飞秒激光诱导晶体形成及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着对飞秒激光研究的不断深入,飞秒激光诱导物质微结构引起了越来越多的关注。利用飞秒激光诱导玻璃与晶体微结构可以进一步发掘材料的新性质、新功能。目前,在玻璃与晶体中诱导微结构变化在高密度光存储、光波导、光子晶体、三维显示器件以及三维光器件等的应用已成为世界性的前沿课题。
     本文从实验上和理论上研究了飞秒激光诱导玻璃中晶体形成与相变。利用飞秒激光在玻璃中诱导晶体形成,研究了晶体形成的机制;并通过飞秒激光诱导出晶体相变,深入研究了相变的规律;理论上对飞秒激光诱导晶体与晶体相变的机制进行了分析,系统研究了飞秒激光诱导玻璃内晶体的形成与晶体相变的成因;探讨了飞秒激光诱导微结构的潜在应用。
     本文首先利用飞秒激光在玻璃中诱导出偏硼酸钡晶体、铌酸锂晶体、锐钛矿与Ba_2TiO_4晶体,系统地研究了晶体形成的机制。
     利用飞秒激光对硼酸盐玻璃诱导,在硼酸盐玻璃内形成低温相与高温相偏硼酸钡晶体,详细讨论了飞秒激光诱导下硼酸盐玻璃的微结构变化。实验中首次观察到由于冲击波效应形成晶体的环形分层结构,以及低温相与高温相偏硼酸钡晶体的分布规律,并在晶体形成晶体的同时,观察到由于微爆炸而形成的空洞结构。
     飞秒激光诱导钛酸盐玻璃形成了锐钛矿晶体和Ba_2TiO_4晶体。利用拉曼光谱在钛酸盐玻璃内分层、分区研究,发现了锐钛矿晶体与Ba_2TiO_4晶体形成与激光参数之间的关系,在激光焦点区域实现了锐钛矿晶体与Ba_2TiO_4晶体的分层共存。
     利用飞秒激光在铌酸盐玻璃内诱导出铌酸锂晶体,控制飞秒激光的参数,在玻璃内部的任意空间内诱导出光学中的“硅材料”铌酸锂晶体。
     其次,利用飞秒激光诱导偏硼酸钡晶体、铌酸锂晶体等晶体相变。
     飞秒激光诱导偏硼酸钡晶体,在高温相偏硼酸钡晶体内部诱导形成了低温相偏硼酸钡晶体,初步分析了相变不完全的原因。在未经抛光的铌酸锂晶体表面诱导出光栅结构,并形成了其它晶相。
     本文以硼酸盐玻璃为例,对飞秒激光诱导晶体与晶体相变的机制进行了理论上的探讨,重点研究了光电离与雪崩电离、等离子体的自由载流子吸收、微爆炸、动态平衡、基团重组、热扩散等,系统分析了飞秒激光诱导玻璃内晶体的形成与晶体相变的成因。飞秒激光辐照硼酸盐玻璃的初始能量的沉积是由于多光子吸收与雪崩电离的结果,等离子体密度很高时就能在局部区域强烈地吸收激光能量,从而产生高密度超热高压等离子体,导致微爆炸;由此长时间的辐照会在玻璃内部形成一个空洞结构,外围的材料则会形成一个较大的温度梯度;高温高压下,玻璃中的化学键断裂,组成玻璃的基团开始重组;激光辐照结束,这一区域的材料的快速不均匀冷却使得硼酸盐玻璃上形成了高温相与低温相两种结构类型的偏硼酸钡晶体。此外,飞秒激光的高重复率也是形成晶体的关键。
     飞秒激光技术能使固体材料中微结构基元重新组合,改变其性能,开拓了同质异构形成规律的新途径,也是研究晶体结构与性能的新方法。本文从玻璃与晶体的结构基元出发,系统研究了硼氧六元环、钛氧八面体、铌氧八面体等微结构基团在飞秒激光作用下的演变,分析了玻璃与晶体微结构特征,为指导功能晶体生长实践和促进实际晶体生长理论发展提供了科学依据。
     同时利用飞秒激光诱导玻璃中晶体形成与相变可以将各种不同功能的光子微结构集成在玻璃与晶体内部,为探索和研究微光学器件的发展起到了重要的作用,为光学集成技术的发展提供了一种新思路。
Recently, with the development of the scientific research, much attention has been paid on the microstructures induced by femtosecond laser. Femtosecond laser can be used to induce microstructures in glass and crystals to find new properties and functions of the optical materials, thus the applications of the microstructural changes in glass and crystals induced by femtosecond laser have been a worldwide hot topic in high dense optical storage, optical waveguide, photonic crystals, three-dimensional display devices, three- dimensional optical devices and so on.
     In this paper, crystals generation in transparent glass and crystals phase transitions induced by femtosecond laser are analyzed experimentally and theoretically.
     These studies begin with the research about the generation of barium metaborate crystals, lithium niobate crystals, anatase crystals and Ba_2TiO_4 crystals induced by femtosecond laser, the mechanism of which is studied systematically.
     High temperature phase barium metaborate crystals are generated in the borate glass irradiated by femtosecond laser. Accordingly, the behavior of the transformation from borate glass is studied, and the microstructural characters of the irradiated area in the borate glass after femtosecond laser irradiation are discussed. Stratified spherical structures about low temperature phase barium metaborate crystals due to blast wave effect is detected the first time, and a void is observed in the borate glass as a consequence of microexplosion accompanied by the generation of crystals.
     Anatase crystals and Ba_2TiO_4 crystals are generated in different femtosecond laser irradiation conditions. Raman spectroscopy is employed to analyze the titanate glass in depth and radial direction. Consequently, the relations between the growth of anatase and Ba_2TiO_4 crystals and irradiation time and other irradiation conditions are obtained, and anatase and Ba_2TiO_4 crystals coexistence can be obtained in the focal area.
     Microstructural character of the niobate glass is also investigated, and lithium niobate crystals are produced in three-dimensional space by controlling femtosecond laser power and irradiation time.
     Secondly, crystals phase transition of barium metaborate crystals and lithium niobate crystals is induced by femtosecond laser.
     Crystals phase transition is induced in barium metaborate crystals, and low temperature phase barium metaborate crystals are produced in high temperature phase barium metaborate crystals via femtosecond laser induction. For the lithium niobate crystals, other crystal phases are also generated by femtosecond laser irradiating the surface of the lithium niobate crystals.
     Finally, the mechanism of the crystals formation and crystal phase transition induced by femtosecond laser is studied by taking the borate glass as an example. The photo ionization and avalanche ionization, free carrier-absorption, microexplosion, dynamic equilibrium, group reunion and heat diffusion are emphasized in this study; accordingly, the origin of the crystals formation and phase transition is analyzed systematically. When femtosecond laser irradiates the glass, the laser energy deposit begins due to multiphoton and avalanche ionization. Thus the laser energy is absorbed intensely in local area when the density of the plasma is high enough. And microexplosion takes place when the plasma is extremely high in density, temperature and pressure. Therefore, a void in borate glass can be generated during long time femtosecond laser irradiation, and high temperature gradient is formed the material nearby. So bonds breaking and groups' reunion occur in high temperature and pressure conditions. When the laser is turned off, high temperature phase and low temperature phase barium metaborate crystals are generated in different place as a result of the nonuniformity of the cooling process in the borate glass. Moreover, another key condition to form crystals is the high repetition rate of the femtosecond laser.
     Recombination of the microstructural motif in solid material is achieved by using femtosecond laser technique, and new performance of the material is obtained in this paper. Therefore, a new approach is offered to discover the rule of the formation of tautomerism, and to study the structure and character of glass and crystals. Based on the structure motif of the glass and crystals, the transformation of B_3O_6 rings, NbO_6 octahedra, TiO_6 octahedra and other microstructural units are studied, and the microstructural character of glass and crystals are analyzed experimentally and theoretically in this paper, which can guide the practice and advance the theory of synthetic crystal growth.
     Also, photonic microstructures integrated in glass and crystals induced by femtosecond laser are of vital importance in research and fabrication of the photonic devices. Hence, the way to form crystals in glass substrate by femtosecond laser provides a brand new method in integrated optics technique.
引文
[1] R. Fabian Pease, Semiconductor technology: Imprints offer Moore [J], Nature, 2002, Vol. 417, No. 6891,pp.802-803
    
    [2] Graham T. Reed, Device physics: The optical age of silicon [J], Nature, 2004, Vol. 427, No.6975, pp.595-596
    [3] Philip Ball, Timescales 2 - flashes in femtoseconds, Arrhythmias, Does the past have a future? [J], Nature, 1999, Vol. 402, No.6761, pp.C30-C30
    [4] R. L. Fork , B. I. Greene, C. V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking[J], Applied Physics Letters, 1981, Vol. 38, No.9, pp.671-672
    [5] A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Forster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Non-thermal melting in semiconductors measured at femtosecond resolution [J], Nature, 2001, Vol. 410, No.6824, pp.65-68
    [6] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, Th. Westerwalbesloh, U. Kleineberg, U. Heinzmann(?) & F. Krausz, Time-resolved atomic inner-shell spectroscopy [J], Nature, 2002, Vol. 419, No.24, pp.803-807
    [7] Momma, C, Nolte, S., Kamlage, G., von Alvensleben, F., Tuennermann, A., Beam delivery of femtosecond laser radiation by diffractive optical elements [J], Applied Physics A: Materials Science & Processing, 1998, Vol. 67, No. 5, pp.517-520
    [8] Maiman, T. H., Stimulated optical radiation in ruby lasers [J], Nature, 1960, Vol.187, No:4736, pp.493-494
    [9] Hellwarth, R. W., in Advances in Quantum Electronics [M], edited by J. R. Singer, New York: Columbia University, 1961, pp.334-336
    [10] T. Deutsch, Mode-Locking Effects In An Internally Modulated Ruby Laser [J], Applied Physics Letters, 1976, Vol. 7, No.4, pp.80-82
    
    [11] E. S. Bliss, J.T. Hunt, P.A. Renard, G.E. Sommargren, and H.J. Weaver, Effects of nonlinear propagation on laser focusing properties [J], IEEE Journal of Quantum Electronics, 1976, Vol. QE-12, pp.402-406
    
    [12] R. L. Fork , B. I. Greene, C. V. Shank, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J], Applied Physics Letters, 1981, Vol. 38, No.9, pp.671-672
    
    [13] J. A. Valdmanis, R. L. Fork, J. P. Gordon, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self-phase modulation, group-velocity dispersion, saturable absorption, and saturable gain [J], Optics Letters, 1985, Vol.10, pp.131-133
    [14] D. E. Spence, P. N. Kean and W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser [J], Optics Letters, Vol.16, 1991, pp.42-44
    [15] U. Morger, F. X. Kartner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto and E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser [J], Optics Letters, 1999, Vol. 24, No.6, pp.411-413
    [16] A.V. Sokolov, Subfemtosecond compression of periodic laser pulses [J], Optics Letters, 1999, Vol.24, No.17, pp.1248-1250
    [17] Y. Beddard, W. Sibbett, D. T. Reid, J. Garduno-Mejia, N. Jamasbi and M. Mohebi, High-average-power, 1-MW peak-power self-mode-locked Ti:sapphire oscillator [J], Optics Letters, 1999, Vol.24, No.3, pp.163-165
    [18] C T A Brown, M A Catalunal, A A Lagatsky, E U Rafailov, M B Agate, C G Leburn and W Sibbett, Compact laser-diode-based femtosecond sources [J], New Journal of Physics, 2004, Vol. 6, No. 1, pp. 175
    [19] Perry, M. D., D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovski, Petawatt laser pulses [J], Optics Letters, 1999, Vol.24, No.3, pp. 160-162
    [20] Gregory P. Nordin, Femtosecond laser micro-structuring and refractive index modification applied to laser and photonic devices Micromachining Technology for Micro-Optics and Nano-Optics II [J], edited by Eric G. Johnson, Proceedings of SPIE Vol. 5347 (SPIE, Bellingham, WA, 2004), pp. 18-27
    [21] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J], Applied Physics Letters, 1994, Vol.64, No.23, pp.3071-3073
    [22] P.P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du and G. Mourou, Machining of submicron holes using a femtosecond laser at 800nm [J], Optics Communications, 1995, Vol.114, No. 1-2, pp. 106-110
    [23] D. von der Linder, K. Sokolowski-Tinten, and J. Bialkowski, Laser-solid interaction in the femtosecond time regime [J], Applied Surface Science, 1997, Vol. 109-110, pp. 1-10
    [24] F. Korte, S. Nolte, B. N. Chichkov, C. Fallnich, A. Tünnermann and H. Welling, Sub-micron structuring of solid targets with femtosecond laser pulses [J], Proceedings of SPIE, 2001, Vol.4274, No. 110, pp. 110-115
    [25] Nadeem H. Rizvi, Femtosecond laser micromachining: Current status and applications [J], RIKEN Review, 2003, Vol.50, pp. 107-112
    [26] S.I. Anisimov, B.L. Kapeliovich, and T.L. Perehnan, Electron emission from metal surfaces exposed to ultra-short laser pulses [J], Soviet Physics JETP-USSR, 1974, Vol.39, pp.375-377
    [27] J.G. Fujimoto, J.M. Liu, E.P. Ippen, and N. Bloembergen, Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperature [J], Physical Review Letters, 1984, Vol.53, No.19, pp.1837-1840
    [28] R.W. Schoenlein, W. Z. Lin, and J. G. Fujimoto, Femtosecond studies of nonequilibrium processes in metals [J], Physical Review Letters, 1987, Vol.58, No. 16, pp. 1680-1683
    [29] H.E.Elsayed-Ali, T.B. Norris, M.A. Pessot, and G. A. Mourou, Time-resolved observation of electron-phonon relaxation in copper [J], Physical Review Letters, 1987, Vol.58, No. 12, pp.1212-1215
    [30] P.B.Corkum, F. Brund, and N.K. Sherman, Thermal response of metals to ultrashort-pulse laser excitation [J], Physical Review Letters, 1988, Vol.61, No.25, pp.2886-2889
    [31] K.M. Davis, K. Miura, Naoki Sugimoto, and Kazuyuki Hirao, Writing waveguides in glass with a femtosecond laser [J], Optics Letters, 1996, Vol.21, No.21, pp.1729-1731
    [32] E.N. Glezer and E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials [J], Applied Physics Letters, 1997, Vol.71, No.7, pp.882-884
    [33] K. Miura, Jianrong Qiu, H. Inouye, and T. Mitsuyu, Photowritten optical waveguides in various glasses with ultrashort pulse laser [J], Applied Physics Letters, 1997, Vol.71, No.23, pp.3329-3331
    [34] Jianrong Qiu, Congshan Zhu, Takayuki Nakaya, and Jinhai Si, K. Kojima, F. Ogura, and K. Hirao Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser [J], Applied Physics Letters, 2001, Vol.79, No.22, pp.3567-3569
    [35] Hong-Bo Sun, Ying Xu, Saulius Juodkazis, Kai Sun, Mitsuru Watanabe, Shigeki Matsuo, Hiroaki Misawa, and Junji Nishii, Arbitrary-lattice photonic crystals created by multiphoton microfabrication [J], Optics Letters, Vol. 26, No. 6, pp.325-327
    [36] Jianrong Qiu. Mitsuru Shirai, Takayuki Nakaya, Jinhai Si, Xiongwei Jiang, Congshan Zhu, and Kazuyuki Hirao, Space-selective precipitation of metal nanoparticles inside glasses [J], Applied Physics Letters, 2002, Vol.81, No. 16, pp.3040-3042
    [37] P.P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses [J], Journal of Applied Physics, Vol.78, No.10, 1995, pp.6233-6240
    [38] B.N. Chichkov, C. Momma, S. Nolte, and F. von Alvensleben, A. Tü nnermann Femtosecond, picosecond and nanosecond laser ablation of solids [J], Applied Physics A: Materials Science & Processing, Vol.63, No.2, pp. 109-115
    [39] C. Momma, S. Nolte, B. N. Chichkov, F. v. Alvensleben, and A. Tiinnermann, Precise laser ablation with ultrashort pulses [J], Applied Sulface Science, 1997, Vol. 109-110, pp. 15-19
    [40] S. Nolte, C. Momma, H. Jacobs, and A. Tünnermann, S. Nolte, C. Momma, H. Jacobs, A. Ttinnermann, B.N. Chichkov, B. Wellegehausen, H. Welling Ablation of metals by ultrafast laser pulses [J], Journal of the Optical Society of America B-Optical Physics, 1997, Vol.14, No.10, pp.2716-2722
    [41] J. Güdde, J. Hohlfeld, J.G. Muller, and E. Matthias, Damage threshold dependence on electron-phonon coupling in Au and Ni films [J], Applied Surface Science, 1998, Vol. 127-129, pp.0-45
    [42] S.-S.Wellershoff, J. Hohlfeld, J. Gtidde, and E. Matthias, The role of electron-phonon coupling in femtosecond laser damage of metals [J], Applied Physics A.. Materials Science & Processing, 1999, Vol.69, No.7, pp.99-107
    [43] K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, Ablation characteristics ofAu, Ag, and Cu metals using a femtosecond Ti:sapphire laser [J], Applied Physics A: Mater. Sci. Process, 1999, Vol.69 (Suppl.), pp.359-366
    [44] L.A. Falkovsky and E.G. Mishchenko, Electron-lattice kinetics of metals heated by ultrashort laser pulses, Journal of Experimental and .Theoretical Physics [J], Journal of Experimental and Theoretical Physics, 1999, Vol.88, No. 1, pp.84-88
    [45] J.K. Chen, J.E. Beraun, L.E. Grimes, and D.Y. Tzou, Modeling of femtosecond laser-induced non-equilibrium deformation in metal films [J], International Journal of Solids and Structures, Vol.39, 2002, pp.3199-3216
    [46] C.V. Shank and E. E Ippen, Subpicosecond kilowatt pulses from a mode-locked cw dye laser [J], Applied Physics Letters, 1974, Vol.24, No.8, pp.373-375
    [47] S. Ruhrnan, A.G. Joly, and K.A. Nelson, Coherent molecular vibrational motion observed in the time domain through impulsive stimulated Raman scattering [J], IEEE Journal of Quantum Electronics, 1988, Vol.24, No.2, pp.460-469
    [48] C. Momma, B. N. Chichkov, S. Nolte, and F. v. Alvensleben, Short-pulse laser ablation of solid targets [J], Optics Communications, 1996, Vol.129, No.1-2, pp.134-142
    [49] EP. Pronko, S.K.Dutta, J. Squier, J.V. Rudd, D. Du and G. Mourou, Machining of sub-micron holes using a femtosecond laser at 800 nm [J], Optics Communications, 1995, Vol.114, No.1-2, pp.106-110
    [50] P. Simon and J. Ihlemann, Ablation of submicron structures on metals and semiconductors by femtosecond UV-laser pulses [J], Applied Surface Science, 1997, Vol.109-110, pp.25-29
    [51] X. Zhu, D.M. Villeneuve, A.Yu. Naumov, S. Nikumb, and P.B. Corkum, Experimental study of drilling sub-10 mm holes in thin metal foils with femtosecond laser pulses [J], Applied Surface Science, 1999, Vol. 152, No.3-4, pp. 138-148
    [52]. X. Liu, D. Du, and G. Mourou, Laser Ablation and Micromachining with Ultrashort Laser Pulses [J], IEEE J Quantum Electronics, 1997, Vol.33, No. 10, pp. 1706-1716
    [53] C. Momma, S. Nolte, G. Kamlage, E von Alvensleben, A. Tünnermann, Beam delivery of femtosecond laser radiation by diffractive optical elements [J], Applied Physics A: Material Science and Processing, 1998, Vol.67, No.5, pp.517-520
    [54] K. Venkatakrishnan, B. Tan, and N.R. Sivakumar, Sub-micron ablation of metallic thin film by femtosecond pulse laser [J], Optics & Laser Technology, 2002, Vol.34, No.7, pp.575-578
    [55] G. Kamlage, T. Bauer, A. Ostendorf, and B.N. Chichkov, Deep drilling of metals by femtosecond laser pulses [J], Applied Physics A: Material Science and Processing, 2003, Vol.77, No.3-4, pp.307-310
    [56] Sumitomo Heavy Industry, Japan, Femtosecond Laser Ablation, Research Topics 1999, http://www.swin.edu.au/iris/pdf/mt/femtosecondlaser.pdf
    [57] Y. Nakata, T. Okada, M. Maeda, Lines of periodic hole structures produced by laser ablation using interfering femtosecond lasers split by a transmission grating [J], Applied Physics A: Materials Science & Processing, 2003, Vol.77, No.3-4, pp.399-401
    [58] Y. Nakata, T. Okada, and M. Maeda, Fabrication of dot matrix, comb, and nanowire structures using laser ablation by interfered femtosecond laser beams [J], Applied Physics Letters, 2002, Vol.81, No.22, pp.4239-4241
    [59] Y. Nakata, T. Okada, and M. Maeda, Nano-Sized hollow bump array generated bu single femtosecond laser pulse [J], Japanese Journal of Applied Physics, 2003, Vol.42(part 2), No.l2A,pp.L1452-4
    [60] K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, Writing waveguides in glass with a femtosecond laser [J], Optics Letters, 1996, Vol. 21, No.21, pp.1729 -1731
    [61] K.Miura, Jianrong Qiu, H. Inouye, T. Mitsuyu and K. Hirao, Photowritten optical waveguides in various glasses with ultrashort pulse laser [J], Applied Physics Letters, 1997, Vol.71, No23,pp.3329-3331
    [62] Sung-Hak Cho, Hiroshi Kumagai, Katsumi Midorikawa, Minoru Obara, Fabrication of double cladding structure in optical multimode fibers using plasma channeling excited by a high-intensity femtosecond laser [J], Optics Communications, 1999, Vol.168, No.1-4, pp.287-295
    [63] Chris B. Schaffer and Andre Brodeur, Jose F.Garcia and Eric Mazur, Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J], Optics Letters, 2001, Vol.26, No.2, pp.93-95
    [64] Kaoru Minoshima, Andrew M. Kowalevicz, Ingmar Hartl, Erich P. Ippen and James G. Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator [J], Optics Letters, 2001, Vol.26, No.19, pp.1516-1518
    [65] Kaoru Minoshima, Andrew M. Kowalevicz, Ingmar Hartl, Erich P. Ippen and James G. Fujimoto, Photonic device fabrication with femtosecond laser oscillators [J], Optics & Photonics News, 2003, May, pp.44-49
    [66] Matthias Will, Stefan Nolte, Boris N. Chichkov, and Andreas Tunnermann, Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses [J], Applied Optics, 2002, Vol.41, No.21, pp.4360 -4364
    [67] James W. Chan,Thomas R. Huser, Subhash H. Risbud, Joseph S. Hayden, Denise M. Krol, Waveguide fabrication in phosphate glasses using femtosecond laser pulses [J], Applied Physics Letters, 2003, Vol.82, No.15, pp.2371-2373
    [68] Roberto Osellame, Stefano Taccheo, Marco Marangoni, Roberta Ramponi, Paolo Laporta, Dario Polli, Sandro De Silvestri and Giulio Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams [J], Journal of the Optical Society of America B-Optical Physics, 2003, Vol. 20, No.7, pp.1559-1567
    [69] S. Nolte, M. Will, J. Burghoff, A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics [J], Applied Physics A: Materials Science & Processing, 2003, Vol. 77, No.1, pp. 109-111
    [70] D. Homoelle, S. Wielandy, Alexander L. Gaeta, N. F. Borrelli and Charlene Smith, Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses [J], Optics Letters, 1999, Vol. 24,No.l8,pp.l311-1313
    [71] Alexander M. Streltsov and Nicholas F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses [J], Optics Letters, 2001, Vol.26, No.l, pp.42-44
    [72] Kaoru Minoshima, Andrew M. Kowalevicz, Erich P. Ippen, and James G. Fujimoto, Fabrication of coupled mode photonic devices in glass by nonlinear femtosecond laser materials processing [J], Optics Express, 2002, Vol.10, No.15, pp.645-652
    [73] K. Kawamura, T. Ogawa, N. Sarukura, M. Hirano and H. Hosono, Fabrication of suface relief gratings on transparent dielectric materials by two-beam holographic method using infrared femtosecond laser pulses [J], Applied Physics B, 2000, Vol.71, No.l pp.119-121
    [74] L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses [J], Optics Communications, 1999, Vol.171, pp.279-284
    [75] K. Venkatakrishnan, N. R. Sivakumar, C. W.Hee, B. Tan, W. L. Liang, G. K. Gan, Direct fabrication of surface-relief grating by interferometric technique using femtosecond laser [J], Applied Physics A: Materials Science & Processing, 2003, Vol.77, No.7, pp.959-963
    [76] Ya Cheng, Koji Sugioka, Masashi Masuda, Kazuhiko Shihoyama, Koichi Toyoda and Katsumi Midorikawa, Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser [J], Optics Express, 2003, Vol.11, No.15, pp. 1809-1816
    [77] Bennion, I., Williams, J.A.R., Zhang, L., Sugden, K., and Doran, N.J., UV-written in-fiber Bragg gratings [J], Optical and Quantum Electronics, 1996, Vol.28, No.2, pp.93-135
    [78] K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J], Applied Physics Letters, 1993, Vol.62, No.10, pp.1035-1037
    [79] Stephen J. Mihailov, Christopher W. Smelser, Ping Lu, Robert B. Walker, Dan Grobnic, Huimin Ding, George Henderson and James Unruh, Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation [J], Optics Letters, 2003, Vol.28, No.12, pp.995-997
    [80] Jianrong Qiu, K. Kojima, K. Miura, T. Mitsuyu and K. Hirao, Infrared femtosecond laser pulse-induced permanent reduction of Eu~(3+) to Eu~(3+) in a fluorozirconate glass [J], Optics Letters, 1999, Vol.24, No.11, pp.786-788
    [81] Wataru Watanabe, Tadamasa Toma, Kazuhiro Yamada, Junji Nishii, Ken-ichi Hayashi and Kazuyoshi Itoh, Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses [J], Optics Letters, 2000, Vol. 25, No.22, pp.1669-1671
    [82] Wataru Watanabe and Kazuyoshi Itoh, Motion of bubble in solid by femtosecond laser pulses [J], Optical Express, 2002, Vol.10, No.14, pp.603-608
    [83] Ya Cheng, Koji Sugioka, Katsumi Midorikawa, Masashi Masuda, Koichi Toyoda, Masako Kawachi and Kazuhiko Shihoyama, Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser [J], Optics Letters, Vol.28, No.13, 2003, pp.1144-1146
    [84] M. Masuda, K. Sugioka, Y. Cheng, N. Aoki, M. Kawachi, K. Shihoyama, K. Toyoda, H. Helvajian, K. Midorikawa, 3-D microstructuring inside photosensitive glass by femtosecond laser excitation [J], Applied Physics A: Materials Science & Processing, 2003, Vol.76, No.5, pp.857-860
    
    [85] Ya Cheng, Koji Sugioka, Katsumi Midorikawa, Masashi Masuda, Koichi Toyoda, Masako Kawachi and Kazuhiko Shihoyama, Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtoseocond laser [J], Optics Letters, 2003, Vol.28, No.1, pp.55-57
    
    [86] EA Stach, VR Radmilovic, DC Deshpande, AP Malshe, D. Alexander, D. Doerr, Nanoscale surface and subsurface defects induced in lithium niobate by a femtosecond laser [J], Applied Physics Letters, 2003, Vol.83, No.21, pp 4420-4422
    [87] Li Gui, Baoxi Xu, Dongjiang Wu, Yeow Whatt Goh, Honggang Wang and Tow Chong Chong, Writing Waveguide in LN With fs Laser [C], Acta Optica Sinica, Vol.23, 16B4-5 (8~(th) OptoElectronics and Communications Conference, Hotel Equatorial Shanghai, China October 13-16, 2003)
    [88] Nikolay S. Stoyanov, T. Feurer, David W. Ward, and Keith A. Nelsona, Integrated diffractive terahertz elements [J], Applied Physics Letters, Vol.82, No.53, 2003, pp.674-676
    [89] Zhao Quan-Zhong, Qiu Jian-Rong, Yang Lu-Yun, Jiang Xiong-Wei, Zhao Chong-Jun and Zhu Cong-Shan, Fabrication of Microstructures in LiF Crystals by a Femtosecond Laser [J], Chinese Physics Letters, 2003, Vol. 20, No. 10, pp.1858-1860
    [90] Lilia Courrol, Ricardo Samad, Laercio Gomez, Izilda Ranieri, Sonia Baldochi, Anderson Zanardi de Freitas, and Nilson Vieira, Color center production by femtosecond pulse laser irradiation in LiF crystals [J], Optics Express, 2004, Vol. 12, No. 2, pp.288-293
    [91] Ken-ichi Kawamura and Masahiro Hirano, Femtosecond-laser-encoded distributed- feedback color center laser in lithium fluoride single crystals [J], Applied Physics Letters, 2004, Vol.84, No.3, pp.311 -313
    [92] Chengyong Jiang, Guoqing Zhou, Jun Xu, Peizhen Deng, Fuxi Gan, Femtosecond laser irradiation on YAG and sapphire crystals [J], Journal of Crystal Growth, 2004, Vol.260, No.1-2, pp. 181-185
    [93] R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell 1, Coulomb explosion in ultrashort pulsed laser ablation of Al_2O_3 [J], Physical Review B, 2000-1, Vol.15, No. 19, pp:13167-13173.
    [94] R. Stoian, H. Varel, A. Rosenfeld, D. Ashkenasi, R. Kelly, E.E.B. Campbell, Ion time-of-flight analysis of ultrashort pulsed laser-induced processing of Al_2O_3 [J], Applied Surface Science, 2000, Vol.165, pp.44-55
    [95] D. Ashkenasi, R. Stoian, A. Rosenfeld, Single and multiple ultrashort laser pulse ablation threshold of Al_2O_3 corundum at different etch phases [J], Applied Surface Science, Vol.154-155, 2000, pp.40-46
    [96] Hiroshi Kumagai, Katsumi Midorikawa, Koichi Toyoda, Shinki Nakamura, Takuya Okamoto and Minoru Obara, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798nm [J], Applied Physics Letters, 1994, Vol.65, No.l4,pp.l850-1852
    [97] S. Baudach, J. Bonse, J. Kruger and W. Kautek, Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate [J], Applied Surface Science, 2000, Vol.154-155, pp:555-560
    [98] S. Baudach, J. Bonse and W. Kautek, Ablation experiments on polyimide with femtosecond laser pulses [J], Applied Physics A: Materials Science & Processing, 1999, Vol.69, No.7, S395-S398
    [99] Yan Li, Kazuhiro Yamada, Tomohiko Ishizuka, WataruWatanabe, Kazuyoshi Itoh and Zhongxiang Zhou, Single femtosecond pulse holography using polymethylmethacrylate [J], Optics Express, 2002, Vol.10, No.21, pp.1173-1178
    [100] Satoshi Kawata, Hong-Bo Sun, Tomokazu Tanaka and Kenji Takada, Finer features for functional microdevices [J], Nature, 2001, Vol.412, pp.697-698
    [101] Hong-Bo Sun, Ying Xu, Saulius Juodkazis, Kai Sun, Mitsuru Watanabe, Shigeki Matsuo, Hiroaki Misawa and Junji Nishii, Arbitrary-lattice photonic crystals created by multiphoton microfabrication [J], Optics Letters, 2001, Vol.26, N0.6, pp.325-327
    [102] Toshiaki Kondo, Shigeki Matsuo, Saulius Juodkazis and Hiroaki Misawa, Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals [J], Applied Physics Letters, 2001, Vol.79, No.6, pp.725-727
    [103] S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. -B. Sun, Y. Tokuda, M. Takahashi, T. Yoko and J. Nishii, Application of femtosecond laser pulses for microfabrication of transparent media [J], Applied Surface Science, 2002, Vol.197, pp.705-709
    [104] Toshiaki Kondo, Shigeki Matsuo, Saulius Juodkazis, Vygantas Mizeikis and Hiroaki Misawa, Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses [J], Applied Physics Letters, 2003, Vol.82, No. 17, pp.2758-2760
    [105] Koshiro Kaneko, Hong-Bo Sun, Xuan-Ming Duan and Satoshi Kawata, Submicron diamond-lattice photonic crystals produced by two-photo laser nanofabrication [J], Applied Physics Letters, 2003, Vol.$3, No. 11, pp.2091-2093
    [106] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics [J], Optics Letters, 2003, Vol.28, No.5, pp.301-303
    [107] B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt and U. Keller, Femtosecond pump-probe near-field optical microscopy [J], Review of Scientific Instruments, 1999, Vol.70, No.6, pp.2758-2764
    [108] S. Nolte, B. N. Chichkov and H. Welling, Nanostructuring with spatially localized femtosecond laser pulses [J], Optics Letters, 1999, Vol.24, No. 13, pp.914-916
    [109] Xiaobo Yin, Nicholas Fang, Xiang Zhang, Ignacio B. Martini and Benjamin J. Schwartz, Near-field two-photon nanolithography using an apertureless optical probe [J], Applied Physics Letters, 2002, Vol.81, No.19, pp.3663-3665
    [110] James E. Carey, Catherine H. Crouch and Eric Mazur, Femtosecond-laser- assisted microstructuring of Silicon surfaces for new optoelectronics applications [J], Optics and Photonics News, February 2003, pp.32-36
    [111] Wagstaff F E. Crystallization and melting kinetics of cristobalite [J], Journal of the American Ceramic Society, 1969, Vol.52, No. 12, pp.650-654.
    [1] Celia Henry, Intellectual Property and the Analytical Industry, Have incidences of patent litigation increased? [J], Analytical Chemistry, 1997, pp.309A-313A
    [2] Olympus Corporation, Theory of Confocal Microscopy, Laser Scanning Confocal Microscopy, http://www.olympusfluoview.com/theory
    [3] Goubeau, J., Keller, H., Raman spectra and structure of boroxole compounds [J], Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1953, Vol.272, pp.303-312.
    [4] J.L.Parsons, Vibrational Spectra of Orthorhombic Metaboric Acid [J], The Journal of Chemical Physics, 1960, Vol.33, No.6, pp. 1860-1866
    [5] T.W.Brill, Philips Research Reports (Supplement), 1976, No.2, pp. 117-121
    [6] J. Lorosch, M. Couzi, J. Pelous, R. Vacher and A. Levasseur, Brillouin and raman scattering study of borate glasses [J], Journal of Non- Crystalline Solids, 1984, Vol. 69, No. 1, pp. 1-25
    [7] W.L. Konijnendijk, J.M. Stevels, Structure of borate glasses studied by raman scattering [J], Journal of Non- Crystalline Solids, 1975, Vol.18, No.3, pp.307-331
    [8] Huang Penqnian, Huang Xihuai, Acoustic properties of glasses in Li_2O-(LiCl)_2-B_2O_3-Al_2O_3 system [J], Acta Physica Sinica, 1984, Vol.33, No.9, pp. 1213-1218
    [9] V.R Klyuev and B.Z.Pevzner, Composition Dependence of Thermal Expansion and Glass Transition Temperature for Barium Aluminoborate Glasses [J], Glass Physics and Chemistry, 2001, Vol.27, No.l, pp.54-61
    [10] Tian Bogang, Wu Guozhen and Xu Ruiya, Crystal vibration of low temperature phase β-barium metaborate and its multipolar coupling [J], Spectrochimica Acta, 1987, Vol.43A, No.l, pp.65-71
    [11] Chen Chuangtian, Wu Bochang, Jiang Aidong, You Guiming, A new-type ultraviolet SHG crystal--β-BaB_2O_4 [J], Scientia Sinica(series B), 1985, Vol. 28, No.3, pp.235-243
    [12] 仲维卓,洪慧聪,路治平,赵天德,华素坤,唐鼎元,赵庆兰,β-BBO晶体的结品习性与形成机理[J],中国科学(B辑),1994,Vol.24,No.8,pp.798-803
    [13] Y. Roussignè, R. Farhi, C. Dugautier, and J. Gardard, A Raman study of both phases of barium metaborate(BBO) [J], Solid State Communications, Vol.82, No.4, pp.287-293
    [14] Zhang Guangyin, Yang Yinyiong, Wu Bochang, Group Theory Analysis of Lattice Vibrations and Raman Spectra of the Single Crystal of Barium Metaborate [J], Optica Sinica, 1985, Vol.5, No.6, pp.548-556
    [1] Cheng Ji-jian, Chen Wei, Formation and structure of titanate glasses [J], Journal of Non-Crystalline Solids, 1986, Vol.80, No.l-3, pp.135-140
    [2] Berger, H., Tang, H., Levy, F., Growth and Raman spectroscopic characterization of TiO_2 anatase single crystals [J], Journal of Crystal Growth, 1993, Vol.130, No. 1-2, pp. 108-112
    [3] Chang, H., Huang, P. J., Yhermo-raman studies on anatase and rutile [J], Journal of Raman Spectroscopy, 1998, Vol. 29, No, 2, pp.97-102
    [4] Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., Chert, Q., Raman scattering study on anatase TiO_2 nanocrystals [J], Journal of Physics D: Applied Physics, 2000, Vol.33, No.8, pp.912-916
    [5] Ohsaka, Toshiaki, Temperature Dependence of the Raman Spectrum in Anatase TiO_2 [J], Journal of the Physical Society of Japan, 1980, Vol.48, No.5, pp. 1661 - 1668,
    [6] Sekiya, T., Ohta, S., Kamei, S., Hanakawa, M., Kurita, S., Raman spectroscopy and phase transition of anatase TiO_2 under high pressure, [J] Journal of Physics and Chemistry of Solids, 2001, Vol.62, No.4, pp.717-721
    [7] Zhang, Ming-Sheng, Yin, Zhen, Chert, Qiang, Dimza, V.I., Raman scattering by barium titanate [J], Ferroelectrics, 1994, Vol. 152, No.1-4 part 2, pp.415-420
    [8] Li, Shu, Condrate, R.A. Sr., Jang, S.D., Spriggs, R.M., FTIR and Raman spectral study of the preparation of lead zirconate by a solgel process in a non-flowing air atmosphere [J], 1989, Vol.24, No. 11, pp.3873-3877
    [9] Song Xiaolan, Qu Yixin, Xu Chao, Jiang Minghui, A Laser Raman Spectra Study on the Structure of Titan ium Bar ium Borosil icate Glasses [J], Chinese journal of light scattering, 1998, Vol.10, No.1: pp.30-36
    [10] Zhu, Ke-Rong, Zhang, Ming-Sheng, Chert, Qiang, Yin, Zhen, Size and phonon-confinement effects on low-frequency Raman mode of anatase TiO2 nanocrystal [J], Physics Letters A, 2005, Vol.340, No. 1-4, pp.220-227
    [11] Nasu, H., Kurachi, K., Okamoto, H., Matsuoka, J., Kamiya, K., Mito, A., Second harmonic generation from an electrically polarized TiO2-containing silicate glass [J], Journal of Non-Crystalline Solids', 1995, Vol. 181, No. 1-2, pp.83-86
    [12] Yu, Hsuan-Fu, Wang, Shenq-Min, Effects of water content and pH on gel-derived TiO_2-SiO_2 [J], Journal of Non-Crystalline Solids, 2000, Vol.261, No.l-3, pp.260-267
    [1] A. A. Ballman, Growth of Piezoelectric and Ferroelectric Materials by the Czochralski Technique [J], Journal of the American Ceramic Society, 1965, Vol.48, pp.112-113
    
    [2] P Lerner, C Legras, J P Dumas. Stoechiometricdes Monocristaux de Metaniobate de Lithium [J], Journal of Crystal Growth, 1968, Vol.3-4, pp.231-235
    [3] Palatnikov, M.N., Sidorov, N.V., Biryukova, I.V., Kalinnikov, V.T., Bormanis, K.., Optical properties of lithium niobate single crystals [J], Physica Status Solidi C: Conferences, 2005, Vol.2, No.l,pp.212-215
    [4] Peter Burdui F ,Norwood R G,Calvert G D. Compositional Uniformity in Growth and Poling of Large Diameter Lithium Niobate Crystals [J], Journal of Crystal Growth, 1991, Vol.6, pp.61 - 68
    [5] Claus K, Borsoel G , Wiesendanger E, Assignments of optical photon modes in LiNbO_3 [J], Physical Review, 1972, Vol.B6, pp.4878-4879
    [6] Mouras, R., Bourson, P., Fontana, M.D., Boulon, G, Raman spectroscopy as a probe of the rare-earth ions location in LiNbO_3 crystals [J], Optics Communications, 2001, Vol. 197, No.4-6, pp.439-444
    [7] R Mouras, M D Fontana, P Bourson, A V Postnikov, Lattice site of Mg ion in LiNbO_3 crystal determined by Raman spectroscopy [J], Journal of Physics: Condensed Matter, 2000, Vol.12, No.23, pp.5053-5059
    [8] R.F.Schaufele, M.J.Weber, Raman Scattering by Lithium Niobate [J], Physical Review, 1966, Vol.152, No.2-9, pp.705-708
    [9] Todorovic, M., Radonjic, Lj, Lithium-niobate ferroelectric material obtained by glass crystallization [J], Ceramics International, 1997, Vol.23, No. 1, pp.55-60
    [10] De Araujo, E.B., De Paiva, J.A.C., Freitas, J.A. JR., Sombra, A.S.B., Raman and infrared spectroscopy studies of LiNbO_3 in niobate glass-ceramics [J], Journal of Physics and Chemistry of Solids, 1998, Vol.59, No. 5, pp.689-694
    
    [11] Rachkovskaya, G. E., Bobkova, N. M., semiconducting niobate-phosphate glasses. Structure and properties [J], Journal of Non-Crystalline Solids, 1986, Vol. 90, No. 1-3, pp.617-620
    
    [12] HX Gao, ZC Wang, and SZ Wang, Properties and. structure of niobosilicate glasses [J], Journal of Non-Crystalline Solids, 1989, Vol.112, pp.332-335
    [13] K.Fukumi, S.Sakka, X-ray diffraction study on the structure of Cs_2O-Nb_2O_5-Ga_2O_3 glass [J], Journal of Materials Science Letters, 1988, Vol.7, No.3, pp.239-240
    [1] Chen Chuangtian, Wu Bochang, Jiang Aidong, You Guiming, A new-type ultraviolet SHG crystal--β-BaB_2O_4 [J], Scientia Sinica(series B), 1985, Vol. 28, No.3, pp.235-243
    [2] Liu Junfang, Zhao Guangjun, Zhou Guoqing, Zhou Shengrning, Xu Jun, Phase transition and growth of high and low temperature phase of barium metaborate crystals [J], Journal of Synthetic Crystals, 2003, Vol. 32, No. 4, pp.339-345
    [3] 仲维卓,洪慧聪,路治平,赵天德,华素坤,唐鼎元,赵庆兰,p-BBO晶体的结晶习性与形成机理[J],中国科学(B辑),V01.24,No.8,1994,pp.798-803
    [4] Y. Roussignè, R. Farhi, C. Dugautier, and J. Gardard, A Raman study of both phases of barium metaborate(BBO) [J], Solid State Communications, Vol.82, No.4, pp 287-293
    [5] W.L. Konijnendijk, J.M. Stevels, Structure of borate glasses studied by raman scattering [J], Journal of Non- Crystalline Solids, 1975, Vol.18, No.3, pp.307-331
    [6] 卢绍芳,何美云,黄金陵,偏硼酸钡低温相的晶体结构[J],物理学报,1982,Vol.31,No.7,pp.948-954
    [7] Lu Junqing, Lan Guoxiang, Li bing, Yang Yanyong and Wang Huafu, Raman scattering study of the single crystal α-BaB_2O_4 under high pressure [J], Journal of physical chemistry solids, 1988, Vol.49, No.5, pp.519-527
    [8] Tian Bogang, Wu Guozhen and Xu Ruiya, Crystal vibration of low temperature phase β-barium metaborate and its multipolar coupling [J], Spectrochimica Acta, 1987, Vol.43A, No. 1, pp.65-71
    [9] S.B. Dai, Y.D. Juang, J.S. Hwang, and S.Y. Chu, Using Raman scattering to study the doping effect and low-temperature phase transition of Li0.01K0.99NbO3 ceramics [J], Journal of Crystal Growth, 2003, Vol.257, pp.316-320
    [10] Célia Machado Ronconi, and Oswaldo Luiz Alves, Structural evolution and optical properties of Cd_2Nb_2O_7 films prepared by metallo-organic decomposition [J], Thin Solid Films, 2003, Vol.441, pp.121-129
    [11] X.B. Wang, Z.X. Shen, Z.P. Hu, L. Qin, S.H. Tang, and M.H. Kuok, High temperature Raman study of phase transitions in antiferroelectric NaNb03 [J], Journal of Molecular Structure, 1996, Vol.385, pp. 1-6
    [12] E.B. De Araujo, J.A.C. De Paiva, J.A. Freitas JR, and A.S.B. Sombra, Raman and infrared spectroscopy studies of LiNbO3 in niobate glass-ceramics [J], Journal of Physics and Chemistry of Solids, 1998, Vol 59, No. 5, pp.689-694
    [1] L.V. Keldysh, Ionization in the field of a strong elelctromagentic wave [J], Soviet Physics JETP- USSR, 1965, Vol.20, No.5, pp. 1307-1314
    [2] S.C. Jones, P. Braunlich, R. T. Casper, X. A. Shen, and P. Kelley, Recent progress on laser-induced modifications and intrinsic bulk damage of wide gap optical materials [J], Optical Engineer, 1989, Vol.28, No. 10, pp. 1039-1068.
    [3] M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou,W. Kautek, and F. Krausz, Femtosecond Optical Breakdown in Dielectrics [J], Physical Review Letters, 1998, Vol.80, No. 18, pp.4076-4079.
    [4] D. Du, X. Liu, and G. Mourou. Reduction of mufti-photon ionization in dielectrics due to collisions [J], Applied Physics B, 1996, Vol.63, No.6, pp.617-621
    [5] N. Bloembergen, Laser-Induced Electric Breakdown in Solids [J], IEEE Journal of Quantum Electronics, 1974, Vol.QE-10, No.3, pp.375-386
    [6] C.B. Schaffer, Ph. D thesis, Interaction of femtosecond laser pulse with transparent materials. Cambridge: Harvard University 2001
    [7] B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, M.D. Perry,_Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses [J], Physical Review Letters, 1995, Vol.74, No. 12, pp.2248-2251
    [8] M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, Femtosecond Optical Breakdown in Dielectrics [J], Physical Review Letters, Vol.80, No.18, 1998, pp.4076-4079
    [9] C.B. Schaffer, J.F. Garc'Ia, E. Mazur Bulk heating of transparent materials using a high-repetition-rate femtosecond laser [J], Applied Physics A, 2003, Vol.76, No.24, pp.351-354
    [10] B.C. Stuart, M.D. Felt, S. Herman, A.M. Rubenchik, B.W Shore, and M.D. Perry, Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J], Physical Review B, 1996, Vol.53, No.4, pp.1749-1761
    [11] B.C. Stuart, M.D. Feit, A.M. Rubenchik, B.W. Shore, and M.D. Perry, Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses [J], Physical Review Letters, 1995, Vol.74, No. 12-20, pp.2248-2251
    [12] E.G. Gamaly, A.V. Rode, B. Luther-Davies, and V.T. Tikhonchuk, Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics [J], Physics of Plasma, 2002, Vol. 9, pp.949-957
    [13] D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J], Applied Physics Letters, 1994, Vol.64, No.23, pp.3071-3073 [14] B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation [J], Physical Review B, 2002, Vol.65, No.21,pp.214-303.
    
    [15] M. Fox, "Optical Properties of Solids" (Oxford University Press: Oxford, 2001).
    [16] Y.T. Lee and R.M. More, An electron conductivity model for dense plasmas [J], Physics of Fluids, 1984, Vol.27, No.5, pp.1273-1286.
    [17] K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, and S. Huller, Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter [J], Physical Review E, 2000, Vol.62, No.l,pp.l202-1214
    [18] N.W. Ashcroft and N.D. Mermin: "Solid State Physics" (Holt, Rinehart, and Winston: New York, 1976)
    [19] E. N. Glezer and E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials [J], Applied Physics Letters, 1997, Vol.71, No.7, pp.882-884
    [20] S.K. Sundaram, C.B. Schaffer, E. Mazur, Microexplosion in tellurite glasses [J], Applied Physics A, 2003, Vol.76, pp.379-384
    [21] Chris B. Schaffer, Alan O. Jamison, and Eric Mazur, Morphology of femtosecond laser-induced structural changes in bulk transparent materials [J], Applied Physics Letters, 2004, Vol. 84, No. 9, pp 1441-1443
    [22] J.F.Power, Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation -- a theory [J], Applied Optics, Vol.29, No.l, 1990, pp.52-63
    [23] D.S.Ivanov and L.V.Zhigilei, Effect of pressure relaxation on the mechanisms of short-pulse laser melting [J], Physical Review Letters, 2003, Vol.91, No.10, pp.105701-1-105701-4
    [24] G. Paltauf and P. E. Dyer, Photomechanical processes and effects in ablation [J], Chemical Review, 2003, Vol.103, pp.487-518
    
    [25] L. D. Landau, and E. M. Lifshitz, Theory of Elasticity, Pergamon, Oxford, 1986.
    [26] O.C. Zienkiewicz, K. Morgan, Finite elements and approximation, Wiley, New York, 1983.
    [27] P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses [J], Journal of Applied Physics, 1995, Vol.78, No. 10,pp.6233-6240
    [28] C.B. Schaffer J.F. GarcIa E. Mazur, Bulk heating of transparent materials using a high repetition-rate femtosecond laser [J], Applied Physics A, 2003, Vol.76, pp.351-354
    [29] Adela Ben-Yakar, and Robert L. Byer, Femtosecond laser ablation properties of borosilicate glass [J], Journal of Applied Physics, 2004, Vol.96, No.9, pp.5316-5323
    [30] RK Singh and J. Narayan, A novel method for simulating laser-solid interactions in semiconductors and layered structures [J], Materials Science and Engineering B, 1989, Vol.3, pp.217-230 [31] T. Gorelik, M. Will, S. Nolte, A. Tuennermann and U. Glatzel, Transmission electron microscopy studies of femtosecond laser induced modifications in quartz [J], Applied Physics A,2003, Vol. 76,pp.309-311
    [32] Kimura H , Nmazawa T , Sato M. Solid state phase transformation of BaB_2O_4 during the isothermal annealing process [J], Journal of Materials Science, 1996, Vol.31, pp.2361 - 2365
    [33] Kimura H ,Feigelson R S. Formation of BaB_2O_4 from melts in graphite crucible [J], Journal of Alloys and Compounds, 1996, Vol.234, No.2, pp. 187-192
    [34] Sun H B,Xu Y Arbitrary-lattice photonic crystals created by multiphoton microfabrication [J], Optics Letters, 2001, Vol.26, pp.325-327
    [35] Satoshi Kawata, Hong Bo Sun. Two-photo polymerization as a tool for making micro-devices [J], Applied Surface Science, 2003, Vol.208-209, pp.153-158
    [36] X.C. Wang, G.C. Lim, H.Y. Zheng, F.L. Ng, W. Liu, S.J. Chua, Femtosecond pulse laser ablation of sapphire in ambient air [J], Applied Surface Science, 2004, Vol.228, pp.221-226
    [37] Schaffer C. B., Brodeur A., Garcia J. F., Mazur, E., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J], Optics Letters, 2001, Vol.26, No.2, pp.93-95
    [38] Koubassov V., Laprise J. F., Theberge F., Forster E., Sauerbrey R., Muller B., Glatzel U., Chin S. L., Ultrafast laser-induced melting of glass [J], Applied Physics A: Materials Science and Processing, 2004, Vol.79, No.3, pp.499-505
    [39] Shingo Kanehira, Jinhai Si, Jianrong Qiu, Koji Fujita, and Kazuyuki Hirao, Periodic Nanovoid Structures via Femtosecond Laser Irradiation [J], Nano Letters, 2005, Vol. 5, No. 8, pp.1591-1595
    [40] Brodeur A., Ilkov F. A., Chin S. L., Beam filamentation and the white light continuum divergence [J], Optics Communications, 1996, Vol.129, No.3-4, pp.193-198
    [41] Wu Z., Jiang H., Sun Q., Yang H., Gong Q., Filamentation and temporal reshaping of a femtosecond pulse in fused silica [J], Physical Review A - Atomic, Molecular, and Optical Physics, 2003, Vol.68, No.6, pp.063820/1 -063820/8
    [42] Sudrie L., Couairon A., Franco M., Lamouroux B., Prade B., Tzortzakis S., Mysyrowicz A., Femtosecond laser-induced damage and filamentary propagation in fused silica [J], Physical Review Letters, 2002, Vol.89, No.18, pp.186601/1-186601/4
    [43] Wu Z., Jiang H., Luo L., Guo H., Yang H., Gong Q., Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica [J], Optics Letters, 2002, Vol.27, No.6, pp.448-450
    [44] Maurizio Lontano, and Ivane G. Murusidze, Dynamics of space-time self-focusing of a femtosecond relativistic laser pulse in an underdense plasma [J], Optics Express, 2003, Vol.11 , No.3, pp.248-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700