饱和沥青路面动力耦合分析与路面非饱和排水设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在多雨地区,沥青路面常见的病害主要为水损害。路面渗入水、沥青路面结构层和交通荷载的动力耦合作用是导致路面水损害的主要原因之一。防排水系统的合理设计是减轻水损害产生的重要手段。因此,本文考虑路面结构内部滞留水、路面结构层与移动交通荷载的共同作用,基于路面材料为弹性多孔介质的假设和Biot固结理论,建立路面结构层内的水、路面结构层、移动交通荷载的动力耦合模型。采用数值变换和解析计算等方法获得路面结构层中各物理场(应力场、渗流场、位移场、加速度场)分布的半解析解和数值解,以阐述水损害机理,为路面防排水设计提供理论参考。本文基于非饱和渗流理论,建立了路面排水基层排水模型(包括稳态和瞬态渗流模型),拓展和完善了路面内部结构排水系统设计理论和评价体系,并且为基于非饱和渗流理论的排水设计方法的提出提供了理论基础。通过系统的理论推导和数值计算,获得如下创新性成果:
     (1)基于Biot固结理论,建立了移动交通荷载下,“面层-基层-路基”三层体系概化模型和水力耦合动力控制方程以及不同结构类型的“面层-排水基层-半刚性基层-路基”四层体系概化模型和水力耦合动力控制方程,并获得了相应的解答;
     (2)建立了面层和排水基层之间的水量交换模型,获得了考虑路面裂缝特性及龟裂破损程度的路面渗水量理论计算公式;
     (3)考虑非饱和渗流影响,结合Gardner土水特征曲线方程改进了一维稳态Boussinesq方程,建立了分析和量化排水基层中毛细水作用影响的模型,并得到了稳态渗流情况下排水基层中水位高度分布的半解析解;
     (4)基于一维瞬态Boussinesq方程和Gardner土水特征曲线方程,建立了路面排水基层瞬态渗流排水模型,获得了排水基层非饱和渗流控制方程的瞬态解析解,并导出了排水基层中排水量随排水时间变化的显式表达式。
In high-rainfall area, the water-induced damage is the main disease in asphalt pavement. The infiltrated water from pavement surface, as well as the coupled interaction between pavement structure and moving traffic loads, is one of the key casues which give the contribution to the water-induced damage. Adoping a reasonbable and effecitive waterproof and daiange system is a significant mearsurement to reduce water-induce damage. Therefore, based on the Boit dynamics consolidation theory and the assumption of linear elastic material, the models which take the retention water in pavement structure into consideration were established. Through the methods of numerical transform and programming, the semi-analytical and numerical solutions of muti-phyical fields in pavement (e.g., stress field, seepage field, displacement field and acceleration field) were obtained in order to illustrate the mechanism of water-induced damage as well as to offer the theoretical foundation to the design method of waterproof and drainage. In addition, based on saturated and unsaturated flow theory, the drainage models, including steady state and transient flow models for evaluating drainage-layer drainage system of pavement, were established, which extended and improved the design method of inner drainage system in pavement as well as the evaluation system of pavement thereby offering the theoretical foundation to a design method of driange system which is based on unsaturated flow theory. By systemic theory derivation and numerical calculation, we obtained the innovative achievements as follows:
     (1) Based on Biot dynamic consolidation theory, the physical model of three-layer system of pavement including surface course, base course and subgrade was esatablised and the hydro-mechenical coupled governing equations of pavement subjected to moving traffic load were obtained; Meanwhile, based on Biot dynamic consolidation theory, the physical model of four-layer system of pavement including surface course, drainage layer, semi-rigid base course and subgrade was esatablised and the hydro-mechenical coupled governing equations of pavement subjected to moving traffic load were obtained. Furter, the corresponding solutions of the governing equations were obtained respectively.
     (2) A model representing the water exchange between surface course and drainage layer was established and a fomular to calculate the water quantity infiltrating into the pavement were obtained, which take into consideration the crack properties and the damage level of crack map distributed in pavement surface.
     (3) By considering the capillary effect on the water flow in drainage layer, a model to quantify the capillarity in driange layer was established, which is based on the steady state Boussinesq equation integrating the Gardner water retention curve. Further, the semi-analytical solution was obtained for predicting the water-table height under the condition of steady state flow
     (4) Based on transient Boussinesq equation integrating Gardner water retention curve, a transient drainage model for drainage-layer drainage system was established. Further, the transient analytical solution of governing equation was obtained and the explicit expression was derived which describes the relationship between drainage and time to quantify the drainage capacity of drainage layer on the basis of the transient solution.
引文
[1]人民网. “十一五”期间我国公路建设将迎来新的黄金期.http://finance.people.com.cn/GB/1038/4292786.html.2006.
    [2]崔新壮,金青.轮载作用下饱水沥青路面的动力响应[J].山东大学学报(工学版),2008,38(5):19-24.
    [3]李芬.沥青混凝土路面细观结构和水破坏研究[D].武汉理工大学,武汉:武汉理工大学,2006.
    [4]但汉成,李亮,姚辉.水泥混凝土路面温度应力回归计算分析[J].铁道科学与工程学报,2010,7(4):15-19.
    [5]彭安平.浅析高速公路水泥混凝土路面防排水设计[J].湖南交通科技,2006,32(1):28-30.
    [6]张迎宾,徐力生,但汉成.湖南省高速公路防排水设计比较分析[J].山西建筑,2010,36(2):281-282.
    [7]吴善周,唐承铁,钟梦武,et al.潭邵高速公路路面防排水设计[J].公路,2003(1):83-85.
    [8]甘龙军,程英伟,翟佳,et al.高等级公路沥青路面的水损害及防排水设计探讨[J].武汉工业学院学报,2009,28(2):85-88.
    [9]刘和凤,黄开宇.高等级公路沥青路面防排水设计[J].中南公路工程,2005,30(4):147-150.
    [10]韩朝峰.高速公路中央分隔带排水设计研究[D].长安大学,西安:长安大学,2008.
    [11]唐兰兰.高速公路路面早期水损害的原因分析与防治措施的探讨[J].湖南交通科技,2007,33(2):38-41.
    [12]黄开宇.高速公路路面防排水设计探讨[J].中外公路,2003,23(4):68-70.
    [13]但汉成,李亮,姚辉,et al.中央分隔带降水实验分析[J].公路交通科技,2010,27(11):20-25.
    [14]Huang. Y.H. Pavement analysis and design[M]. New Hersey:Prentice Hall. 1993.
    [15]Sun, L. Analytical dynamic displacement response of rigid pavements to moving concentrated and line loads[J]. International Journal of Solids and Structures,2006,43(14-15):4370-4383.
    [16]Zaman, M., M.R. Taheri.A. Alvappillai. Dynamic-response of a thick plate on viscoelastic foundation to moving loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1991,15(9):627-647.
    [17]Biot, M.A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12(2):155-164.
    [18]Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous soil.1. Low-frequency range[J]. Journal of the Acoustical Society of America, 1956,28(2):168-178.
    [19]Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous soil.2. Higher frequency range[J]. Journal of the Acoustical Society of America,1956,28(2):179-191.
    [20]Masad, E.,N. Somadevan. Microstructural finite-element analysis of influence of localized strain distribution on asphalt mix properties[J]. Journal of Engineering Mechanics-Asce,2002,128(10):1105-1114.
    [21]Hunter, A.E.,G.D. Arey. Numerical modeling of asphalt mixture site permeability. The 84th Annual Meeting of the Transportation Research Board. Washington D. C.,2005.
    [22]Al-Omari, A.,E. Masad. Three dimensional simulation of fluid flow in granular material microstructure[J]. Geo Jordan 2004:Advances in Geotechnical Engineering with Emphasis on Dams, Highway Materials, and Soil Improvement,2004(1):177-190,372.
    [23]Khalili, N.,A.P.S. Selvadurai:On the constitutive modelling of thermo-hydro-mechanical coupling in elastic media with double porosity, S. Ove, editor, Elsevier Geo-Engineering Book Series:Elsevier,2004:559-564.
    [24]Kettil, P.. B. Lenhof, K. Runesson, et al. Simulation of inelastic deformation in road structures due to cyclic mechanical and thermal loads[J]. Computers & Structures,2007,85(1-2):59-70.
    [25]Krishnan, J.M.,C.L. Rao. Permeability and bleeding of asphalt concrete using mixture theory[J]. International Journal of Engineering Science,2001,39(6): 611-627.
    [26]Dong, Z.J., Y.Q. Tan.L.P. Cao. Research on pore pressure within asphalt pavement under the coupled moisture-loading action[J]. Journal of Harbin Institute of technology,2007,39(10):1614-1617.
    [27]Kettil, P., G. Engstrom,N.E. Wiberg. Coupled hydro-mechanical wave propagation in road structures[J]. Computers & Structures,2005,83(21-22): 1719-1729.
    [28]沙庆林.高等级公路半刚性基层沥青路面[M]. 北京:人民交通出版社,1999.
    [29]孙立军.沥青结构行为理论[M].北京:人民交通出版社.2005.
    [30]高俊启.沥青路面动水压力光纤传感器[J].传感器与微系统,2009,28(9):59-61.
    [31]周长红,陈静云,王哲人,et al.沥青路面动水压力计算及其影响因素分析[J].中南大学学报(自然科学版),2008,39(5):1100-1104.
    [32]丛波日,张晓春,李春勇.动载下沥青路面超孔隙水压力分析[J].交通科技,2007(5):51-53.
    [33]刘朴,凌宏伟,韩骥,et al.沥青路面超空隙水压力的测试[J].上海公路,2002(4):20-22.
    [34]李志刚,邓小勇.动载作用下沥青路面内部孔隙水压力的轴对称弹性解[J].东南大学学报(自然科学版),2008,38(5):804-810.
    [35]傅搏峰.沥青路面水损害疲劳破坏过程的数值模拟分析[D].长沙理工大学交通运输学院,长沙:长沙理工大学,2005.
    [36]傅搏峰,周志刚,陈晓鸿,et al.沥青路面水损害疲劳破坏过程的数值模拟分析[J].郑州大学学报(工学版),2006,27(1):51-58.
    [37]彭永恒,任瑞波,宋凤立,et al.轴对称条件下层状弹性体超孔隙水压力的求解[J].工程力学,2004,21(4):204-208.
    [38]彭永恒,任瑞波,潘宝峰.沥青路面层状黏弹体超孔隙水压力的求解[J].哈尔滨工业大学学报,2005,37(9):1291-1294.
    [39]董泽蛟.多孔介质理论下饱水沥青路面动力响应分析[D].哈尔滨工业大学,哈尔滨:哈尔滨工业大学, 2006.
    [40]董泽蛟,谭忆秋,曹丽萍,et al.水-荷载耦合作用下沥青路面孔隙水压力研究[J].哈尔滨工业大学学报,2007,39(10):1614-1617.
    [41]董泽蛟,曹丽萍,谭忆秋.饱水沥青路面动力响应的空间分布分析[J].重庆建筑大学学报,2007,29(4):79-89.
    [42]董泽蛟,曹丽萍,谭忆秋,et al.表面排水条件对饱水沥青路面动力响应的影响分析[J].公路交通科技,2008,25(1):10-15.
    [43]董泽蛟,曹丽萍,谭忆秋, et al.移动荷载作用下沥青路面三向应变动力响应模拟分析 [J].土木工程学报,2009,42(4):133-139.
    [44]董泽蛟,柳浩,谭忆秋,et al.沥青路面三向应变响应现场实测研究 [J].华南理工大学学报(自然科学版), 2009,37(7):46-51.
    [45]罗志刚.高等级沥青路面水损害分析[D].长沙理工大学交通运输学院,长沙:长沙理工大学,2003.
    [46]罗志刚,凌建明,周志刚,et al.沥青混凝土路面层间孔隙水压力计算[J].公路,2005(11):86-89.
    [47]李之达,沈成武,周增国,et al.超孔隙水压对沥青混凝土的影响[J].湘潭大学自然科学学报,2003,25(4):98-109.
    [48]Cai, Y.Q., Z.G. Cao, H.L. Sun,et al. Dynamic response of pavements on poroelastic half-space soil medium to a moving traffic load[J]. Computers and Geotechnics,2009,36(1-2):52-60.
    [49]Cedergren, H.R. Drainage of highway and airfield pavements[M]. New York:John Wiley & Sons,1974.
    [50]Ridgeway. H.H. Infiltration of water through the pavement surface[J]. Transportation Research Record,1976(616):98-100.
    [51]AASHTO. Guide for design of pavement structures[M]. Washington, DC: American Association of State and Highway Transportation Officials,1986.
    [52]中华人民共和国交通部.公路排水设计规范(JTJ 018-97).北京:人民交通出版社,1998.
    [53]吉青克.基于面层渗透系数的路表水渗入率设计[J].岩土工程学报,2005,27(9):1045-1049.
    [54]Chen, J.S., K.Y. Lin,S.Y. Young. Effects of crack width and permeability on moisture-induced damage of pavements[J]. Journal of Materials in Civil Engineering,2004; 16(3):276-282.
    [55]Hansson, K., L.C. Lundin,J. Simunek. Modeling water flow patterns in flexible pavements[J]. Soil Mechanics 2005,2005(1936):133-141.
    [56]Freeze, R.A.,J.A. Cherry. Groundwater[M]. Englewood Cliffs, N.J.: Prentice-Hall,1979.
    [57]沙庆林.高速公路沥青路面早期破坏现象及预防[M]. 北京:人民交通出版社,2001.
    [58]沙庆林.高速公路沥青路面早期破坏现象及预防[M]. 北京:人民交通出版社,2009.
    [59]姚祖康.公路排水设计手册[M].北京:人民交通出版社,2002.
    [60]AASHTO. Guide for design of pavement structures[M]. Washington, DC: American Association of State and Highway Transportation Officials,2002.
    [61]Casagrande, A.,W.L. Shannon. Base Course Drainage for Airport Pavements[J]. Transactions of the American Society of Civil Engineers 1952(117):792-814.
    [62]Barber, E.S.,C.L. Sawyer. Highway Subdrainage [C].Highway Research Board.1952.
    [63]Moulton, L.K. Groundwater, Seepage, and Drainage:a Textbook on Groundwater and Seepage Theory and its Application[M].1979.
    [64]Dan, H., L. Li, H. Yao, et al. Method of Design for Improving the Drainage Layer of Asphalt Pavement [C].Geoshanghai 2010 International conference. 2010. Shanghai:ASCE.
    [65]Luther, W.,M. Zaman. A simplified model for pavement drainage[J]. The International Journal of Geomechanics,2001,1(1):65-82.
    [66]Luther, W..M. Zaman. A simple model for fluid accumulation and flow in a porous medium[J]. Applied Mathematics and Computation,1998(90): 191-203.
    [67]Li, H.,W. Luther,M. Zaman. A model for fluid accumulation and flow in a three-dimensional porous medium[J]. Applied Mathematics and Computation, 2000(108):177-196.
    [68]Al-Qadi, I.L., S. Lahouar, A. Louizi, et al. Effective approach to improve pavement drainage layers[J]. Journal of Transportation Engineering-Asce, 2004,130(5):658-664.
    [69]Birgisson, B..R. Roberson. Drainage of pavement base material-Design and construction issues[J]. Geotechnical Aspects of Pavements 2000,2000(1709): 11-18.
    [70]Stormont, J..S. Zhou. Improving pavement sub-surface drainage systems by considering unsaturated water flow[R]. Final report, Albuquerque:University of New Mexico,2001.
    [71]Dawson, A. Water in road structure[M].5, Berlin, Germany:Springer, 2008.
    [72]Siddharthan, R., Z. Zafir,G.M. Norris. Moving load response of layered soil.1. Formulation[J]. Journal of Engineering Mechanics-Asce,1993, 119(10):2052-2071.
    [73]Siddharthan, R., Z. Zafir,G.M. Norris. Moving load response of layered soil.2. Verification and application[J]. Journal of Engineering Mechanics-Asce,1993,119(10):2072-2089.
    [74]Zeng, X.,R. Rajapakse. Vertical vibrations of a rigid disk embedded in a poroelastic medium[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(15):2075-2095.
    [75]Jin, B. The vertical vibration of an elastic circular plate on a fluid-saturated porous half space[J]. International Journal of Engineering Science,1999, 37(3):379-393.
    [76]Theodorakopoulos, D.D.,D.E. Beskos. Application of Biot's poroelasticity to some soil dynamics problems in civil engineering[J]. Soil Dynamics and Earthquake Engineering,2006,26(6-7):666-679.
    [77]Theodorakopoulos. D.D. Dynamic analysis of a poroelastic half-plane soil medium under moving loads[J]. Soil Dynamics and Earthquake Engineering, 2003,23(7):521-533.
    [78]Theodorakopoulos, D.D., A.P. Chassiakos.D.E. Beskos. Dynamic effects of moving load on a poroelastic soil medium by an approximate method[J]. International Journal of Solids and Structures,2004,41(7):1801-1822.
    [79]Xu, B., J.F. Lu,J.H. Wang. Dynamic response of a layered water-saturated half space to a moving load[J]. Computers and Geotechnics,2008,35(1): 1-10.
    [80]Lu, J.F.,D.S. Jeng. A half-space saturated poro-elastic medium subjected to a moving point load[J]. International Journal of Solids and Structures,2007, 44(2):573-586.
    [81]Cai, Y.Q., H.L. Sun,C.J. Xu. Steady state responses of poroelastic half-space soil medium to a moving rectangular load[J]. International Journal of Solids and Structures,2007,44(22-23):7183-7196.
    [82]Verruijt, A. An introduction to soil dynamics[M]. Berlin, Germany: Springer,2010.
    [83]Roesset, J.M. Stiffness and Damping Coefficients of Foundations [C]. Dynamic Response of Structures:Experimentation, Observation, Prediction and Control. New York:ASCE,1980:1-30
    [84]薛强,盛谦.沥青路面破坏的多场耦合效应及控制技术[M]. 北京:科学出版社,2009.
    [85]Cui, X.Z.,Q. Jin. The dynamic response of saturated asphalt pavement under wheel loads[J]. Journal of Shandong University (Engineering Science),2008, 38(5):19-24.
    [86]吴伟铨.安全行车中车轮受力情况与制动距离探析[J].引进与咨询2006(7):37-39.
    [87]MOTPRC. Specifications for design of highway asphalt pavement[M]. Beijing, China:China Communications Press,2006.
    [88]Jin, B. Dynamics response of a poroelastic half space generated by high speed load[J]. Chinese Quarterly of Mechanics,2004,25(2):168-174.
    [89]中华人民共和国交通部.沥青路面设计规范(JTJ014-97).北京:人民交通出版社,1997.
    [90]周海生.高等级道路沥青稳定基层路面结构形式与材料的研究[D].同济大学交通运输工程学院,上海:同济大学,2006.
    [91]孟书涛.沥青路面合理结构的研究[D].东南大学交通运输学院,南京:东南大学,2005.
    [92]刘义如.柔性基层沥青路面结构设计研究[D].河北工业大学土建学院,石家庄:河北工业大学,2007.
    [93]吴善周.倒装结构在高速公路上的应用研究.中国公路学会道路工程分会2008年学术交流会论文集.2008:113-115.
    [94]张云龙.长寿命沥青路面合理结构研究[D].长安大学,西安:长安大学,2008.
    [95]李君.高等级公路柔性基层(级配碎石)的研究[D].大连理工大学,大连:大连理工大学,2004.
    [96]栗振锋,王秉刚,郭向云.基于横观各向同性倒装式沥青路面结构分析[J].重庆建筑大学学报,2007,29(1):65-69.
    [97]金江.半刚性基层沥青路面的倒装结构综述[J].北京工业大学学报,2003,29(4):465-467.
    [98]钟梦武,吴善周,谢立新,et al.高速公路倒装结构沥青面层厚度研究[J].公路工程,2007,32(4):24-27.
    [99]黄芳.半柔性复合路面结构设计理论与方法研究[D].重庆交通大学,重庆:重庆交通大学,2008.
    [100]董忠红,吕彭民.交通荷载下沥青路面结构动力响应理论研究[J].郑州大学学报(工学版),2007,28(4):88-91.
    [101]董忠红,吕彭民.移动荷载下倒装结构沥青路面动力响应[J].长安大学学报(自然科学版),2008,28(5):111-115.
    [102]高建红.轮载作用下半刚性路面受力状况的有限元分析.华东公路科技情报网2005年年会暨学术研讨会论文集.2005:87-90.
    [103]高建红.轮载作用下半刚性路面受力状况的有限元分析[J].华东公路,2006(3):18-21.
    [104]张维全,俞仁怡.倒装路面结构在移动荷载下的力学响应分析[J].路基工程, 2010(148):19-21.
    [105]吴俊霞.高等级公路沥青路面内部结构排水研究[D].东南大学,南京:东南大学,1999.
    [106]张林洪,王苏达,吴培关,et al.沥青路面结构的渗透性能测试研究[J].中南公路工程,2005,30(3):10-14.
    [107]吴学增,张捷,朱毅军,et al.关于SMA路面渗水问题的分析[J].公路,2002(1):47-50.
    [108]沈金安.关于沥青混合料的均匀性和离析问题[J].公路交通科技,2001,18(6):20-24.
    [109]袁宏伟,明星,张敬君.关于SMA路面渗水问题的分析[J].公路, 2002(5):82-85.
    [110]但汉成,李亮,何要超,et al.沥青路面渗水性能测试研究[J].公路交通科技,2008,26(8):16-21.
    [111]张争奇,覃润浦,张登良.SMA混合料路用性能研究[J].中国公路学报,2001,14(2):13-17.
    [112]陈景,孙澎涛,李福普,et al.沥青混合料渗水系数的研究[J].公路交通科技,2006,23(1):5-8.
    [113]JIANG, F., J.M. LING,H.D. ZHAO. Test and Analysis on Performances of Drainage Asphalt Pavement. International Conference on TransportationEngineering.2007:822-827.
    [114]但汉成,李亮,杨小礼, et al.基于渗流理论的沥青路面渗入率计算与分析[J].中南大学学报(自然科学版),2010,41(2):742-748.
    [115]Loudon,C.,K. McCulloh. Application of the Hagen-Poiseuille equation to fluid feeding through short tubes[J]. Annals of the Entomological Society of America,1999,92(1):153-158.
    [116]Pfitzner, J. Poiseuille and his law[J]. Anaesthesia 1976,31(2):273-277.
    [1]7] 刘建军,代立强,李树铁.孔隙介质渗流微观数值模拟[J].辽宁工程技术大学学报(自然科学版), 2005,24(5):3.
    [118]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,1999.
    [119]Slowik, V.,V.E. Saouma. Water pressure in propagating concrete cracks[J]. Journal of Structural Engineering-Asce,2000,126(2):235-242.
    [120]李宗利,任青文,王亚红.岩石与混凝土水力劈裂缝内水压分布的计算[j].水利学报,2005,36(6):656-661.
    [121]杨秀夫,陈勉,刘希圣,et al.层状介质条件下水压裂缝缝内流场的理论研究[J].中国海上油气(工程),2003,15(2):35-38.
    [122]王洪江,吴爱祥,刘金枝,et al.排土场浸出过程中的渗流规律[J].中南大学学报(自然科学版),2006,37(2):390-395.
    [123]毕艳祥,姚祖康,郭亚兵,et al.设排水层的半刚性基层沥青路面结构分 析[J].中国公路学报,2001,14(3):17-20.
    [124]吕文江,伍石生,戴经梁.透水基层材料渗透系数测试[J].长安大学学报(自然科学版),2003,23(2):22-24.
    [125]中华人民共和国交通部.公路工程沥青及沥青混合料试验规程.北京:人民交通出版社,2000.
    [126]Cedergren, H.R.:America's pavements:World's longest bathtubs. Civil engineering:American Society of Civil Engineering,1994:56-58.
    [127]Rabab'an, S.R. Integrated assessment of free draining base and subbase materials under flexible pavement[D]. Akron:The University of Akron, 2007.
    [128]Stormont, J.,S. Zhou. Improving Pavement Sub-surface Drainage Systems by Considering Unsaturated water flow[R].2001.
    [129]Cedergren, H.R. Why all Important Pavements Should be Well Drained[J]. Transportation Research Record,1988,1188:56-62.
    [130]Ray, M.J.P. Christory. Combating Concrete Pavement Slab Pumping: Stateof-the-Art and Recommendations [C].Proceedings of 4th International Conference on Concrete Pavement Design and Rehabilitation.1989. Purdue University.
    [131]Christopher, B.R.,V.C. McGuffey. Pavement Subsurface Drainage Systems[M]. Washington, DC:Transportation Research Record,1997.
    [132]Jeong, J. A hydrodynamic diffusion wave model for stormwater runoff on highway surfaces at superelevation transitions [D]. Austin:The University of Texas at Austin,2008.
    [133]Youngs, E.G..K.R. Rushton. Dupuit-forchheimer analyses of steady-state water-table heights due to accretion in drained lands overlying undulating sloping impermeable beds[J]. Journal of Irrigation and Drainage Engineering-Asce,2009,135(4):467-473.
    [134]Youngs, E.G.,K.R. Rushton. Steady-state ditch-drainage of two-layered soil regions overlying an inverted V-shaped impermeable bed with examples of the drainage of ballast beneath railway tracks[J]. Journal of Hydrology,2009, 377(3-4):367-376.
    [135]Bear, J. Dynamics of fluids in porous media. New York:Elsevier,1972.
    [136]Haitjema, H., S. Kuzin, V. Kelson, et al. Modeling Flow into Horizontal Wells in a Dupuit-Forchheimer Model[J]. Ground Water,2010,48(6): 878-883.
    [137]Kitterod, N.O. Dupuit-Forchheimer solutions for radial flow with linearly varying hydraulic conductivity or thickness of aquifer[J]. Water Resources Research,2004,40(11):
    [138]Knight,J.H. Improving the Dupuit-Forchheimer groundwater free surface approximation[J]. Advances in Water Resources,2005,28(10):1048-1056.
    [139]Petrasch, J.,F. Meier, H. Friess, et al. Tomography based determination of permeability, Dupuit-Forchheimer coefficient, and interfacial heat transfer coefficient in reticulate porous ceramics[J]. International Journal of Heat and Fluid Flow.2008,29(1):315-326.
    [140]Strack, O.D.L., R.J. Barnes,A. Verruijt. Vertically integrated flows, discharge potential, and the Dupuit-Forchheimer approximation[J]. Ground Water,2006, 44(1):72-75.
    [141]Richards, L.A. Capillary conduction of liquids through porous mediums[J]. Physics-a Journal of General and Applied Physics,1931,1(1):318-333.
    [142]van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980,44(5):892-898.
    [143]Mizumura, K. Approximate solution of nonlinear boussinesq equation[J]. Journal of Hydrologic Engineering,2009,14(10):1156-1164.
    [144]Mizumura, K. Theoretical boundary condition of groundwater flow at drawdown end[J]. Journal of Hydrologic Engineering,2009,14(10): 1165-1172.
    [145]Rushton, K.R.,G. Ghataora. Understanding and modelling drainage of railway ballast[J]. Proceedings of the Institution of Civil Engineers-Transport, 2009,162(4):227-236.
    [146]Rushton, K.R.,E.G. Youngs. Drainage of recharge to symmetrically located downstream boundaries with special reference to seepage faces[J]. Journal of Hydrology,2010,380(1-2):94-103.
    [147]GMS. Groundwater Modeling System. Utah USA:Brigham Young University,2002.
    [148]Mallela. J., L. Titus-Glover,M.l. Darter. Considerations for providing subsurface drainage in jointed concrete pavements[J]. Geotechnical Aspects of Pavements 2000.2000(1709):1-10.
    [149]AASHTO. Guide for design of pavement structures[M]. Washington, DC: American Association of State and Highway Transportation Officials,1998.
    [150]Parlange, J.Y..W. Brutsaert. A Capillarity Correction for Free-Surface Flow of Groundwater[J]. Water Resources Research.1987,23(5):805-808.
    [151]Cedergren, H.R. Seepage, drainage and flow nets[M]. New York, USA: Wiley,1967.
    [152]Cedergren, H.R. America's Pavements:World's Longest Bathtubs[J]. Civil Engineering-ASCE,1994,64(9):56-58
    [153]Cedergren. H.R., K.H. O'Brien,J.A. Arman. Guidelines for Design of Subsurface Drainage Systems for Highway Structural Sections. Washington, D.C.:Federal Highway Administration,1973.
    [154]Rabab'an, S.R. Integrated assessment of free draining base and subbase materials under flexible pavement[D]. Akron:The University of Akron, 2007.
    [155]Cook, F.J., J.H. Knight,R.A. Wooding. Steady ground water flow to drains on a sloping bed:comparison of solutions based on Boussinesq equation and Richards equation[J]. Transport in Porous Media,2009,77(2):357-372.
    [156]Verhoest, N.E.C.,P.A. Troch. Some analytical solutions of the linearized Boussinesq equation with recharge for a sloping aquifer[J]. Water Resources Research,2000,36(3):793-800.
    [157]Youngs, E.G. An examination of computed steady-state water-table heights in unconfined aquifers:Dupuit-Forchheimer estimates and exact analytical results[J]. Journal of Hydrology,1990,119(1-4):201-214.
    [158]Bear, J.,A. Verruijt. Modeling groundwater flow and pollution[M]. Dordrecht, the Netherlands:D. Reidel Publishing Company,1987.
    [159]Dan, H.-C., P. Xin,l. Li, et al. Capillary effect on flow in the drainage layer of highway pavement[J]. Canadian Journal of Civil Engineering,2010, (Under review).
    [160]Philip, J.R. Comments on Steady Infiltration from Spherical Cavities Reply[J]. Soil Science Society of America Journal,1985,49(3):788-789.
    [161]Zhu, J.T., B.P. Mohanty, A.W. Warrick, et al. Correspondence and upscaling of hydraulic functions for steady-state flow in heterogeneous soils[J]. Vadose Zone Journal,2004,3(2):527-533.
    [162]Gardner, W.R. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table[J]. Unsaturated Moisture Flow Equation,1958:228-232.
    [163]van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsautarated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898.
    [164]Brooks, R.H.,A.T. Corey:Hydraulic properties of porous media, Hydrol. Pap. 3, Fort Collins:Colorado State University,1964:1-27.
    [165]Ghezzehei, T.A., T.J. Kneafsey,G.W. Su. Correspondence of the Gardner and van Genuchten-Mualem relative permeability function parameters[J]. Water Resources Research,2007,43(10):W10417.
    [166]Guarracino, L.,J.E. Santos. Hydraulic conductivity estimation in partially saturated soils using a full-Newton method[J]. Communications in Numerical Methods in Engineering,2008,24(12):1741-1751.
    [167]Leij, F.J., W.B. Russell,S.M. Lesch. Closed-form expressions for water retention and conductivity data[J]. Ground Water,1997,35(5):848-858.
    [168]Omuto, C.T. Biexponential model for water retention characteristics[J]. Geoderma,2009,149(3/4):235-242.
    [169]AASHTO. Guide for design of pavement structures[M]. Washington, DC: American Association of State and Highway Transportation Officials,1993.
    [170]USDoT. User's guider of Draniange requirements in pavements[M]. Washington D.C.:Federal Highway Administration,2002.
    [171]Dan, H.-C., X. Pei, L. Ling, et al. Boussinesq equation-based model for flow in the drainage layer of highway with capillarity correction[J]. Journal of Irrigation and Drainage Engineering,2010, (Under review).
    [172]USGS. A Model for Saturated-Unsaturated Variable Density Groundwater Flow with Solute of Energy Transport[R]. Water resources Investigations Report 02-4231,2008.
    [173]Bakker, M. Transient analytic elements for periodic Dupuit-Forchheimer flow[J]. Advances in Water Resources,2004,27(1):3-12.
    [174]E.Smith, R. Infiltration theory for hydrologic applications[J],2002.
    [175]Gardner, W.R. Approximate solution of a non-steady state drainage problem[J]. Soil Sci Soc Amer Proc,1962,26((2)):129-132.
    [176]Gureghian, A.B. Solutions of Boussinesq equation for seepage flow[J]. Water Resources Research,1978,14(2):231-236.
    [177]Hogarth, W.L., J.Y. Parlange, M.B. Parlange, et al. Approximate analytical solution of the Boussinesq equation with numerical validation[J]. Water Resources Research,1999,35(10):3193-3197.
    [178]Li, L., D.A. Lockington, M.B. Parlange, et al. Similarity solution of axisymmetric flow in porous media[J]. Advances in Water Resources,2005, 28(10):1076-1082.
    [179]Serrano, S.E.,S.R. Workman. Modeling transient stream/aquifer interaction with the non-linear Boussinesq equation and its analytical solution[J]. Journal of Hydrology,1998,206(3-4):245-255.
    [180]Srivastava, R..T.C.J. Yeh. Analytical solutions for one-dimensional, transient infiltration toward the water-table in homogeneous and layered soils[J]. Water Resources Research.1991,27(5):753-762.
    [181]Gardner, W.R. Some steady state solutions of unsaturated moisture flow equations with applications to evaporation from a water table[J]. Soil Science, 1958,85(4):228-232.
    [182]Russo, D. Determining Soil Hydraulic-Properties by Parameter-Estimation-on the Selection of a Model for the Hydraulic-Properties[J]. Water Resources Research,1988,24(3):453-459.
    [183]Mualem, Y. New Model for Predicting Hydraulic Conductivity of Unsaturated Porous-Media[J]. Water Resources Research,1976,12(3): 513-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700