8-羟基喹啉金属配合物分子空间结构与材料性能关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1987年美国的C.W.Tang首次报道采用三(8-羟基喹啉)铝(Alq_3)制作有机电致发光器件(OLED:Organic Light-emitting Device)以来,众多的新型有机电致发光材料(OELM:Organic Electroluminescence Material)被成功合成来满足改善OLED器件性能的要求。在众多的OELM中,由于8-羟基喹啉金属配合物(Mq_n)的各项性能优于其它类型的OELM,到目前为止只有Mq_n能作为一种技术成熟的OELM被广泛应用在各种OLED中。有关Mq_n的性能以及应用方面的研究已经成熟,然而Mq_n研究中仍然存在以下问题:Mq_n的合成方法与提纯方法的研究不足,不能满足其商业化大规模生产的要求,不利于OLED生产成本的降低;Mq_n的发光机理的研究相对比较薄弱,尤其是分子空间结构与材料性能之间的关系还需要大量的研究工作。以上两个问题制约了Mq_n的发展。本文针对Mq_n的研究现状开展研究,以Alq_3、二(8-羟基喹啉)锌(Znq_2)、8-羟基喹啉锂(Liq)为主要研究对象,对其合成、改性及材料性能进行了大量的实验研究与理论分析,从而揭示出Mq_n的分子空间结构与材料性能之间的关系,主要结果如下:
     1、探索研究了Alq_3、Znq_2和Liq的最佳的合成方法与提纯方法,优化各项工艺参数,从而满足提高合成产物产率和纯度的要求。本文设计并采用全新的真空提纯装置提纯Mq_n,大大提高了提纯效率,降低了提纯过程中产物的损失。该研究工作有助于降低合成Mq_n的生产成本,提高其合成效率,从而推动Mq_n商业化生产发展。
     2、首次采用真空加热与化学提纯相结合的方法制备了能实现蓝光发射的Alq_3,即δ-Alq_3,通过对δ-Alq_3和α-Alq_3的分子空间结构与各项性能进行分析与讨论,认为α-Alq_3在真空加热生成δ-Alq_3的过程中,分子结构与分子堆叠方式发生变化,分子之间的π-π相互作用增强;在光致发光光谱中,δ-Alq_3的最大发射峰较α-Alq_3发生蓝移,δ-Alq_3具有明显的蓝色荧光效果;固态中δ-Alq_3的荧光发射来自相邻分子的喹啉环间π→π~*电子跃迁,而α-Alq_3的荧光发射主要来自分子内定域在酚环的最高占据轨道(HOMO:the Highest Occupied Molecular Orbit)与定域在吡啶环的最低未占轨道(LUMO:the Lowest Unoccupied Molecular Orbit)之间的π→π~*电子跃迁;δ-Alq_3在真空热蒸发成膜的过程中会转变为α-Alq_3,因而当δ-Alq_3在OLED中作为发光层时电致发光光谱与α-Alq_3基本一致,发绿光;δ-Alq_3的成膜性优于α-Alq_3,导致其各项电致发光性能优于α-Alq_3。
     3、采用重结晶与真空加热相结合的方法制备了(Znq_2)_4和Znq_2,通过对(Znq_2)_4和Znq_2的分子空间结构与性能进行分析与讨论,发现(Znq_2)_4是由四个Znq_2通过Z-O-Zn键桥连接构成的,其分子平面结构的刚性程度大大强于Znq_2;(Znq_2)_4的荧光量子效率高于Znq_2,成膜性优于Znq_2;(Znq_2)_4相邻分子之间具有较强的π-π相互作用,而Znq_2相邻分子之间的π-π相互作用较弱,(Znq_2)_4的电子传输性能优于Znq_2,当(Znq_2)_4在OLED中作为发光层时,其各项性能参数优于Znq_2;(Znq_2)_4的荧光发射主要来自(Znq_2)_4分子中喹啉环间的π→π~*的电子跃迁和喹啉环内HOMO与LUMO之间的π→π~*电子跃迁,而Znq_2的荧光发射来自喹啉环内HOMO与LUMO之间的π→π~*电子跃迁,因而在电致发光光谱中(Znq_2)_4的光谱宽度比Znq_2宽。
     4、制备了(Liq·Naq)_2,通过对(Liq·Naq)_2和Liq的分子空间结构与性能进行分析与讨论,发现(Liq·Naq)_2是通过两个Na-O-Na键桥将两个Liq和两个Naq连接构成的,其分子平面结构的刚性程度强于Liq,空间位阻大于Liq,分子之间的距离大于Liq,分子极性远远小于Liq;(Liq·Naq)_2的荧光寿命长于Liq,荧光量子效率高于Liq,成膜性优于Liq;(Liq·Naq)_2的禁带宽度比Liq大,光致发光光谱中(Liq·Naq)_2的最大发射峰较Liq发生蓝移;当(Liq·Naq)_2在OLED中作为发光层时,激发二聚体与激基复合物的生成几率远远小于Liq,发的光比Liq更蓝,电流效率大于Liq;(Liq·Naq)_2超薄膜中有Na离子的存在,与Liq超薄膜相比,当其在OLED中作为电子注入层时,具有更大的电流密度,更高的发光强度,更低的阈值电压和更高的电流效率
     5、对上述Alq_3、Znq_2和Liq的分子空间结构与材料性能之间的关系进行了归纳总结,认为Mq_n的分子空间结构主要在分子平面结构的刚性程度,相邻分子之间的相互作用,分子堆叠的方式和分子之间的距离这四个方面影响其性能。根据这样的理论,能够根据对Mq_n材料性能不同的要求,采用不同的方法对Mq_n的分子空间结构进行相应改造,从而实现分子水平上Mq_n的改性,为Mq_n的改性研究开辟新的道路。
Since C.W.Tang fabricated the first organic light-emitting device (OLED) using tris(8-hydroxyquinoline)aluminum (Alq_3) in 1987, plenty of novel organic electroluminescence materials (OELMs) have been synthesized to improve the performance of OLED. Among them, 8-hydroxyquinoline metal complex (Mq_n) is widely used in all kinds of OLEDs as a kind of well-developed OELM, for its superior performance over other kinds of OELMs. Though, the performance and application of Mqn had been extensively investigated, there still exist problems to be solved, such as the effective and low-cost synthesis and purification for commercialization, and the well-established light-emitting mechanism of Mq_n, especially the relationship between molecular spatial structure and material performance of Mq_n. In this paper, Alq_3, bis(8-hydroxyquioline)zinc (Znq_2) and 8-hydroxyquioline lithium (Liq) were main research objects. In order to elucidate the relationship between molecular spatial structure and material performance of Mqn, the synthesis, performance modification and material performance of above Mq_n molecules were studied experimentally and theoretically. The main research conclusions are as follows:
     1. The synthesis and purification of Alq_3, Znq_2 and Liq wereoptimized to satisfy the requirement for high yield and high purity of product. A novel vacuum evaporation equipment for Mq_n purification was designed, which can increase purification efficiency and reduce product loss. This work may be helpful for preparing Mq_n with low cost and high yield, and consequently for promoting the development of commercialization of Mq_n.
     2. For the first time, blue-light-emittingδ-Alq_3 was synthesized by vacuum heating and chemical purification. The analysis of molecular spatial structure and the characterization of material performance ofδ-Alq_3 andα-Alq_3 revealed that the molecular structure and molecule packing mode ofα-Alq_3 can change when converted toδ-Alq_3 by vacuum heating, resulting in strengthening intermolecularπ-πinteraction. In photoluminescence (PL) spectra, the maximum emission peak ofα-Alq_3 blue-shifts relative toα-Alq_3, andδ-Alq_3 possesses blue fluorescence effect. In solid state, the fluorescence emission ofδ-Alq_3 is attributed to the intermolecularπ-π~* electron transition, while the fluorescence emission ofα-Alq_3 is attributed to theπ→π~* electron transition between the Highest Occupied Molecular Orbit (HOMO) located in phenol ring and the Lowest Unoccupied Molecular Orbit (LUMO) located in pyridine ring of 8-hydroxyquinoline. Becauseδ-Alq_3 can convert toα-Alq_3 again during the film preparation by vacuum evaporation, the electroluminescence (EL) spectra ofδ-Alq_3 is nearly identical with that ofα-Alq_3 whenδ-Alq_3 is used as light emitting layer in OLED. Compared withα-Alq_3, better film formability ofδ-Alq_3 induces better electroluminescent performance.
     3. (Znq_2)_4 and Znq_2 were synthesized by recrystallization and vacuum heating. The analysis of molecular spatial structure and the characterization of material performance of (Znq_2)_4 and Znq_2 indicated that four Znq_2 were connected by Zn-O-Zn bond bridges to form (Znq_2)_4, which can strengthen the rigidity of planar molecular structure of Znq_2. Compared with Znq_2, (Znq_2)_4 exhibits higher fluorescence quantum efficiency and better film formability. The intermolecularπ-πinteraction between adjacent (Znq_2)_4 molecules is stronger than that between adjacent Znq_2 molecules, so the electron transporting performance of (Znq_2)_4 is better than Znq_2. When used as light emitting layer in OLED, (Znq_2)_4 gives much better electroluminescent performance than Znq_2. In (Znq_2)_4 molecule, the fluorescence emission is not only attributed to theπ→πelectron transition between HOMO and LUMO of hydroxyquinoline ring, but also attributed to theπ→πelectron transition between adjacent hydroxyquinoline rings. However, the fluorescence emission of Znq_2 is attributed toπ→π~* electron transition between HOMO and LUMO of hydroxyquinoline ring. Therefore, the EL spectra of (Znq_2)_4 is wider than that of Znq_2.
     4. (Liq·Naq)_2 was synthesized. The analysis of molecular spatial structure and the characterization of material performance of (Liq-Naq)_2 and Liq showed that two Liq molecules and two Naq molecules were connected by Na-O-Na bond bridges to form (Liq·Naq)_2. Compared with Liq, (Liq·Naq)_2 exhibits stronger rigidity in planar molecular structure, larger steric hindrance and intermolecular distance, and much smaller molecular polarity, thus resulting in much longer fluorescence lifetime, much higher fluorescence quantum efficiency, wider energy bandgap and better film formability. When used as light-emitting layer in OLED, (Liq·Naq)_2 shows lower formation probability of excited dimmer and exciplex formation than Liq, thus emits bluer light with higher current efficiency than Liq. When (Liq·Naq)_2 ultrathin film is used as electron injection layer in OLED, it exhibits higher current density, higher luminance, lower turn-on voltage and higher current efficiency than Liq ultrathin film for the existence of sodium ions in (Liq·Naq)_2 ultrathin film.
     5. The summarization the relationship between molecular spatial structure and material performance of Alq_3, (Znq_2) and Liq, lead the conclusion that the molecular spatial structure of Mq_n affects its material performance in such aspects as the rigidity of planar molecular structure, intermolecular interaction, molecule stacking mode and intermolecular distance. On the base of this theory, the performance of different Mq_n molecules can be modified at molecular level by changing their molecular spatial structure in response to different requirement for material performance. This would open a new route for the research on Mqn performance modification.
引文
[1] M.Pope, H.P.Kallmann, P.Mangnate, Electroluminescence in organic crystals [J], J.Chem.Phys., 1963, 38(8): 2042-2043
    [2] C.W.Tang, S.A.Vanslyke, Organic electroluminescent diodes [J], Appl.Phys. Lett., 1987,51(12): 913-915
    [3] J.H.Burroughes, D.D.Bardley, A.R.Brown, et al, Light-emitting diodes based on conjugated polymers [J], Nature, 1990, 347:539-541
    [4] 高观光,黄维,固体中的电输运,北京,科学出版社,1991,P7-9,P547-560
    [5] 朱道本,王佛松,有机固体,上海,上海科学技术出版社,1999,P28-29,P32-34
    [6] 黄春辉,李富友,黄维等,有机电致发光材料与器件导论,上海,复旦大学出版社,2005,P16-19
    [7] 吴有智,有机薄膜电致发光器件特性及机理研究,[博士学位论文],上海,上海大学,2003年
    [8] E.Aminaka, T.Tsutsui, S.Saito, Electroluminescent behavior in multiplayer thin-film electroluminescent devices using 9,10-bisstytylanthracence derivatives [J], Jpn.J.Appl.Phys, 1994, 33, Partl(2): 1061-1068
    [9] 田文晶,吴芳,沈家骢等,有机/聚合物电致发光材料的能带结构及其在发光器件中的应用[J],发光学报,2000,21(3):230-235
    [10] 李文连,有机EL和LED与无机EL和LED发光机制的异同[J],液晶与显示,2001,16(1):33-37
    [11] 任玲玲,万礼俊,白春礼,有机电致发光器件的结构、发光机理及表面工程[J],化学通报,2004,7:499-505
    [12] T.M.Brown, R.H.Friend, I.S.Millard, et al, LiF/A1 cathodes and the effect of LiF thickness on the device characteristics and built in potential of polymer light-emitting diodes [J], Appl.Phys.Lett., 2000(19), 77:3096-3098
    [13] T.Mori, H.Kim, S.R.Forrest, T.Mizutani et al, Electroluminescent properties in organic light-emitting diode with two guest dyes [J], Jpn.J.Appl.Phys., 2001, 40, Partl (9A): 5346-5349
    [14] 朱卫国,苑同锁,卢志云等,有机金属螯合物电致发光材料的研究[J],材料导报,2000,14(1):54-58
    [15] Y.Hamada, T.Sano, M.Fujii, et al, Significance of multilayer structures in organic thin-film electroluminescent devices [J], J.Appl.Phys., 1993, 32(12): 514-515
    [16] C.H.Chen, J.M.Shi, Metal chelates as emitting materials for organic electroluminescence [J], Coordination Chemistry Reviews, 1998, 171(1): 161-174
    [17] 赵伟明,朱文清,张志林等,8.羟基喹啉锂蓝色有机电致发光器件[J],半导体光电,2001,22(4):279
    [18] X.T.Tao, H.Suzuki, T.Wada, et al, Highly efficient electroluminescence of Lithium tetra-(2-methyl-8-hydroxyquinolinato)boron [J], J.Am.ehem.Soc., 1999, 121(40): 9447-9448
    [19] Y.Hamada, T.Sano, M.Fujii, et al, Blue electroluminescence in thin films of azomethin-zinc complexes [J], Jpn.J.Appl.Phys., 1993, 32, Part2(4A): 511-513
    [20] S.D.Bella, I.Fragala, I.Ledoux, et al, Synthesis, characterization, optical spectroscopic, electronic structure, and second order nonlinear optical (NLO) properties of a novel class of donor-acceptor bis(salicylaldiminato)nickel(Ⅱ) schiff base NLO chromophores [J], J.Am.Chem.Soc., 1997, 119(40): 9550-9557
    [21] Y.Hamada, T.Sano, M.Fujii, et al, White-light-emitting material for electroluminescent devices [J], Jpn.J.Appl.Phys., 1996, 35, Part2(10B): 1339-1341
    [22] J.Kido, K.Nagai, Y.Okamoto, Organic electroluminescent devices using lanthanide complexes [J], J.Alloy.Comp., 1993, 192(1-2): 30-33
    [23]J.Kido, K.Nagai, Y.Lizumi, et al, Bright red light-emitting organic electroluminescent devices having an europium complex as an emitter [J], Appl.Phys.Lett., 1994, 65(17): 2124-2127
    [24]W.L.Li, J.Q.Yu, Z.R.Hong, et al, Organic electroluminescent devices using terbium chelates as the emitting layers [J], Synth.Met., 1997, 91(1-3): 263-265
    [25]Z.R.Hong, W.L.Li, D.X.Zhao, et al, Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes [J], Synth.Met., 1999, 104(3): 165-168
    [26]O.M.Khreis, R.J.Curry, M.Somerton et al, Infrared organic light emitting devices using neodymiumtris-(8-hydrooxyquoline) [J], J.Appl.Phys., 2000, 88(2): 777-780
    [27]U.Mitschke, P.Bauerle, The electroluminescence of organic materials [J], J.Mater.Chem., 2000, 10(7): 1471-1507
    [28]Y.Shirota, Organic materials for electronic and optoelectronic devices [J], J.Mater.Chem., 2000, 10(1): 1-25
    [29]K.Naito, A.Miura, Molecular design for nonpolymeric organic dye glasses with thermal stability: relations between thermodynamic parameters and amorphous properties [J], J.Phys.Chem., 1993, 97(23): 6240-6248
    
    [30]Y.Shirota, T.Kobata, N.Noma, Starburst molecules for amorphous molecular materials.4,4',4"-tris(iV,iV-diphenylamino)triphenylamine and 4,4',4"-tris[N-(3 -methylphenyl)-N-phenyIamino]triphenylamine [J], Chem.Lett., 1989, 18(7): 1145-1155
    [31]H.Kageyama, K.Itano, W.Ishikawa et al, Striking effects of halogen substituents on the glass-forming properties, glass-transition temperatures and stabilities of the glassy state of a new family of amorphous molecular materials, 1,3,5-tris(4-halogenophenylphenylamino) benzenes [J], J.Mater.Chem., 1996, 6(4): 675-676
    [32] W.Ishikawa, H.Inada, H.Nakano, et al, Methyl-substituted derivatives of 1,3,5-tris(diphenylamino) benzene as a novel class of amorphous molecular materials [J], Chem.Lett., 1991,20(10): 1731-1738
    [33] Y.Shirota, Y.Kuwabara, H.Inada, et al, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4',4'-tris(3-methylphenyl-phenylamino)triphenylamine, as a hole transport material [J], Appl.Phys.Lett.,1994, 65(7): 807-809
    [34] J.Kido, Y.Iizumi Fabrication of highly efficient organic electroluminescent devices [J], Appl.Phys.Lett., 1998, 73(19): 2721-2723
    [35] 马昌期,张联齐,李晓卉等,5-位取代吡唑啉化合物的发光行为及其在电致发光领域中的应用[J],化学学报,2002,60(5):847-853
    [36] C.Q.Ma, L.Q.Zhang, J.H.Zhou, et al, 1,3-diphenyl-5-(9-phenanthryl)-2-pyra-zoline (DPPhP): an excellent hole-transport material for use in organic light-emitting diodes [J], Chin.J.Chem., 2002, 20(10): 929-932
    [37] H.Kawamura, C.Hosokawa, T.Kusumoto, Organic electroluminescence device containing a silanamine compound, US 5388788, 1994
    [38] A.Lux, A.B.Holmes, R.Cervini, et al, New CF_3-substituted PPV-type oligomers and polymers for use as hole blocking layers in LEDs [J], Synth.Met., 1997, 84(1-3): 293-294
    [39] S.E.Dottinger, M.Hanack, J.L.Segura, et al, Chemical tuning of the electronic properties of differently substituted 1,4-bis(styryl)benzenes, 2,6-bis(sty-ryl)naphthalenes, and bis(thienylvinylene)benzenes and naphthalenes [J], Adv.Mater., 1997, 9(3): 233-236
    [40] Z.K.Chen, W.Huang, L.H.Wang, et al, Family of electroluminescent silyl-substituted poly(p-phenylenevinylene)s: synthesis, characterization, and structure property relationships [J], Macromolecules, 2000, 33 (24): 9015-9025
    [41] K.Yoshino, H.Takahashi, K.Muro, et al, Optically controlled characteristics of Schottky gated poly(3-alkylthiophene) field effect transistor [J]. J.Appl.Phys., 1991, 70(9): 5035-5039
    [42]W.L.Yu, J.Pei, W.Huang, et al, Spiro-functionalized polyfluorene derivatives as blue light-emitting materials [J], Adv.Mater., 2000, 12(11): 828-831
    [43]B.Liu, W.L.Lu, Y.H.Lai, et al, Synthesis, characterization, and structure property relationship of novel fluorene-thiophene-based conjugated copolymers [J], Macromolecules, 2000, 33(24): 8945-8952
    [44]O.Stephan, J.C.Vial, Blue light electroluminescent devices based on a copolymer derived from fluorene and carbazole [J], Synth.Met, 1999, 106(2): 115-119
    [45]G.Grem, G.Leising, Electroluminescence of wide-bandgap chemically tunable cyclic conjugated polymers [J], Synth.Met, 1993, 55-57: 4105-4110
    [46] Y.Yang, Q.Pei, A.J.Heeger, et al, Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s [J], J.Appl.Phys., 1996, 79(2): 934-939
    [47]A.S.Ionkin, W.J.Marshall, B.M.Fish, Synthesis and structural characterization of a series of novel polyaromatic ligands containing pyrene and related biscyclometalated Iridium(iii) complexes [J], Organometallics, 2006, 25(6): 1461-1471
    [48]J.K.Yu, Y.H.Hu, Y.M.Cheng, et al, A remarkable ligand Orientational effect in Osmium-atom-induced blue phosphorescence [J], Chem.Eur.J., 2004, 10(24): 6255-6264
    [49]M.A.Baldo, D.F.O'Brien, S.R.Forrest, et al, Highly efficient phosphorescent emission from organic electroluminescent devices [J], Nature, 1998, 395(10): 151-154
    [50]T.Tsutsui, M.J.Yang, M.Yahiro, et al, High quantum efficiency in organic light-emitting devices with Iridium-Complex as triplet emissive center [J], Jpn.J.Appl.Phys., 1999, 38, Part2(12B): 1502-1504
    [51]C.Adachi, M.A.Baldo, M.E.Thompson, et al, Nearly 100% internal phosphorescence efficiency in an organic light-emitting device [J], J.Appl.Phys., 2001, 90(10): 5048-5051
    [52] S. Tokito, T. Iijima, Y. Suzuri, et al, Confinement of triplet energy on phosphorescent molecules for highly efficient organic blue-light-emitting devices [J], Appl. Phys. Lett., 2003, 83(3): 569-571
    [53] 方容川,固体光谱学,合肥,中国科技大学出版社,2001,P61
    [54] 赵哲辉,于贵,刘云圻等,席夫碱及其锌配合物的合成和发光特性[J],液晶与显示,2005,20(5):370-374
    [55] 郝玉英,有机电致发光材料的物理性能研究,[博士学位论文],太原,太原理工大学,2006
    [56] 田文晶,吴芳,樊玉国,有机/聚合物材料体系能带结构的表征电化学方法研究[J],高等学校化学学报,2000,21(9):1422-1426
    [57] A. J. Bard, L. R. Faulkner, Electrochemical methods, fundamental and application, Willey, New York, 1980, P634
    [58] C. Schmitz, H. W. Schmidi, M. Thelakkat, et al, Lituium, quinolate complexes as emitter and interface materials in organic light-emitting diodes [J], Chem. Mater., 2000, 12(10): 3012-3019
    [59] I. Soutar, The lighter side of darwinism-photoelectron of the species-application of luminescence anisotropy measurements to the study of polymer relaxation [J], Macromol. Chem. Macromol. Symp., 1992, 53: 393-399
    [60] 房喻,王辉,荧光寿命测定的现代方法与应用[J],化学通报,2001,64:631-636.
    [61] M. S. Xu, J. B. Xu, Real-time Visualization of thermally activated degradation of the ITO/Cupc/NPB/Alq_3 stack used in one of the organic light-emitting diodes [J], J. Phys. D: Appl. Phys., 2004, 37(12): 1603-1608
    [62] M. S. Xu, J. B. Xu, Visualization of thermally activated degradation pathway of tris(8-hydroxyquinoline)aluminum thin films for electroluminescence application [J], Thin Solid Film, 2005, 491(1-2): 317-322
    [63] T. Gavtilko, R. Fedrovich, G. Dovbeshko, et al, FTIR spectroscopic and STM studies of vacuum deposited aluminum 8-hydroxyquinoline thin film [J], Journal of Molecular Structure, 2004, 704(1-3): 163-168
    [64] C. Alessandro, B. Mauro, A. Wanda, Alq_3: Ab Initio calculations of its structural and electronic properties in neutral and charged states [J], Chem. Phys. Lett., 1998, 294(18): 263-271
    [65] M. Brinkmann, G. Gadret, M. Muccini, et al, Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris(8-hydorxyquinoline)aluminum(Ⅲ) [J], J. Am. Chem. Soc., 2000, 122(21): 5147-5157
    [66] M. Braun, J. Gmeiner, M. Tzolov, et al, A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline)aluminum exhibiting blueshifted fluorescence [J], J. Chem. Phys., 2001, 114(21): 9625-9632
    [67] M. Colle, J. Gmeiner, M. Tzolov, et al, Preparation and characterization of blue-luminescent tirs(8-hydroxyquinoline) aluminum (Alq_3) [J], Adv. Funct. Mater., 2003, 13(2): 108-112
    [68] H. W. Jin, C. Q. Jin, Fractal surfaces of 8-(hydroxyquinoline)zinc and their relation to electroluminescence behaviour [J], Polymers and Polymer Composites, 2000, 8: 263-266
    [69] S. S. Linda, F. Anna, F. F. Kim, et al, Electroluminescent Zinc(Ⅱ)bis(8-hydroxyquinoline): Structure effect on electronic states and device performance [J], J. Am. Chem. Soc., 2002, 124(21): 6119-6125
    [70] S. S. Linda, F. Anna, F. F. Kim, et al, Supramolecular structures of Zinc (Ⅱ)(8-quinolinolato) chelates [J], J. Phys. Chem. B, 2004, 108(25): 8558-8566
    [71] 苏忠民,程红,高洪泽等,8-羟基喹啉铝光电性质的Ab initio和DFT研究[J],高等学校化学学报,2000,21(9):1416-1421
    [72] H. Z. Gao, Z. M. Su, C. S. Qin, et al, Electronic structure and molecular orbital study of the first excited state of the high-efficiency blue OLED material bis(2-methyl-8-quinolinolato)aluminum(Ⅲ) hydroxide, complex from Ab Initio and TD-B3LYP [J], International Journal of Quantum Chemistry, 2004, 97: 992-1001
    [73] Y. L. Teng, Y. H. Kan, Z. M. Su, Luminescent compounds diphenylboron analogs of Alq_3 and its methyl substituents: a theoretical investigation of their electronic and spectroscopic properties [J], International Journal of Quantum Chemistry, 2005, 103: 775-780
    [74] 苏忠民,高洪泽,程红等,发光金属配合物8-羟基喹啉镓(Gaq_3)的电子性质及其分子设计[J], 中国科学B辑, 2001,31(1):16-27
    [75] 廖奕,苏忠民,陈亚光等,8-羟基喹啉铍及其衍生物电子光谱性质的含时密度泛函理论研究[J],高等学校化学学报,2003,124(3):477-480
    [76] J. P. Zhang, G. Frenking, Quantum chemical analysis of the chemical bonds in tris(8-hydroxyquinolinato)aluminum as a key emitting material for OLED [J], J. Phys. Chem. A, 2004, 108(46): 10296-10301
    [77] C. H. Chuen, Y. Tao, Highly-bright white organic light-emitting diodes based on a single emission layer [J], Appl. Phys. Lett., 2002, 81 (24): 4499-4501
    [78] B. W. D. Andrade, J. Brooks, V. Adamovich, et al, White light emission using triplet excimers in electrophosphorescent organic light-emitting devices [J], Adv. Mater., 2002, 14(15): 1032-1036
    [79] A. Chihaya, A. Marc, E. Mark, et al, Nearly 100% internal phosphorescence efficiency in an organic light emitting device [J], Appl. Phys. Lett., 2001, 90(10): 5049-5051
    [80] 郝玉英,王华,郝海涛等,8-羟基喹啉锂的合成、表征与发光特性[J],发光学报,2004,25(4):419-424
    [81] J. E. Knox, H. D. Mathew, P. Hrant, et al, Chemical failure modes of AlQ_3-based OLEDs: AlQ_3 hydrolysis [J], Phys. Chem. Chem. Phys., 2006, 8(12): 1371-1377
    [82] F. Papadimitrakopoulos, X. M. Zhang, D. L. Thomson, et al, A chemical failure mechanism for aluminum 8-hydroxyquinoline light-emitting devices [J], Chem. Mater., 1996, 8(7): 1363-1365
    [83] P. Gary, Kushto, J. Kido, et al, A matrix-isolation spectroscopic and theoretical investigation of tris(8-hydroxyquinolinato)aluminum(Ⅲ) and tris(4-methyl-8-hydroxyquinolinato)aluminum(Ⅲ) [J], J. Phys. Chem. A., 2000, 104(16): 3670-3680
    [84] 马礼敦,高等结构分析,上海,复旦大学出版社,2002
    [85] 黄春辉,李富友,黄维等,有机电致发光材料与器件导论,上海,复旦大学出版社,2005,P24-25
    [86] C. V. Bindhu, S. S. Harilal, K. V. Geetha, et al, Measurement of the absolute fluorescence quantum yield of rhodamine B solution using adual-beam thermal lens technique [J], J. Phys. D: Appl. Phys., 1996, 29(4): 1074-1079
    [87] J. K. Yu, Y. H. Hu, Y. M. Cheng, et al, A remarkable ligand orientational effect in osmium-atom-induced blue phosphorescence [J], Chem. Eur. J., 2004, 10(24): 6255-6264
    [88] S. S. Linda, A. Padmaperuma, N. Washton, et al, Effects of systematic methyl substitution of metal (ⅲ) tris(n-methyl-8-quinolinolato) chelates on material properties for optimum electroluminescence device performance [J], J. Am. Chem. Soc., 2001, 123(26): 6300-6307
    [89] J. M. Ouyang, Z. H. Tai, C. Y. Jiang, et al, Synthesis and amphiphilic and spectral characters of N-alkyl-8-hydroxy-2-quinolinecarboxamides [J], Spectroscopy Letters, 1996, 29(5): 763-780
    [90] G. J. Palenik, The structure of coordination compounds. Ⅲ. A refinement of the structure of zinc 8-hydroxyquinolinate dihydrate [J], Acta. Cryst., 1964, 17, Part6: 696-670
    [91] B. S. Xu, Y. Y. Hao, H. Wang, et al, The effects of structure on optical absorption/photoluminescence of bis(8-hydroxyquinoiline)zinc [J], Solid States Communications, 2005, 136 (6): 318-322
    [92] D. V. Nicolau, S. J. Yoshikawa, Molecular modelling of Me~(2+)-(8-hydroxyquinolinate)_2 complexes using ZINDO and ESSF methods [J], J. Mol. Graphic M- odell., 1998, 16(2): 83-96
    [93] Y. Kai, M. Moraita, N. Yasuoka, et al, The crystal and molecular structure of anhydrous zinc 8-hydroxxyquinolate complex, [Zn(C_9H_6NO)_2]_4~+ [J], Jpn. Bull. Chem. Soc., 1985, 58(6): 1631-1635
    [94] T. A. Hopkins, K. Meerholz, S. Shaheen, et al, Substituted aluminum and zinc quinolates with blue-shifted absorbance/luminescence bands: synthesis and spectroscopic, photoluminescence, and electroluminescence characterization [J], Chem. Mater., 1996, 8(2): 344-351
    [95] S. S. Linda, E. B. Flocerfida, S. S. Richard, et al, Electroluminescent zinc(Ⅱ) bis(8-hydroxyquinoline): structure effect on electronic states and device performance [J], J. Am. Chem. Soc., 2002, 124(21): 6119-6125
    [96] L. S. Sapochak, A. Falkowita, K. F. Ferris, et al, Supramolecular structure of zinc(Ⅱ)(8-hydroxyquinolate) chelates [J], J. Phys. Chem. B, 2004, 108(25): 8558-8566
    [97] 王华,郝玉英,李洁等,两种以ZnQ_2为基体的新型电致发光材料的合成与性能研究[J],发光学报,2006,27(2):249-253
    [98] 方容川,固体光谱学,合肥,中国科技大学出版社,2001,P84
    [99] X. T. Tao, H. Suzuki, T. Wada, et al, Highly efficient blue electroluminescence of lithium tetra-(2-methyl-8-hydroxy-quinolinato) boron [J], J. Am. Chem. Soc., 1999, 121(40): 9447-9448
    [100] C. Schmitz, H. W. Schrnidt, M. Thelakkat, Lithium-quinolate complexes as emitter and interface materials in organic light-emitting diodes [J], Chem. Mater., 2000, 12(10): 3012-3019
    [101] J. Kido, T. Matsumoto, Bright organic electroluminescent devices having a metal-doped electron-injecting layer [J], Appl. Phys. Lett., 1998, 73(20): 2866-2868
    [102] J. Kido, T. Matsumoto, Proceedings of the international conference on science and technologies of advanced polymers, ICAP-99, Yamagata, Yonezawa, Japan
    [103] 朱文清,赵伟明,张步新,8-羟基喹啉锂蓝色有机电致发光器件[J],半导体光电,2001,22(4):279-284
    [104] 吴有智 郑新友 朱文清,锂喹啉配合物作为电子注入层对有机电致发光器件性能的影响[J],光学学报,2004,24(4):553-557
    [105] X. Y. Zheng, Y. Z. Wu, R. G. Sun, et al, Efficiency improvement of organic light-emitting diodes using 8-hydroxyquinolinato lithium as an electron injection layer [J], Thin Solid Films, 2005, 478(1-2): 252-255
    [106] M. Kasha, Molecular excitons in small aggregates In: Spectroscopy of the excited states, New York, Plenum Press, 1976, P337-363
    [107] B. Rosenberg, Electrical conductivity of proteins, [J] Nature, 1962, 193: 364-365
    [108] A. J. Middleton, W. J. Marshall, N. S. Radu, et al, Elucidation of the structure of a highly efficient blue electroluminescent material [J], J. Am. Chem. Soc., 2003, 125(4): 880-881
    [109] 黄量,于德泉,紫外光谱在有机化学中的应用(上),北京,科学出版社,2000,P12
    [110] G. P. Kushto, Y. Iizumi, J. Kido, et al, Matrix-isolation spectroscopic and theoretical investigation of tris(8-hydroxyquinolinato)aluminum(ⅲ) and tris-(4-methyl-8-hydroxyquinolinato)aluminum(ⅲ) [J] J. Phys. Chem. A, 2000, 104 (16): 3670-3680
    [111] S. T. Lee, X. Y. Hou, M. G. Mason, et al, Energy level alignment at Alq/metal interfaces [J], Appl. Phys. Lett., 1998, 72(13): 1593-1595
    [112] Z. G. Liu, O. V. Salata, M. Nigel, Improved electron injection in organic LED with lithium quinolate/aluminium cathode [J], Synth. Met., 2002, 128(2): 211-214
    [113] M. Baumgarten, L. Ghergel, J. Friedrich, et al, Electronic decoupling in ground and excited states of asymmetric biaryls [J], J. Phys. Chem. A, 2000, 104(6): 1130-1140
    [114] Y. J. Yi, S. J. Kang, K. H. Cho, et al, Evidence of gap state formed by the charge transfer in Alq_3/NaCl/Al interface studied by ultraviolet and x-ray photoelectron spectroscopy [J], Appl. Phys. Lett., 2005, 86: 113503-113505
    [115] J. Lee, Y. Park, D. Y. Kim, et al, High efficiency organic light-emitting devices with Al/NaF cathode [J], Appl. Phys. Lett., 2003, 82(2): 173-175
    [116] H. J. Ding, X. Z. Wang, Y. Q. Zhan, et al, Photoemission study of the sodium stearate/tris-(8-hydroxyquinoline) aluminum interface [J], Journal of Electron Spectroscopy and Related Phenomena, 2005, 144-147: 925-928

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700