial Atlantic coincident with the Younger Dryas. Paleoceanography, 5: 997-1008.
    Moy, C.M., Seltzer, G.O., Rodbell, D.T. and al., e., 2002. Variability of El NiNo/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature, 420: 162-165.
    Mulitza, S., Ruhlemann, C., Bickert, T. and al., e., 198. Late Quaternary 13C gradients and carbonate accumulation in the weatern equatorial Atlantic. Earth and Planetary Science Letters, 155: 237-249.
    Nitani, H., 1972. Beginning of the Kuroshio, in Kuroshio. University of Tokyo Press, Tokyo, 353-369 pp.
    O' Brien, S.R., Mayewski, P.A., Meeker, L.D. and al., e., 1995. Complexity of Holocene climate as reconstructed from a Greenland ice core. Science, 270: 1962-1964.
    Oba, M. and Takemoto, A., 1992. Planktonic foraminifera and paleoceangraphy in the Domain of the Kuroshio current around Japan during the last 20,000 years (in Japanese, with English abstract). The Quaternary Research (Tokyo), 31(5): 341-357.
    Oba, T., 1995. Paleoenvironmental change of the Kuroshio region of Japan since the last glacial age. Global Fluxes of Carbon and Its Substances in the Coastal Sea-Ocean-Atmosphere System. M and International, 478-486 pp.
    Oba, T. et al., 1991. Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleoceanography, 6: 499-518.
    Oba, T., Takamoto, A. and Xu, X., 1996. The path of Kuroshio during the last 20000 yrs: Its paleoceanographic response to global climatic changes. Abstract of 30th IGC, Beijing, 2: 253.
    Okada, H., 1983. Modern nannofossil assemblages in sediments of coastal and marginal sea along the Weatern Pacific Ocean. Micropalaeontology, 30: 171-187.
    Okada, H., 1992. Biogeographic control on modern nannofossil assemblages in surface sediments of Atsumi Bay. Ise Bar Kumanonada of coast of Central Japan. Mem. Ist. Geol. Mineral. Mniv. Padova, Padova, 43: 431-499.
    Okada, H. and Bukry, D., 1980. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). Marine Micropaleontology, 5: 321-325.
    Okada, H. and Honjo, S., 1973. The distribution of oceanic coccolithophorids in the Pacific. Deep Sea Research and Oceanographic Abstracts, 20(4): 355-364.
    Okada, H. and Matsuoka, M., 1996. Lower-photic nannoflora as an indicator of the late Quaternary monsoonal palaeo-record in the tropical Indian Ocean. Micro-fossils and Oceanic Environments. Aberystwyth Press, University of Wales, 231-245 pp.
    Okada, H. and Wells, P., 1997. Late Quaternary nannofossil indicators of climate change in two deep-sea cores associated with the Leeuwin Current off Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 131(3-4): 413-432.
    Oppo, D.W. and Fairbank, R.G., 1989. Carbon isotope composition of tropical surface water during the past 22,000 years. Palaegeography, 4: 333-351.
    Paytan, A., Kastner, M. and Chavez, F.P., 1996. Glacial to interglacial fluctuations in productivity in the equatorial Pacific as indicated by marine barite. Science, 274: 1355-1357.
    Pedersen, T.F., 1983. Increased productivity in the eastern equatorial Pacific during the Last Glacial Maximum (19,000 to 14, 000 yr B.P.). Geology, 11: 16-19.
    Pedersen, T.F., Nielsen, B. and Pickering, M., 1991. Timing of late Quatternary productivity pulses in the Panama Basin and implications for atmospheric CO2. Palaeoceanography, 6: 657-677.
    Pelejero, C., Grimalt, J.O., Sarnthein, M., Wang, L. and Flores, J.-A., 1999. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140,000 years. Marine Geology, 156(1-4): 109-121.
    Perks, H.M., Charles, C.D. and Keeling, R.F., 2002. Precessionally forced productivity variations across the equatorial Pacific. Palaegeography, 17(3): 1-7.
    Petit, J.R. et al., 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399(3): 429-436.
    Philander, G.S. and Fedorow, A.V., 2003. Role of tropics in changing the response to Milankovich forcing some three million years ago. Paleoceanography, 18(2): 1045 doi:10.1029/2002PA000837.
    Pisias, N.G. and Mix, A.C., 1997. Spatial and temporal oceanographic variability of the eastern equatorial Pacific during the late Pleistocene: Evidence from Radiolaria microfossils. Palaeoceanography, 12(3): 381-393.
    Pisias, N.G. and Rea, D.K., 1998. Late Pleistocene paleoclimatology of the central equatorial Pacific: Sea surface response to the southeast trade winds. Palaegeography, 3: 21-37.
    Qu, T. and Lukas, R., 2003. The bifurcation of the North Equatorial Current in The Pacific. Journal of Physical Oceanography, 33: 5-18.
    Ravelo, A.C., Fairbank, R.G. and Philander, S.G., 1990. Reconstructing tropical Atlantic hydrography using planktonic foraminifera and an ocean model. Palaeoceanography, 5: 409-431.
    Ravelo, A.C. and Fairbanks, R.G., 1992. Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography, 7(6): 815-831.
    Rea, D.K., Pisias, N.G. and Newherry, T., 1991. Late Pleistocene palaeoclimatology of the central equatorial Pacific: Flux patterns of biogenic sediments. Palaegeography, 6: 227-244.
    Reichart, G.J., Lourens, L.J. and Zachariasse, W.J., 1998. Tropical variability in the northern Arabian Sea Oxygen Minimum Zoon (OMZ) during the last 225,000 years. Palaeoceanography, 13(6): 607-621.
    Reverdin, G., Frankigonoul, C. and Kestenare, E., 1994. Seasonal variability in the surface currents of the equatorial Pacific. Journal of Geophysical Research, 99: 20323-20344.
    Roth, P.H. and Coulbourn, W.T., 1982. Floral and solution patterns of coccoliths in surface sediments of the North Pacific. Marine Micropaleontology, 7(1): 1-52.
    Ruddiman, W.F., 2001. Earth's Climate-Past and Future, New York.
    Ruddiman, W.F., 2006. What is the timing of orbital-scale monsoon changes? Quaternary Science Reviews, 25(7-8): 657-658.
    Ruddiman, W.F. and al., e., 2000. Earth's Climate: Past and Future. WH Freeman and Company, New York, 174-192 pp.
    Saito, T., Thompson, P.R. and Breger, D., 1981. System index of recent and Pleistocene planktonic foraminifera. University of Tokyo Press, Tokyo, pp. 1-190.
    Samthein, M., Kennett, J.P., Allen, J. and al., e., 2002. Decadal-to-millennial-scale climate variability-chronology and mechanisms: Summary and recommendations. Quaternary Science Reviews, 21: 1121-1128.
    Sarnthein, M., Winn, K., Duplessy, J.-C. and Fontugne, M.R., 1988. Glacial variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years. Palaeoceanography, 3: 361-399.
    Schiffelbein, P. and Thierstein, H.R., 1981. Late Pleistocene coccolith isotope stratigrahy: effects of floral change. EOS, Trans. Am. Geophys. Union, 62: 938.
    Schmottner, A. and Clement, A.C., 2002. Sensitivity of the thermohaline circulation to tropical and high latitude freshwater during the last glacial-interglacial cycle. Palaegeography, 17(2): 7.
    Schneidermann, N., 1977. Selective dissolution of recent coccoliths in the Atlantic Ocean. Oceanic Micropaleonology, 2. Academy Press, New York, 1009-1053 pp.
    Schulz, M., Berger, W.H., Sarnthein, M. and al., e., 1999. Amplitude variations of 1470 year climate oscillations during the last 100 000 years linked to fluctuations of continental ice mass. Geophysical Research Letters, 26(3): 3385-3388.
    Seltzer, G.O. et al., 2002. Early warming of tropical South America at the last glacial-interglacial transition. Science, 298: 1685-1686.
    Shackleton, N., J., Hall, M.A., Line, J. and Shuxi, C., 1983. Carbon isotope data in core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere. Nature, 306: 319-322.
    Shackleton, N.J. and Kennett, L.P., 1975. Paleotemperature history of the Cenozoic and the initiation of Antartic glaciation: oxygen and carbon isotope analysis in DSDP sites 277, 281. Initial Reports of the DSDP 29: 743-755.
    Shackleton, N.J. and Opdyke, N.D., 1973. Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperature and ice volumes on a 105 year and 106 year scale. Quaternary Research, 3: 39-55.
    Short, D., Mengel, J.G., Crowley, T.J., Hyde, W.T. and North, G.R., 1991. Filtering of Milankovitch cycles by Earth's geography. Quaternary Research, 35: 157-173.
    Sierro, F.J., Flores, J.A. and Baraza, J., 1999. Late glacial to recent paleoenvironmental changes in the Gulf of Cadiz and formation of sandy contourite layers. Marine Geology, 155(1-2): 157-172.
    Sprovieri, R., Di Stefano, E., Incarbona, A. and Gargano, M.E., 2003. A high-resolution record of the last deglaciation in the Sicily Channel based on foraminifera and calcareous nannofossil quantitative distribution. Palaeogeography, Palaeoclimatology, Palaeoecology, 202(1-2): 119-142.
    Stager, J.C. and Mayewski, P.A., 1997. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles. Science, 276: 1834-1836. Stoll, H.M. and Ziveri, P., 2002. Separation of monospecific and restricted coccolith assemblages from sediments using differential settling velocity. Marine Micropaleontology, 46(1-2): 209-221.
    Stott, L., Poulsen, C., Lund, S. and Thunell, R., 2002. Super ENSO and glocial climate oscillations at millennial time scales. Science, 297(12): 222-226.
    Stuiver, M., Reimer, P.J. and Bard, E., 1998. INTCAL98 Radiocarbon age calibration 24 000-0 cal BP. Radiocarbon, 40: 1041-1083.
    Tada, R., Irino, T. and Koizumi, I., 1995. Possible Dansgaard-Oeschger oscillation signal recorded in the Japan Sea sediments. Global Fluxes of Carbon and its Related Substances in the Coastal-Sea-Ocean-Atmosphere System. M&J Int, Yokohama, Japan, 517-522 pp.
    Tada, R., Irino, T. and Koizumi, I., 1999. Land-ocean linkages over orbital and millennial timescales record in late quaternary sediments of Japan Sea. Paleoceanography, 14(2): 236-247.
    Takahashi, K. and Okada, H., 2000a. Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia. Marine Micropaleontology, 39(1-4): 73-86.
    Takahashi, K. and Okada, H., 2000b. The paleoceanography for the last 30,000 years in the southeastern Indian Ocean by means of calcareous nannofossils. Marine Micropaleontology, 40(1-2): 83-103.
    Takayanagi, Y., Saito, T., Okada, H. and al., e., 1987. Mid Quaternary paleoceanographic trend in near-shore waters of the northwest Pacific. Tohoku Univ., Sci. Rep., 2nd ser. (Geol.), 57(2): 105-137.
    Tanaka, Y., 1991. Calcareous nannoplankton thanatocoenoses in surface sediments from seas around Japan. Sci. Rep., Tohoku Univ., 2nd Ser.,, 61: 127-198.
    Thierstein, H.R. and Berger, W.H., 1978. Injection events in ocean histry. Nature, 276: 461-466.
    Thompson, P.R., Be, W.H.A., Duplessy, J.C. and al, e., 1979. Dissappearence of pink-pigmented Globigerina ruber at 120 000 yr BP. in the Indian and Pacific Oceans. Nature, 280: 554-558.
    Tudhope, A.W. et al., 2001. Variabilty in the El Nino-Southern Oscillation Through a Glacial-Interglacial Cycle. Science, 291(23): 1511-1517.
    Turk, D., Mcphaden, M.J., Busalacchi, A.J. and Lewis, M.R., 2001. Remotely sensed biological production in the Equatorial Pacific. Science, 293: 471-474.
    Turk., D., Mcphaden, M.J., Busalacchi, A.J. and R.Lewis, M., 2001. Remotely sensed biological production in the Equatorial Pacific. Science, 293: 471-474.
    Tziperman, E., Zebiak, S.E. and Cane, M.A., 1997. Mechanisms of seasonal-ENSO interaction. J. Atmos. Sci., 54: 61-71.
    Ujiie, H. and Ichikura, M., 1973. Holocene to uppermost Pleistocene planktonic foraminifers in a piston core from off San'in district, Sea of Japan. Trans. Proc. Paleont. Soc. Japan., N.S.91: 137-150.
    Ujiie, H., Tanaka, Y. and Ono, T., 1991. Late Quarternary paleoceanographic record from the middle Ryukyu Trench slope, northwest Pacific. Marine Micropaleontology, 18(1-2): 115-128.
    Ujiie, H. and Ujiie, Y., 1999. Late Quaternary course changes of the Kuroshio Current in the Ryukyu Arc region, northweatern Pacific Ocean. Marine and Micropaleontology, 37(1): 23-40.
    Ujiie, Y., Ujiie, H., Taira, A., Nakamura, T. and Oguri, K., 2003. Spatial and temporal variability of surface water in the Kuroshio source region, Pacific Ocean, over the past 21, 000 years: evidence from planktonic foraminifera. Marine and Micropaleontology, 49(4): 335-364.
    Villanueva, J. and Grimalt, J.O., 1998. Precessional forcing of productivity in the North Atlantic Ocean. Palaeoceanography, 13(6): 561-571.
    Visser, K., Thunell, R. and Stott, L., 2003. Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature, 421(6919): 152-155.
    Vivier, F., Kelly, K.A. and Thompson, L., 1999. The contributions of wind forcing waves and surface heating to sea surface height observations in the Pacific Ocean. Journal of Geophysical Research, 104: 20767-20788.
    Volat, J.L. and al., e., 1980. Disollution and carbonate fluctuations in Pleistocene deep sea cores: A review. Marine Geology, 34(1-2): 1-28.
    Wang, L., Sarnthein, M., Erlenheuser, H. and al, e., 1999. East monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Marine Geology, 156: 245-284.
    Wang, P. and Samtleben, C., 1983. Calcareous nannoplankton in surface sediments of the East China Sea. Marine Micropaleontology, 8(3): 249-259.
    Wang, P.X., Wang, L., Bian, Y. and al., e., 1995. Late Quaternary paleoceanography of the South China Sea: Surface circulation and carbonate cycles. Marine Geology, 127(1-4): 145-165.
    Weaver, P.P.E. and Pujol, C., 1988. History of the last deglaciation in the alboran sea (western Mediterranean) and adjacent north Atlantic as revealed by coccolith floras. Palaeogeography, Palaeoclimatology, Palaeoecology, 64(1-2): 35-42.
    Webster, P.J., 1994. The role of hydrological process in ocean-atmosphere interaction. Reviews of Geophysics, 32: 427-476.
    Webster, P.J., Magana, V.O., Palmer, T.N. and al, e., 1998. Monsoons: Processes, Predictability, and the prospects for prediction. Journal of Geophysical Research, 103(C7): 14451~14510.
    Wefer, G. and Berger, W.H., 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100: 207-248.
    Winner, A. and Stesser, W.G., 1994. Coccolithophores. Cambridge University Press: 219-229.
    Winograd, I.J., Coplen, T.B., Landwehr, J.M. and al., e., 1992. A continuous 500,000-year record from vein calcite in Devils Hole, Nevada. Science, 258: 255-260.
    Winter, A., Reiss, Z. and Luz, B., 1979. Distribution of living coccolithophore assemblages in the Gulf of Elat ('Aqaba). Marine Micropaleontology, 4: 197-223.
    Woodruff, F., Savin, S.M. and Douglas, R.G., 1980. Biological fraction of oxygen and carbon isotopes by recent benthic foraminifera. Marine and Micropaleontology, 5: 3-11.
    Wyrtki, K., 1975. El Nino-the dynamic response of the equatorial Pacific Ocean to atmosphere forcing. Journal of Physical Oceanography, 5(572-584).
    Xu, X.D. and Oda, M., 1999. Surface-water evolution of the eastern East China Sea during the last 36, 000 years. Marine Geology, 156: 285-304.
    Y, L.C., 1990. Interaction between anomalous winter monsoon in East Asia and El Nino events. Adv in Atmos Science, 7: 36-46.
    Yafeng, S., 1992. The Dinates and Environments of the Holocene Magathernal in China. China Ocean Press, Beijing, 1-213 pp.
    Yamamoto, M., Oba, T., Shimamune, J. and Ueshima, T., 2004. Orbital-scale anti-phase variation of sea surface temperature in mid-latitude North Pacific margins during the last 145,000 years. Geophysical Research Letters, 31. Zahn, R., Winn, K. and Sarthein, M., 1986. Benthic foraminiferal 13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wullerstorfi. Palaegeography, 1: 27-42.
    Zebiak, S.E. and Cane, M.A., 1987. A model El Nino-Southern Oscillation. Mon. Weather Rev., 115: 2262-2278.
    Zhang, X.Y., Airmoto, R., An, Z.S. and al., e., 1997. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research, 102: 28041-28047.
    Ziveri, P. et al., 2003. Stable isotope 'vital effects' in coccolith calcite. Earth and Planetary Science Letters, 210(1-2): 137-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700