基于模型和GIS技术的中国农田化学氮源N_2O直接排放量估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温室气体引起的全球气候变暖和平流层臭氧的损耗已成为全世界面临的两大环境问题.氧化亚氮(N_2O)是大气中仅次于CO_2和CH_4的第三大痕量温室气体,农田是大气申N_2O的重要来源,然而对于农田N_2O排放的精确估计一直存在着较大困难,其原因主要在于气候、土壤以及农业管理方式等影响农田N_2O排放的因素在时间和空间上都存在巨大的变异性。
     中国作为农业大国,其农田对全球N_2O排放的影响已经成为全球变化研究的焦点之一,并且中国作为《联合国气候变化框架公约》的缔约国之一,编制N_2O排放的国家清单已成为刻不容缓的工作。准确估计我国的农田N_2O排放量,研究其时空变化规律,不仅对于我国的科学研究和国家利益具有一定的重要性,同时也是全球变化研究的内容之一,有助于揭示全球气候变化的规律,为减缓和应对气候变化提供有效对策.
     本文的研究目的为:结合我国农业生态系统的特点,在IPCC推荐的排放系数法的基础上,建立适用于我国农田的N_2O排放估算模型;在GIS技术支持下,估算中国农田N_2O直接排放量,并研究中国农田N_2O排放的时空变异规律;结合气候模式,分析未来气候变化情景下中国农田N_2O直接排放的变化趋势;探讨在区域尺度上减缓中国农田N_2O排放的对策。
     本研究通过充分调研现有文献资料,结合本课题组观测结果的基础上,采取一定的规則对所获取的数据进行取舍和整理后,建立了包括N_2O年排放量、施氮量、环境要素、地理位置、作物类型等要素的数据库。统计分析结果表明,在大尺度样本空间內农田N_2O排放与降水及氮肥施用量呈显著正相关,与气温、土壤pH值、有机碳及N含量无显著相关.
     在IPCC推荐的排放系数法的基础上,通过考虑农田N_2O排放与年降水量间的关系,本文建立了针对旱地农田N20排放的估算方程A\O-N=(1.49±0.73)P+(0.0186±0.0027)P·F(r~2=0.61,P<0.0001)。拟合度分析表明,相较于IPCC缺省方法,引入了降水因子的估算方程能够提高对农田N_2O排放的解释性,对N_2O排放具有更好的模拟效果,也更适用于中国农田的N_2O排放估算。
     根据中国农业生产和种植制度的特点,本文引入水田N_2O排放系数,结合降水修正的排放系数,在GIS技术的支持下,估算了中国农田N_2O直接排放量.结果表明,在1980—2000年间中国农田化学氮源N_2O平均年排放量为167.22 GgN_2O-N yr~(-1),约占氮肥用量的1.02%,其中旱作农田是主要的N_2O释放源,约占中国农田N_2O直接排放量的86%。
     中国农田N_2O排放具有较强的时空变异性.在分布格局上,N_2O排放通量和排放系数均表现出明显的地区间差异,东部较高,西北偏低.在时间序列上,中国农田N_2O排放量在上世纪后二十年升高了约149 Gg N_2O-N,增加了1.55倍,同时受氮肥用量和气候条件等因素的影响,不同地区N_2O排放量增加的幅度也具有较大差异。由于考虑了N_2O排放的主控因子,本文采用的方法能够更为合理的估计出农田N_2O排放的年际问变异。
     本研究估算的不确定性主要来自于两个方面,输入数据空间化过程中的偏差和估算方程的不确定性。结合本研究的特点,采用了IPCC推荐的误差传播公式来量化和合并估算过程中的不确定性。分析表明,本研究对中国农田N_2O年排放量估算的不确定性约为21.3%。
     利用气候模式驱动农田N_2O估算模型,本文分析了未来气候变化情景下中国农田N_2O排放的变化趋势。结果表明,农田N_2O排放对气候变化具有较强的敏感性。虽然在较长的时间尺度上,中国农田N_2O排放在趋势上并未发生明显的改变,然而,N_2O排放的年际变异进一步变大,波动性增强,同时其空间分布格局也发生了一定的变化,N_2O的排放中心有向北移动的趋势。
     基于中国农田N_2O排放和氮肥用量的地区间差异,本研究设置了中国氮肥区域分配情景。情景分析结果表明,在化学氮肥施用总量接近的条件下,通过调整中国氮肥的地区间分配,可以削减约11.7%的农田N_2O排放量。与此同时,经过氮肥用量的区域性调整后,由于提高了氮肥的利用率,中国的粮食产量具有一定的增加潜力。
     本研究通过大样本空间数据的分析,探讨了农田N_2O排放与各影响因素间的关系,基于这种关系所建立的N_2O排放估算模型,在保持排放系数法操作简单的基础上提高了估算的准确性。在GIS技术的架构下,本文将栅格化数据集和估算模型相结合,研究了较长时间序列内中国农田化学氮源N_2O直接排放的时空变异规律,系统的回答了中国农田N_2O排放的过去、现在和将来,这将有助于我们评价中国农田对大气温室气体浓度升高的贡献,为制定有关温室气体的的决策提供科学支持,对合理预判和应对未来全球变化的趋向具有重要意义。
Nitrous oxide (N_2O), an important atmospheric trace gas, has been paid muchattention due to its substantial contribution to global warming and ozone depletion, thetwo severest impacts on the global environment. Although the N_2O budget remainspoorly understood at present, fertilized agricultural soils have been believed to be amajor source of annual global N_2O emission. Owing to the large spatial and temporalvariabilities in the agricultural practices and environmental factors, it is difficult toprecisely estimate agricultural N_2O emission at a large regional scale.
     China is one of the largest agricultural countries in the world. Huge amount ofsynthetic fertilizer have been applied to maintain high crop yield to feed the increasingpopulation. The impact of Chinese agricultural activities on atmosphere N_2O incursincreasing attentions. Moreover, according to the UNFCCC, China is obliged tocompile greenhouse gas inventories in order to make proper policy to reduce theiremissions. The estimation of N_2O emission from agricultural fields in China is alreadymore than a scientific topic.
     The objectives of this study are, 1) to establish empirical models in which theemission factor and background emission for N_2O in the IPCC methodology wererectified by key environmental parameters; 2) to simulate long term spatio-temporalcharacteristics of direct N_2O emission in China's agriculture by linking the statisticalmodels to spatial datasets via GIS; 3) to predict the response of agricultural N_2Oemission to climate change through adopting the output of climate model to drive N_2Oestimate models; 4) to examine potential mitigation option of agricultural N_2Oemission on regional scale.
     In this study, we collected direct N_2O measurements that were published in peer-reviewed English and Chinese journals between 1982 and 2003. After dataextraction following strict criteria, the employed data set remained of 206measurements from 42 sites. For each data point, we recorded the annual total N_2Oemission, the synthetic nitrogen application rate, the precipitation and meantemperature, the location of the measurement and the soil physiochemical parametersincluding soil total N content, soil organic carbon content, and pH. Both nitrogen input(F) and precipitation (P) were found to be largely responsible for temporal and spatialvariabilities in annual N_2O fluxes, while no significant correlations were observedbetween N_2O emission and other parameters of temperature, pH, organic carbon andnitrogen.
     Based on the definition of N_2O emission factor and its quantification by theIntergovernmental Panel on Climate Change, we established an empirical model forupland (N_2O-N=1.49 P+0.0186 P·F), in which both emission factor and backgroundemission for N_2O were rectified by precipitation. Fitness analysis suggests that theinclusion of precipitation into regression eqution could improve the predictability, andis more suitable to quantify N_2O emissions from agricultural fertilized fields in China
     Considering the large paddy rice planting area in China, the cropping-specificemission factors were introduced to estimate fertilizer-induced N_2O emissions fromrice paddies, while the precipitation-rectified emission factor to the uplands. Annualfertilizer-induced N_2O emissions from China's agricultural fields were simulated bylinking these models to spatial datasets via GIS. During the period 1980 to 2000, themean annual emission was estimated to be 167.22 Gg N_2O-N yr~(-1), equivalent to 1.02%of the national total of synthetic fertilizer N input. Upland was the major source ofannual N_2O emission from China's agriculture, contributing about 86% to the total offertilizer-induced N_2O emissions from agricultural fields in China.
     Direct N_2O emission from China's agricultural fields occurs essentially with greatspatial and temporal variability. This study showed a significant spatial distributionpattern of direct N_2O emission in agricultural fields. The maximum direct N_2Oemission occurred in the major district of crop production, where is characterized ashumid climate in China. By contrast, N_2O emission rarely exceeded 0.10 kg N_2O-Nha~(-1).yr~(-1) in the West region, where is generally dominated by dry climate. During thelast two decades in the 20th century, the amount of direct N_2O emission from Chineseagricultural fields has increased by about 149 Gg N_2O-N yr~(-1), equivalent to 155% of the initial. The increasing range of N_2O emission varied widely with different regions,which is mainly attributed to the quantity of synthetic nitrogen application and climateconditions. In contrast with the IPCC default methodology, this study may providemore insights into the inter-annul variations in N_2O emissions.
     Uncertainty estimate is an essential element of a complete inventory of N_2Oemission. The uncertainties of this study were principally originated from the modelsand spatializing process. Similar to the uncertainty estimate in the IPCC methodology,the error propagation equation was adopted to quantify the uncertainties of this study.Results indicated that the combined uncertainty in this study was about 23%.
     In this paper, we simulated direct N_2O emission from Chinese agriculture from2005 to 2050 by linking N_2O estimate models with FGOALS's climate changescenario. Results suggest that N_2O emission from agricultural fields is sensitive toclimate change. Although the trend of direct N_2O emission from Chinese agriculturemay be constant essentially in the future, the inter-annual variations of N_2O emissionwill be enhanced. Moreover, the changing spatial distribution pattern of N_2O emissionwas predicted, and the high emission centers will move northward.
     According to the regional variations of direct N_2O emission and synthetic nitrogenapplication, we simulated a fertilizer application scenario. Scenario analysis indicatedthat the adjustment to the spatial distribution of fertilizer application in China might bea potential mitigation option of agricultural N_2O emission with the premise of insuringcrop production.
引文
1.蔡祖聪.1999.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报,36(4):484-490.
    2.陈冠雄,黄国宏,黄斌,吴杰,于克伟,徐慧,薛晓华,王正平.1995.稻田CH_4和N_2O的排放及养萍和施肥的影响.应用生态学报,6(4):378-382.
    3.陈利军,史奕,李荣华,胡连生,周礼恺.1995.脲酶抑制剂和硝化抑制剂的协同作用对尿素氮转化和N_2O排放的影响.应用生态学报,6(4):368-372.
    4.丁洪,蔡贵信,王跃思,陈德立.2001a.华北平原不同作物一潮土系统中N_2O排放量的测定.农业环境保护,20(1):7-9.
    5.丁洪,蔡贵信,王跃思,陈德立.2001b.华北平原几种主要类型土壤的硝化及反硝化活性.农业环境保护,20(6):390-393.
    6.封克,殷士学.1995.影响氧化亚氮形成与排放的土壤因素.土壤学进展,23(6):35-41.
    7.冯锦明,赵天保,张英娟.2004.基于台站降水资料对不同空间内插方法的比较.气候与环境研究,9(2):261-277.
    8.勾继,郑循华.2000.华东地区稻麦轮作农田生态系统N_2O排放的模拟研究.大气科学,24:835-842.
    9.侯爱新,陈冠雄,O.Van Cleemput.1998.不同种类氮肥对土壤释放N_2O的影响.应用生态学报,9(2):176-180.
    10.侯爱新,陈冠雄,吴杰,王正平.1997.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子.应用生态学报,8(3):270-274.
    11.黄国宏,陈冠雄,黄斌,吴杰.1998a.玉米植株对大田温室气体N_2O排放的影响.应用生态学报,9(3):261-264.
    12.黄国宏,陈冠雄,吴杰,黄斌,于克伟.1995.东北典型旱作农田CH_4和N_2O排放通量研究.应用生态学报,6(4):383-386.
    13.黄国宏,陈冠雄,张志明,吴杰,黄斌.1998b.玉米田N_2O排放及减排措施研究.环境科学学报,18(4):344-349.
    14.黄树辉,吕军,曾光辉.2004.水稻烤田期间N_2O排放及其影响因素.环境科学学报,24(6):1084-1090.
    15.黄耀,蒋静艳,宗良纲,周权锁,R.L.Sass,F.M.Fisher.2001.种植密度和降水对冬小麦田N_2O排放的影响.环境科学,22(6):20-23.
    16.黄耀.2006.中国的温室气体排放、减排措施与对策.第四纪研究,26(5):722-732.
    17.江长胜,王跃思,郑循华,朱波,黄耀.2006.耕作制度对川中丘陵区冬灌田CH_4和N_2O排放的影响.环境科学,27(2):207-213.
    18.姜军,黄耀,杨兆芳.2005.一个稻麦作物氮肥利用率的统计模型.南京农业大学学报,28(1):57-60.
    19.蒋静艳,黄耀,宗良纲.2003.水分管理和秸秆施用对稻田CH_4和N_2O排放的影响.中国环境科学,23(5):552-556.
    20.李长生,肖向明,S.Frolking,B.Moore Ⅲ,W.Salas,邱建军,张宇,庄亚辉,王效科,戴昭华,刘纪远,秦小光,廖柏寒,R.Sass.中国农田的温室气体排放.2003.第四纪研究,23(5):493—503.
    21.李方敏,樊小林,刘芳,汪强.2004.控释肥料对稻田氧化亚氮排放的影响.应用生态学报,15(11):2170-2174.
    22.李香兰,徐华,曹金留,蔡祖聪,八木一行.2006.水分管理对水稻生长期N_2O排放的影响.土壤,38(6):703-707.
    23.梁东丽,同延安,Ove Emteryd,马林英.2002a.菜地不同施氮量下N_2O逸出量的研究.西北农林科技大学学报(自然科学版),30(2):73-77.
    24.梁东丽,同延安,Ove Emteryd,方日尧,张树兰.2002b.干湿交替对旱地土壤N_2O气态损失的影响.干旱地区农业研究,20(2):28-31.
    25.梁东丽,同延安,Ove Emteryd,李生秀,方日尧,张树兰.2002c.灌溉和降水对旱地土壤N_2O气态损失的影响.植物营养与肥料学报,8(3):298-302.
    26.梁东丽,李生秀,吴庆强,张兴昌,O.Emteryd.2007.玉米生长期黄土区土壤氧化亚氮产生和排放及其影响因子研究.西北农林科技大学学报,35(2):131-137.
    27.梁巍,张颖,岳进,吴劫,史奕,黄国宏.2004.长效氮肥施用对黑土水旱田CH_4和N_2O排放的影响.生态学杂志,23(3):44-48.
    28.刘建栋,欧阳志云.2002.农田生态系统N_2O排放的数值模拟研究.环境科学,23:36-39.
    29.卢维盛,张建国,廖宗文.1997.广州地区晚稻田CH_4和N_2O的排放通量及其影响因素.应用生态学报,8(3):275-278.
    30.卢燕宇,黄耀,郑循华.2005.农田氧化亚氮排放系数的研究.应用生态学报,16:1299-1302.
    31.尚宗波,高琼,杨奠安.2001.利用中国气候信息系统研究年降水量空间分布规律.生态学报,21:689-694.
    32.宋文质,王少彬,曾江海,王智平,张玉铭.1997.华北地区旱田土壤氧化亚氮的排放.环境科学进展,5(4):49-55.
    33.王少彬,宋文质,苏维瀚,曾江海,张玉铭,王智平.1994.冬小麦田氧化亚氮的排放.农业环境保护,13(5):210-212.
    34.王效科,李长生.2000.中国农业土壤N_2O排放量估算.环境科学学报,20(4):483-488.
    35.王效科,欧阳志云.2001.DNDC模型在长江三角洲农田生态系统的CH_4和N_2O排放量估算中的应用.环境科学,22:15-19.
    36.王效科,庄亚辉,李长生.2001.中国农田土壤N_2O排放通量分布格局研究.生态学报,21(8):1225-1232.
    37.王效科,李长生,欧阳志云.2003.温室气体排放与中国粮食生产.生态环境,12(4):379-383.
    38.王重阳,郑靖,顾江新,王绍斌,史奕,陈欣.2006a.下辽河平原几种旱作农田N_2O排放通量及相关影响因素的研究.农业环境科学学报,25(3):657-663.
    39.王重阳,郑靖,顾江新,史奕,陈欣.2006b.下辽河平原大豆田CO_2和N_2O排放通量及相关影响因素研究.土壤,38(6):708-711.
    40.吴国雄,张学洪,刘辉,俞永强,金向泽,郭裕福,孙菽芬,李伟平,王标,石广玉.1997.LASG全球海洋—大气—陆面系统模式(GOALS/LASG)及其模拟研究.应用气象学报,8:15-28.
    41.谢军飞,李玉娥.2004.DNDC模型对北京旱地农田N_2O排放的模拟对比分析.农业环境科学学报,23(4):691-695.
    42.邢长平,沈承德.1998.N_2O,CO_2温室气体与土壤DNDC模型.热带亚热带土壤科学,7:58-63.
    43.邢光熹,颜晓元.2000.中国农田N_2O排放的分析估算与减缓对策.农村生态环境,16(4):1-6.
    44.熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟,钱薇.2002.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究.中国农业科学,35(9):1104-1108.
    45.熊正琴,邢光熹,施书莲,杜丽娟.2003a.轮作制度对水稻生长季节稻田氧化亚氮排放的影响.应用生态学报,14(10):1761-1764.
    46.熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟.2003b.豆科绿肥和化肥氮对双季稻稻田氧化亚氮排放贡献的研究.土壤学报,40(5):704-710.
    47.徐华,邢光熹,蔡祖聪,鹤田治雄.1999.土壤水分状况和氮肥施用及品种对稻田N_2O排放的影响.应用生态学报,10(2):186-188.
    48.徐华,邢光熹,蔡祖聪,鹤田治雄.2000.土壤质地对小麦和棉花田N_2O排放的影响.农业环境保护,19(1):1-3.
    49.徐文彬,洪业汤,陈旭晖,李长生,林庆华,王羽.1999.未来气候变化对旱田生态系统 N_2O释放的潜在影响.中国环境科学,19(5):387-391.
    50.徐文彬,洪业汤,陈旭晖.2000a.应用DNDC模型估算区域农业土壤N_2O释放通量和释放量—以贵州省为例.环境科学,21:11-15.
    51.徐文彬,洪业汤,陈旭晖.2000b.贵州省旱田土壤N_2O释放及其环境影响因素.环境科学,21(1):7-11.
    52.徐文彬,刘维屏,刘广深.2001.应用DNDC模型分析施肥和翻耕方式变化对旱田土壤N_2O释放的潜在影响.应用生态学报,12(6):917-922.
    53.徐文彬,刘广深,洪业汤,李长生,陈旭晖.2002a.DNDC模型对我国旱地N_2O释放的拟合对比分析.矿物学报,22:222-228.
    54.徐文彬,刘广深,刘维屏.2002b.降雨和土壤湿度对贵州旱田土壤N_2O释放的影响.应用生态学报,13(1):67-70.
    55.颜晓元,施书莲,杜丽娟,邢光熹.2000.水分状况对水田土壤N_2O排放的影响.土壤学报,37(4):482-489.
    56.杨军,陈玉芬,胡飞,伍时照,王国昌.1996.广州地区早稻田施肥对N_2O排放影响的初步研究.华南农业大学学报,17(4):52-57.
    57.杨军,贺丽萍,杨崇,陈玉芬,吕雪娟,伍时照.1997.广州地区晚季稻田CH_4、N_2O排放研究初报.华南农业大学学报,18(3):62-66.
    58.于克伟,陈冠雄,杨思河,吴杰,黄斌,黄国宏,徐慧.1995.几种旱地农作物在农田N_2O释放中的作用及环境因素的影响.应用生态学报,6(4):387-391.
    59.岳进,梁巍,吴杰,史奕,黄国宏.2003.黑土稻田CH_4与N_2O排放及减排措施研究.应用生态学报,14(11):2015-2018.
    60.曾江海,王智平,张玉铭,宋文质,王少彬,苏维翰.1995.小麦-玉米轮作期土壤排放N_2O通量及总量估算.环境科学,16(1):32-35.
    61.张耀存,况雪源.2002.一个气候系统模式FGCM0对东亚副热带西风急流季节变化的模拟.大气科学,30(6):1177-1187.
    62.张稳.2004.基于模型和GIS技术的中国稻田甲烷排放估计.博士论文,南京农业大学.
    63.郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土.1996.稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响.应用生态学报,7(3):273-279.
    64.郑循华,王明星,王跃思,沈壬兴,龚宴邦,骆冬梅,张文,金继生,李老土.1997a.华东稻麦轮作生态系统N_2O排放研究.应用生态学报,8(5):495-499.
    65.郑循华,王明星,王跃思,沈壬兴,上官行健,Kogge M.,Heyer,J.,Papen,H.,金继生,李老土.1997b.华东稻田CH_4和N_2O排放.大气科学,21(2):231-237.
    66.郑循华,王明星,王跃思,沈壬兴,龚宴邦.1997c.温度对农田N_2O产生与排放的影响.环境科学,18(5):1-5.
    67.中华人民共和国气候变化初始国家信息通报.2004.北京:中国计划出版社.13-22.
    68.周礼恺,徐星凯,陈利军,李荣华.1999.氢醌和双氰胺对种稻土壤N_2O和CH_4排放的影响.应用生态学报,10(2):189-192.
    69.周天军,王在志,宇如聪,俞永强,刘屹岷,刘海龙,包庆,王鹏飞,李薇,吴国雄,吴统文.2005.基于LASG/IAP大气环流谱模式的气候系统模式.气象学报,63(5):702-715.
    70.邹建文,黄耀,宗良纲,郑循华,王跃思.2003a.稻田CO_2,CH_4和N_2O排放及其影响因数.环境科学学报,23(6):758-764.
    71.邹建文,黄耀,宗良纲,蒋静艳,郑循华,王跃思.2003b.稻田灌溉和秸秆施用对后季麦田N_2O排放的影响.中国农业科学,36(4):409-414.
    72.邹建文,黄耀,宗良纲,王跃思,R.L.Sass.2003c.不同种类有机肥施用对稻田CH_4和N_2O排放的综合影响.环境科学,24(4):7-12.
    73. Akiyama, H., K. Yagi, X. Yan. 2005. Direct N_2O emissions from rice paddy fields: Summary of available data, Global Biogeochemical Cycles, 19, GB1005, doi:10.1029/2004GB002378.
    74. Battle, M., M. Bender, T. Sowers, P. P. Tans, J. H. Butler, J. W. Elkins, T. Conway, N. Zhang, P. Lang, and A. D. Clarke. 1996. Atmospheric gases concentrations over the past century measured in air firn at South Pole. Nature, 383:231—235.
    75. Benckiser, G., R. Eilts, A. Linn, H. J. Lorch, E. Sumer, A. Weiske, and F. Wenzhofer. 1996. N_2O emissions from different cropping systems and from aerated, nitrifying and denitrifying tanks of a municipal waste water treatment plant. Biology and Fertility of Soils, 23: 257-265.
    76. Bouwman, A. F. 1990. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In Pages 61-127. Bouwman, A. F. eds. Soils and Greenhouse Effect, Chichester: Wiley and Sons. Wiley, New York. USA.
    77. Bouwman, A. F. 1996. Direct emission of nitrous oxide from agricultural soils. Nutrient Cycling in Agroecosystems, 46: 53-70.
    78. Bouwman, A. F. and K. W. Van der Hoek. 1997. Scenarios of animal waste production and fertilizer use and associated ammonia emissions for the developing countries, Atmospheric Environment, 31(24): 4095-4102.
    79. Bouwman, A. F., L. J. M. Boumans, and N. H. Batjes. 2002a. Modeling global annual N_2O and NO emissions from fertilized fields. Global Biogeochemical Cycles, 16(4): 1080-1088.
    80. Bouwman, A. F., L. J. M. Boumans, and N. H. Batjes. 2002b. Emissions of N_2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16 (4): 1058-1070.
    81. Bremner, J. M. 1997. Sources of nitrous oxide in soils. Nutrient Cycling in Agroecosystems, 49: 7-16.
    82. Brown, L., S. A. Brown, S. C. Jarvis, B. Syed, K. W. T. Goulding, V. R. Phillips, R. W. Sneath, and B. F. Pain. 2001. An inventory of nitrous oxide emissions from agriculture in the UK using IPCC methodology: Emission estimate, uncertainty and sensitivity analysis. Atmospheric Environment, 35 (8): 1439-1449.
    83. Cai, Z. C, G X. Xing, X. Y. Yan, H. Xu, H. Tsuruta, K. Yagi, and K. Minami. 1997. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant and Soil, 196 (1): 7-14.
    84. Cai, Z.C., T. Sawamoto, C. S. Li, G. Kang, J. Boonjawat, A.R. Mosier, R. Wassmann, H. Tsuruta. 2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems. Global Biogeochemical Cycles. 17: GB1107, doi:10.1029/ 2003GB002046.
    85. Cates R.L., D.R. Keeney 1987. Nitrous oxide production throughout the year from fertilized and manured maize fields. Journal of Environmental Quality, 16: 443-447.
    86. Chen, GX., B. Huang, H. Zhang, Y. Xu, G H. Huang, K. Yu, A. Hou, R. Du, S. Han, Van Cleemput. 2000. Nitrous oxide emission from terrestrial ecosystems in China. Chemosphere - Global Change Science 2: 373-378.
    87. Choudhary, M.A., Akramkhanov, A., Saggar, S., 2001. Nitrous oxide emissions in soils cropped with maize under long-term tillage and under permanent pasture in New Zealand. Soil Till. Res. 62: 61-71.
    88. Clayton, H., I.P. McTaggart, J. Parker, L. Swan, K.A. Smith. 1997. Nitrous oxide emissions from fertilized grassland: A 2-year study of the effects of N fertiliser form and environmental conditions. Biology and Fertility of Soils, 25, 252-260.
    89. Daum, D., and M. K. Schenk. 1998. Influence of nutrient solution pH on N_2O and N_2 emissions from a soilless culture system. Plant and Soil, 203: 279-287.
    90. Del Grosso, S., D. Ojima, and W. Parton. 2002. Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model. Environmental Pollution, 116: S75-S83.
    91. Dobbie K. E., and K. A. Smith. 2003. Impact of different forms of N fertilizer on N2O emission from intensive grassland. Nutrient Cycling in Agroecosystems, 67: 37-46.
    
    92. Dobbie, K. E., and K. A. Smith. 2003. Nitrous oxide emission factors for agricultural soils in Great Britain: The impact of soil water-filled pore space and other controlling variables. Global Change Biology, 9 (2): 204-218.
    
    93. Dobbie, K. E., I. P. McTaggart, and K. A. Smith. 1999. Nitrous oxide emissions from intensive agricultural systems: Variations between crops and seasons, key driving variables, and mean emission factors. Journal of Geophysical Research, 104 (D21): 26891-26899.
    
    94. Dong, Y., D. Scharffe, Y. Qi, and G. B. Peng. 2001. Nitrous oxide emissions from cultivated soils in the North China Plain. Tellus Series B-Chemical and Physical Meteorology, 53 (1): 1-9.
    
    95. Dorsch, P. 2000. Nitrous oxide and methane fluxes in differently managed agricultural soils of a hilly landscape in southern Germany. Ph.D. thesis, TU Miinchen-Weihenstephan, Fakultat fur Landwirtschaft und Gartenbau. Weihenstephan, Germany.
    
    96. Duxbury, J. M., D. R. Bouldin, R. E. Terry, and R. L. Tate. 1982. Emission of nitrous oxide from soils. Nature, 298: 462-464.
    
    97. Eggington, G.M., and K. A. Smith. 1986. Losses of nitrogen by denitrification from a grassland soil fertilized with cattle slurry and calcium nitrate. Journal of Soil Science, 37: 69-80.
    
    98. Eichner, M. J. 1990. Nitrous oxide emissions from fertilised soils: summary of available data. Journal of Environmental Quality, 19 (2): 272-280.
    
    99. Farman, J. C, B. GGardiner, and J. D.Shanklin. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315: 207-210.
    
    100. Firestone, M. K., and E. A. Davidson. 1989. Microbiological basis of NO and N_2O production and consumption in soil. In Pages 7-21. Andreae, M. O., and D. S. Schimel, eds. Exchange of Trace Gasesbetween Terrestrial Ecosystems and the Atmosphere. John Wiley & Sons, Chichester.
    
    101.Flessa, H., and F. Beese. 1995. Effect of sugarbeet residues on soil redox potential and nitrous oxide emission. Soil Science Society of America Journal, 59: 1044-1051.
    102.Flessa, H., P. Dorsch, and F. Beese, 1995. Seasonal variation of N_2O and CH_4 fluxes in differently managed arable soils in southern Germany. Journal of Geophysical Research, 100, 23: 115-23 124.
    103.Flessa, H., R. Ruser, P. Dorsch, T. Kamp, and M. A. Jimenez, J. C. Munch, and F. Beese. 2002. Intergrated evaluation of greenhouse gas emissions (CO_2, CH_4, N_2O) from two farming systems in southern Germany. Agriculture, Ecosystems and Enviroment, 91:175-189. 104.Fluckiger, J., A. Dallenbach, T. Blunier, B. Stauffer, T. F.Stocker, D. Raynaud, and J. Barnola. 1999. Variations in atmospheric N2O concentration during abrupt climatic changes. Science, 285:227-230.
    105. Freibauer A. 2003. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy, 19: 135-160.
    106. Ghosh S., D. Majumdar, and M. C. Jain. 2003. Methane and nitrous oxide emissions from an irrigated rice of North India. Chemosphere, 51: 181-195.
    107. Godde, M., and R. Conrad. 2000. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biology and Fertility of Soils, 32: 120-128.
    108. Gou, J., X.H. Zheng, M. Wang, and C. Li. 1999. Modeling N_2O emissions from agricultural fields. Advanced in Atmospheric Sciences, 16: 581-592.
    109. Grant, R. F., and E. Pattey. 2003. Modeling variability in N_2O emissions from fertilized agricultural fields. Soil Biology & Biochemistry, 35: 225-243.
    110.Heinemeyer, O. 1998. Nitrous oxide release from arable soil: importance of different perennial forge crops. Biology and Fertility of Soils, 28: 36-43.
    111.Hellebrand, H.J., J. Kern, and S. Volkhard. 2003. Long-term studies on greenhouse gas fluxes during cultivation of energy crops on sandy soils. Atmosphere Environment, 37: 1635-1644.
    112.Henault, C., X. Devis, J. L. Lucas, and J. C. Germon. 1998a. Influence of different agricultural practices (type of crop, form of N-fertilizer) on soil nitrous oxide emissions. Biology and Fertility of Soils, 27: 299-306.
    113.Henault, C, X. Devis, S. Page, E. Justes, R. Reau, and J. C. Germon. 1998b. Nitrous oxide emissions under different soil and land management conditions. Biology and Fertility of Soils, 26:199-207.
    114. Huang, Y., Y. Jiao, L. G. Zong, Y. S. Wang, and R. L. Sass. 2002. Nitrous oxide emissions from the wheat-growing season in eighteen Chinese paddy soils: an outdoor pot experiment, Biology and Fertility of Soils, 36: 411-417.
    115.Hutsch, B.W., X. Wang, K. Feng, F. Yan, S. Schubert. 1999. Nitrous oxide emission as affected by changes in soil water content and nitrogen fertilization. Journal of Plant Nutrition and Soil Science, 162: 607-613.
    116. IPCC. 1997. Greenhouse gas emissions from agricultural soils. In Greenhouse Gas Inventory Reference Manual Revised 1996, IPCC Guidelines for national greenhouse gas inventories. IPCC/OECD/IGES, Bracknell, UK.
    117. IPCC. 2000. IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. IGES, Tokyo.
    118. IPCC. 2001. Atmospheric Chemistry and Greenhouse Gases. In Pages 248-253. Climate change 2001: the Scientific Basis. Cambridge University Press, New York.
    119. IPCC. 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IGES, Kanagawa, Japan.
    120. Kaiser, E. A., and R. Ruser. 2000. Nitrous oxide emissions from arable soils in Germany - an evaluation of six long-term field experiments. Soil Science and Plant Nutrition, 163: 249-260.
    121. Kaiser, E. A., K. Kohrs, M. Kucke, E. Schnug, O. Heinemeyer, and J. C. Munch. 1998. Nitrous oxide release from arable soil-importance of N-fertilization, crops and temporal variation. Soil Biology & Biochemistry, 12: 1553-1563.
    122. Kaiser, E.A., O. Heinemeyer. 1996. Temporal change in N_2O-losses from two arable soils. Plant Soil: 181: 185-192.
    123. Kanako, K., S. Takuji, H. Ryusuke, 2002. Nitrous oxide emissions for 6 years from a gray lowland soil cultivated with onions in Hokkaido, Japan. Nutrient Cycling in Agroecosystems, 63:239-247.
    124.Kang I.-S., K. Jin, B. Wang, K. M. Lau, J. Shukla, V. Krishnamurthy, S.D. Schubert, D.E. Wailser, W.F. Stern, A. Kitoh, G.A. Meehl, M. Kanamitsu, V.Y. Galin, V. Satyan, C. K. Park, and Y. Liu. 2002. Intercomparison of the climatological variations of Asian summer monsoon precipitati on simulated by 10 GCMs. Climate Dynamics, 19: 383 — 395.
    125.Khalil, M. A. K. 1990. Emission of trace gases from Chinese rice fields and biogas generation: CH_4, N_2O, CO_2, chorocarbons, and hydrocarbons. Chemosphere, 20: 207-213.
    126.Kiese, R., C. Li, D. W. Hilbert, H. Papen, and K. Butterbach-Bahl. 2005. Regional application of PnET-N-DNDC for estimating the N_2O source strength of tropical rainforests in the Wet Tropics of Australia. Global Change Biology, 11: 128-144.
    127.Kroeze, C, A. Mosier, and A. F. Bouwman. 1999. Closing the global N_2O budget: a retrospective analysis 1500-1994. Global Biogeochemical Cycles, 13: 1-8.
    128. Kumar, U., M. C. Jain, H. Pathak, S. Kumar, and D. Majumdar. 2000. Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated rice. Biology and Fertility of Soils, 32 (6): 474-478.
    
    129. Li, C. S., Y. H. Zhuang, M. Q. Cao, P. Crill, Z. H. Dai, S. Frolking, B. III. Moore, W. Salas, W. Z. Song, and X. K. Wang. 2001. Comparing a national inventory of N_2O emissions from arable lands in China developed with a process-based agroecosystem model to the IPCC methodology. Nutrient Cycling in Agroecosystems, 60 (1-3): 159-170.
    
    130. Li, C, J. Aber, F. Stange, K. Butterbach-Bahl, and H. Papen. 2000. A process-oriented model of N_2O and NO emission from forest soils, 1. Model development. Journal of Geophysical Research, 105: 4369-4384.
    
    131. Li, C., S. Frolking, and T. A. Frolking. 1992. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research, 97: 9759-9776.
    
    132. Lilly A., B. C. Ball, I. P. McTaggart, and P. L. Home. 2003. Spatial and temporal scaling of nitrous oxide emissions from the field to the regional scale in Scotland. Nutrient Cycling in Agroecosystems, 66: 241-257.
    
    133. Liu H., X. B. Li, G. Fischer, and L. X. Sun. 2004. Study on the impacts of climate change on China's agriculture. Climatic Change, 65:125-148.
    
    134. Liu Q. Y., N. Wen, and Y. Q. Yu. 2006. The role of the Kuroshio in the winter North Pacific Ocean-Atmosphere interaction: Comparison of a Coupled Model and Observation. Advance Atmosphere Science, 23:181-189.
    
    135. Liu, S., W. A. Reiners, and M. Keller. 2000. Simulation of nitrous oxide and nitric oxide emissions from a primary forest in the Costa Rican Atlantic Zone. Environmental Modeling and Software, 15: 727-743.
    
    136. Lu, Y. Y, Y. Huang, J. W. Zou, X. H. Zheng. 2006. An inventory of N_2O emissions from agriculture in China using precipitation-rectified emission factor and background emission, Chemosphere, 65: 1915-1924.
    
    137.Meng L., W. X. Ding, and Z C. Cai. 2005. Long-term application of organic manure and nitrogen fertizlizer on N2O emission, soil quality and crop production in a sandy loam soil. Soil Biology and Biochemistry, 37: 2037—2045.
    138. Mogge, B., E. A. Kaiser, and J. C. Munch. 1999. Nitrous oxide emissions and denitrification N-losses from agricultural soils in the Bornhoved lake region: Influence of organic fertilizers and land use. Soil Biology and Biochemistry, 31: 1245-1252.
    139. Monika, G., R. Conrad, 2000. Influence of soil properties on the turnover of nitric oxide and nitrous oxide by nitrification and denitrification at constant temperature and moisture. Biology and Fertility of Soils, 32:120-128.
    140.Mosier, A. C., S. K. Mohanty, A. Bhadrachalam, and S. P. Chakravorti. 1990. Evolution of dinitrogen and nitrous oxide from the soil to the atmosphere through flooded rice plants. Biology and Fertility of Soils, 9: 61-67.
    141.Mosier, A. R., and C. Kroeze, 1998. A new approach to estimate emissions of nitrous oxide from agriculture and its implications for the global N_2O budget IGBP Newsletter, 34: 8-13. Web at: http://www.igbp.kva.se/cgi-bin/php/frameset.php.
    142.Mosier, A., C. Kroeze, C. Nevison, O. Oenema, S. Seitzinger, and O. Van Cleemput. 1998. Closing the global N_2O budget: nitrous oxide emissions through the agricultural nitrogen cycle-OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology. Nutrient Cycling in Agroecosystems, 52: 225-248.
    143.Mosier, A.R., Delgado, J.A., 1997. Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere - Global Change Sciences. 35: 2059-2082.
    144.OECD/OCDE, 1991. Estimation of Greenhouse Gas Emissions and Sinks. Final report from the OECD Experts Meeting, 18-21 Feb., 1991. Prepared for Intergovernmental Panel on Climate Change. Revised August, 1991.
    145.Parton, W. J., A. R. Mosier, D. S. Ojima, D. W. Valentine, D. S. Schimel, K. Weier, and A. E. Kulmala. 1996. Generalized model for N_2 and N_2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10: 401-412.
    146.Parton, W. J., E. A. Holland, and S. J. Del Grosso. 2001. Generalized model for NOx and N_2O emissions from soils. Journal of Geophysical Research, 106: 17403-17419.
    147.Pathak, H., and D. B. Nedwel. 2001. Nitrous oxide emission from soil with different fertilizers, water levels and nitrification inhibitors. Water, Air, and Soil Pollution, 129: 217-228.
    148.Pathak, H., A. Bhatia, S. Prasad, S. Singh, S. Kumar, M.C. Jain, and U. Kumar. 2002. Emission of nitrous oxide from Rice-Wheat Systems of Indo-Gangetic Plains of India. Environ. Monit. Assess 77: 163-178.
    
    149. Potter, C. S., H. R. Riley, and S. A. Klooster. 1997. Simulation modelling of nitrogen trace gas emissions along an age gradient of tropical forest soils. Ecological Modelling, 97: 179-196.
    150. Potter, C. S., J. T. Randerson, and C. B. Field. 1993. Terrestrial ecosystem production: A process model on global satellite and surface data. Global Biogeochemical Cycles, 7: 811-841.
    151. Potter, C. S., P. A. Matson, and P. M. Vitousek. 1996. Process modeling of controls on nitrogen trace gas emissions from soils worldwide. Journal of Geophysical Research, 101: 1361-1377.
    152. Potter, C. S., E. Davidson, and D. Nepstad. 2001. Ecosystem modeling and dynamic effects of deforestation on trace gas fluxes in Amazon tropical forests. Forest Ecology and Management, 152: 97-117.
    153.Quinn, G. P., and M. J. Keough. 2004. Experimental design and data analysis for biologists. Cambridge Univ Press, Cambridge.
    154.Reiners, W. A., S. Liu, and K. G. Gerow. 2002. Historical and future land use effects on N_2O and NO emissions using an ensemble modeling approach: Costa Rica's Caribbean lowlands as an example. Global Biogeochemical Cycles, 16:1068, doi: 10.1029/2001GB001437.
    155.Roelandt C, B. V. Wesemael, and M. Rounsevell. 2005. Estimating annual N_2O emissions from agricultural soils in temperate climates. Global Change Biology, 11: 1701-1711.
    156.Ruser, R., H. Flessa, R. Schilling, F. Beese, and J. C. Munch, 2001. Effect of crop-specific management and N fertilization on N_2O emissions from a fine-loamy soil. Nutrient Cycling in Agroecosystems, 59: 177-191.
    157.Ryden, J. C, 1983. Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. Journal of Soil Sciences, 34, 355-365.
    158.Sehy U., R. Ruser, J. C. Munch. 2003. Nitrous oxide fluxes from maize fields: relationship to yield, site-specific fertilization, and soil conditions. Agriculture, Ecosystems and Environment, 99: 97-111.
    159.Skiba U., M. Sozanska, S. Metcalfe, and D. Fowler. 2001. Spatially disaggregated inventories of soil NO and N2O emssions form Great Britain. Water, Air, and Soil Pollution: Focus, 1: 109-118.
    160.Skiba, U. M., L. J. Sheppard, J. Macdonald, and D. Fowler. 1998. Some key environmental variables controlling nitrous oxide emissions from agricultural and semi-natural soils in Scotland. Atmospheric Environment, 32: 3311-3320.
    
    161. Smith, K. A., I. P. McTaggart, K. E. Dobbie, and F. Conen. 1998. Emissions of N_2O from Scottish agricultural soils, as a function of fertiliser N. Nutrient Cycling in Agroecosystems, 5: 123-130.
    
    162. Sozanska M., U. Skiba, S. Metcalfe. 2002. Developing an inventory of N_2O emissions from British soils. Atmospheric Environment, 36: 987-998.
    163.Stange, F., K. Butterbach-Bahl, and H. Papen. 2000. A process oriented model of N_2O and NO emissions from forest soils: 2, sensitivity analysis and validation. Journal of Geophysical Research, 105: 4385-4398.
    164.Stephan, G., and S. Karl, 2001. Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany. Plant and Soil, 231, 21-35.
    165.Teepe, R., R. Brumme, and F. Beese. 2000. Nitrous oxide emissions from frozen soils under agricultural, fallow and forest land. Soil Biology and Biochemistry, 32: 1897-1910.
    
    166. Thornton, F. C, and R. J. Valente. 1996. Soil emissions of nitric oxide and nitrous oxide from no-till corn. Soil Science Society of America Journal, 60: 1127-1133.
    167. Thornton, P., S. Running, and M. White, 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 19: 214-251.
    168. Van Bochove, E., H. G. Jones, P. Pelletier, and D. Prevost. 1996. Emission of N_2O from agricultural soil under snow cover: A significant part of N budget. Hydrological Processes, 10:1545-1549.
    169.Velthof, G. L., A.B. Brader, O. Oenema. 1996. Seasonal variations in nitrous oxide losses from managed grasslands in the Netherlands. Plant and Soil, 181: 263-274.
    170.Velthof, G. L., O. Oenema. 1995. Nitrous oxide fluxes from grassland in Nertherland: II Effects of soil type, nitrogen fertilizer application and grazing. European Journal of Agronomy, 46: 541-549.
    171. Wagner-Riddle, C, and G. W. Thurtell.1998. Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices. Nutrient Cycling in Agroecosystems, 52: 151-163.
    172. Wang, Y., M.Xue, X. Zheng, B. Ji, R. Du, Y. Wang. 2005. Effects of environmental factors on N_2O emission from and CH_4 uptake by the typical grasslands in the Inner Mongolia. Chemosphere 58: 205-215.
    173. Webster, C.P., R.J. Dowdell. 1982. Nitrous oxide emission from permanent grass swards. Journal of the Science of Food and Agriculture, 33: 227-230.
    174.Weier, K. L., J. W. Doran, J. F. Power, and D. T. Walters. 1993. Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society of America Journal, 57: 66-72.
    175. Xing, G. X. 1998. N_2O emission from cropland in China. Nutrient Cycling in Agroecosystems, 52: 249-254.
    176. Xing, G. X., and Z. L. Zhu. 1997. Preliminary studies on N_2O emissions fluxes from upland soils and paddy soils in China. Nutrient Cycling in Agroecosystems, 49: 17-22.
    177.Xiong, Z. Q., G. X. Xing, H. Tsuruta, G. Y. Shen, S. L. Shi, and L. J. Du. 2002a. Field study on nitrous oxide emissions from upland cropping systems in China. Soil Science and Plant Nutrient, 48 (4): 539-546.
    178.Xiong Z. Q., G. X. Xing, H. Tsuruta, G. Y. Shen, S. L. Shi, and L. J. Du. 2002b. Measurement of nitrous oxide emissions from two rice-based cropping systems in China. Nutrient cycling in Agroecosystems, 64: 125-133.
    179. Xu, H., G. X. Xing, Z. C. Cai, and H. Tsaruta. 1997. Nitrous oxide emissions from three rice paddy fields in China. Nutrient Cycling in Agroecosytems, 49: 18-23.
    180. Xu, X. K., P. Boeckx, Y. Wang, Y. Huang, X. Zheng, F. Hu, and O. Van Cleemput. 2002. Nitrous oxide and methane emissions during rice growth and through rice plants: effect of dicyandiamide and hydroquinone. Biology and Fertility of Soils, 36:53-58.
    181. Yan, X. Y, H. Akimoto, and T. Ohara. 2003. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia. Global Change Biology, 9 (7): 1080-1096.
    182. Yan, X., S. Shi, L.Du, and G. X. Xing. 2000. Pathways of N_2O emission from rice paddy soil. Soil Biology & Biochemistry, 32 (3): 437-440.
    183. Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu. 2002. A flexible coupled Ocean-Atmosphere general circulation model. Advances in Atmosphere Sciences, 19 (1): 169-190.
    184. Yu, Y. Q., X. H. Zhang, and Y. F. Guo. 2004. Global coupled Ocean-Atmosphere general circulation models in LASG/IAP. Advances in Atmosphere Sciences, 21 (3): 444-455.
    185. Zheng, X. H., M. X. Wang, Y. S. Wang, R. X. Shen, J. Gou, J. Li, J. S. Jin, and L. T. Li. 2000. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Global Change Science, 2: 207-224.
    186. Zheng, X. H., S. H. Han, Y. Huang, Y. S. Wang, and M. X. Wang. 2004. Re-quantifying the emission factors based on field measurements and estimating the direct N_2O emission from Chinese croplands. Global Biogeochemical Cycles, 18: GB201810.1029/2003GB002167.
    187. Zou, J. W., Y. Huang, L. G. Zong, X. H. Zheng, and Y. S. Wang. 2004. Carbon dioxide, nitrous oxide and methane emissions from rice-winter wheat rotation system as affected by crop residue incorporation and temperature. Advances in Atmospheric Sciences, 5: 691-698.
    188. Zou, J. W., Y. Huang, Y. Y. Lu, X. H. Zheng, and Y. S. Wang, 2005a. Direct emission factor for N_2O from rice-winter wheat rotation systems in southeast China. Atmosphere Environment, 39: 4755-4765.
    189. Zou, J. W., Y. Huang, J. Y. Jiang, X. H. Zheng, and R. L. Sass. 2005b. A 3-year field measurement of CH_4 and N_2O emissions from rice paddies in China: Effects of water regime, crop residue and fertilizer application. Global Biogeochemical Cycles, 19: GB2021, doi: 10.1029/2004GB002401.
    190. Zou, J. W., Y. Huang, X. H Zheng, and Y. S. Wang. 2007. Quantifying direct N2O emissions from paddy rice production in mainland China: Dependence on water regime, Atmosphere Environment, In Revision.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700