基于离心模型试验的路桥变形耦合特性数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桥梁、隧道、涵洞和路基共同组成了线路的整体。当路基与刚性结构物接续时,因柔性路基填方与刚性结构物的刚度差异和两者在变形特性存在明显的不同,列车通过时极易产生线路不平顺性问题,尤其与路基和桥台连接处出现的病害最为严重和复杂,是整个线路最薄弱的环节,如何做好两者之间沉降均匀过渡一直是工程建设的难题。通过调研我们发现,以往进行过渡段问题的研究时多将路和桥两种不同的结构物分开来研究,并未对路、桥的整体性能进行综合的评价。因此,过渡段设计时缺乏统一的参数控制标准,导致了路桥间的“不连续”。本文在高速铁路不同结构物均匀过渡段技术措施的试验研究项目的支持下开展了松软土地基路桥过渡段离心模型试验。基于离心模型试验的成果进行了路桥变形耦合特性的三维数值仿真分析,主要得出以下结论:
     (1)过渡段路基沉降与时间的关系曲线可以用S型成长的Weibull2模型预测。本文所建立的三维仿真模型来分析两种不同结构物相互作用特性的技术路线是可行的;
     (2)饱和松软土地基强度较低,荷载加载时会产生很大的瞬时沉降,台顶会朝填土方向发生明显倾斜。在实际工程中针对松软土地基宜采取堆载预压等手段进行排水固结,待地基强度有所提高后再进行桥台施工和过渡段路基填筑,以减小地基的瞬时沉降量,以及台后路基填筑对桥台变形产生的不利影响;
     (3)随地基处理程度的加强,距离台背不同位置处路基面沉降逐渐减小,但各断面敏感程度不同。离台背距离越近,路基面的沉降坡度越大。因此,建议过渡段地基处理宜采用变桩距或者变桩长法设计,重点加强近台背范围内的沉降控制;
     (4)路桥交界处会存在差异沉降(台背错台),且差异沉降值随着过渡段地基桩间距的增大而增大,高速铁路对线路的平顺性要求较高,因此,有必要在桥头设置搭板将路桥交界处的台阶式跳跃沉降变成连续斜坡式沉降,达到消除或减弱桥头跳车的危害;
     (5)过大的路基差异变形会影响线路结构刚度(路基后期刚度)的合理匹配问题;另一方面,桥台转角、倾斜方向和水平位移均与过渡段路基收敛沉降值大小有直接关联;综合考虑,建议台后过渡段路基的设计应增加收敛沉降值这一控制指标;
     (6)为了协调过渡段路基和桥台的差异变形,在桥台沉降和承载力允许界限内,当桥台桩长在一定范围时,可以适当的加大桥台的沉降,达到减小桥面转角,以及路基面的坡差,从而经济合理的对路桥过渡段进行设计。
Subgrade, bridges, tunnels, culverts and other structures are linked together to form a whole line. When the train runs between the rigid bridge and soil embankment, it will easily cause the ride comfort problems because of stiffness and deformation properties differences between these two kinds of structures. The diseases occurred at the embankment and bridge connection are the most serious and complicated, it is the weakest link in the line. How to make the settlement between the bridge and embankment transit uniformly has been the most difficult railway construction problem. Through literature reviewing, we find that in the past bridge and approach would be considered as two different separate structures, the study focused on one aspect, and the overall performance of bridge and approach was not evaluated comprehensively. Therefore, road and bridge is discontinuous because of lacking of a unified design control parameter standards. In view of this, under the support of the transition technical measures project of the different structures in high-speed rail, the centrifuge model tests of bridge-approach were conducted. Based on the results of centrifuge model tests, numerical simulation of centrifuge model test on coupling characteristics of bridge-approach was completed. The conclusions are followed:
     (1)The approach settlement versus time curve can be predicted by s-shaped growth Weibull2model. The created three-dimensional simulation model to analyze the interaction of two different structures characteristic of technology route is feasible;
     (2)Because of low strength, great instantaneous settlement will be generated with abutment tilting toward the backfill. In soft ground for the actual project should take preloading consolidation and other means of drainage, after improving the foundation strength, the abutment and approach are constructed to reduce the instantaneous settlement of the foundation and abutments gradient.
     (3)The bridge-approach settlement increases gradually with the increase of the center to center spacing of the piles. Farther away from abutment, smaller the approach settlement slope is. Therefore, transition section of the pile foundation treatment should adopt the design method of changing pile spacing or pile length, focus on strengthening settlement control close to the back of abutment;
     (4)In the differential center to center spacing of the piles, there exists differential settlement at the abutment back, so the placement of approach slab is essential to transform the stepped settlement into continuous sloped deformation;
     (5) Large differential deformation of embankment will affect the reasonable structural stiffness (the late subgrade stiffness) matching problem of the line; on the other hand, the abutment angle and tilt direction, the horizontal displacement are directly related to convergence settlement value of the transition sections subgrade; The convergent settlement of embankment at the distance of20meters from abutment is proposed;
     (6)In order to coordinate the transition section differences in deformation of embankment and abutment, in the allowed range of abutment settlement, you can increase the bridge settlement appropriately, to reduce the slope of the bridge and subgrade surface slope, and make the design economic and reasonable.
引文
[1]郝瀛.铁道工程.[M].北京:中国铁道出版社,2000
    [2]陈雪华.高速铁路无砟轨道过渡段路基的动力特性研究[D].中南大学博士学位论文.2006,6.
    [3]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].西南交通大学博士学位论文,2003,8
    [4]TB 10020-2009高速铁路设计规范(试行)[S].北京:中国铁道出版社.2009.
    [5]陈果元.客运专线路桥过渡段动力特性的实验研究与数值分析[D].中南大学硕士学位论文.2006.10
    [6]陈雪华.律文田.王永和.高速铁路路桥过渡段路基动响应特性研究[J].振动与冲击2006,25(3):95-98
    [7]马伟斌,韩自力,朱忠林.高速铁路路桥过渡段振动特性试验研究[J].岩土工程学报.2009,31(1):124-128
    [8]孟凡会.路桥过渡段的三维数值模拟分析[J].岩土力学2007.28(增刊):849-854
    [9]张洪亮,胡长顺.路桥过渡段桥头搭板容许坡差确定的参数影响[J].长安大学学报.2003,23(3):11-14
    [10]卿启湘,王永和,赵明华.秦沈客运专线路桥(涵)过渡段路基的动力特性分析[J].岩土力学.2008,29(9)
    [11]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报.2004,23(3):2415-2421
    [12]李献民.土工格栅加固路桥过渡段的动测试分析[J].中南大学学报(自然科学版)2004,35(5):860-864
    [13]雷晓燕.轨道过渡段刚度突变对轨道振动的影响[J].中国铁道科学.2006(27)5:42-45.
    [14]刘升传.既有线重载铁路路桥过渡段路基变形与加强措施研究[D].北京交通大学博士学位论文.2008,12
    [15]许杰王锋等.提速对既有线路桥过渡段路基动力响应影响分析[J].岩土工程学报,2010,32(S2):241-244
    [16]李献民.高速铁路加筋过渡段静动力特性数值分析及试验研究[D].中南大学博士学位论文.2004,10
    [17]赵兴祥,杨丽君.上海软土地基路桥过渡段沉降分析及治理方法研究[J].兰州交通大学学报.2008.27(6)37-40
    [18]张小平,刘吉福,徐小庆.公路桥头路基工后沉降纵向分布分析[J].路基工程,2008,26(2):108-109.
    [19]陈果元,唐小弟,魏丽敏.客运专线路桥过渡段沉降规律的对比分析[J].中南林业科技大学学报,2008,28(2):151-155
    [20]屈战辉.路桥过渡段不均匀沉降处治措施研究[D].长安大学硕士学位论文.2005.5
    [21]胡跃军等.宁波地区公路桥头引道的不均匀沉降规律[J].公路.2003.12.68-70
    [22]刘萌成.桥台后回填差异沉降控制标准及设计方法研究[D]东南大学博士学位论文.2005.12
    [23]Franx C, Boonstra G C. Horizontal pressures on pile foundations[A]. In:Proc. of 2nd ICSM FE[C]. Rotterdam:A. A. Balkema,1948,131~135
    [24]Heyman L, Boersma F. Bending moments in piles due to lateral earth pressure [A]. In: Proc. of 5th ICSMFE[C]. Paris:A. A. Balkema,1961, 425~429
    [25]Nicu N D, Antes D R, Kessler R S. Field measurements on instrumented piles under an overpass abutment[J]. Highway Research Record,1971, 354: 90~99
    [26]Springman S M. Lateral loading of piles due to simulated embankment construction[PhD thesis] [D]. Cambridge:University of Cambridge,1989
    [27]Stewart D P. Lateral loading of piled bridge abutments due to embankment construction[PhD thesis] [D]. Nedlands:University of Western Australia,1992
    [28]Bransby M F.Piled foundations adjacent to surcharge loads[D]:PhD thesis,University of Cambridge,1995
    [29]Ellis, E.A. (1993). Centrifuge modelling of full height bridge abutments on soft clay. Tests EAE3 & 4. A.N. Schofield & Associates' data reports
    [30]D. P. Stewart,R. J. Jewell and M. F. Randolph. Centrifuge modelling of piled bridge abutments on soft ground. SOILS AND FOUNDATIONS Vol.34, No 41-51. Mar. 1994
    [31]S. M. Springman, C.W.W. Ng & E.A. Ellis. Centrifuge and Analytical Studies of Full Height Bridge Abutment on Piled Foundation Subjected to Lateral Loading.[R] CUED/D-SOILS/TR278(1994)
    [32]Stewart, D.P., Jewell, R.J. & Randolph, M-F. (1994). Design of piled bridge abutments on soft clay for loading from lateral soil movements. Geotechnique 44, No. 2,277-296.
    [33]Bozozuk, M. (1978). Bridge foundation moves. Transportation Research Record 678, Transportation Research Board, Washington.
    [34]Moulton, L.K., Hota, V.S. & GangaRao and Halvorsen, G.T. (1985). Tolerable movement criteria for highway bridges. Final report RDSY107, Federal Highways Administration, USA.
    [35]Barker,R.M.,Duncan,J.M.Rojiani.Et.(1991).Manuals for the Design of Bridge Foundations. National Cooperative Highway Research Program Report 343.1991,Washington,DC:Transportation Research Broad.
    [36]周德珪.日本新干线网结构物设计标准解释——(东北、上越、成田用)[J]世界桥梁,1979,02:1-54
    [37]杭红星.路桥过渡段沉降特性离心模型试验研究[D].西南交通大学硕士学位论文.2001.5
    [38]刘萌成,黄晓明,陶向华.桥台后高填方路堤工后沉降影响因素分析[J].交通运输工程学报,2005,5(3):36-39
    [39]魏建国等.路桥过渡段台背路堤差异沉降的模拟分析[J].桂林工学院学报,2008,28(1):59-63
    [40]蔡国军.软土地基中桥头路基填筑对桥台桩的影响研究[D].东南大学硕士学位论文,2004,3
    [41]Stewart D P, Jewell R J, Randonlph M F. Numerical modeling of piled bridge abutments ground[J].Computer and Geotechincs,1993,15 (1): 21~46
    [42]Springman SM. Lateral loading on piles due to embankment construction[R] Cambridge: University of Cambridge.1984
    [43]Ellis E A, Springman S M. Modelling of soil-structure interaction for a piled bridge abutment in plane strain FEM analyses[J]:Computer and Geotechnics,2001,28(2): 79~98
    [44]王宏贵.软基桥台有限元分析及侧移控制措施研究[D].硕士学位论文.中南大学,2006,9
    [45]Takashi Hara. Behaviour of piled bridge abutments on soft ground: A design method proposal based on 2D elasto-plastic-consolidation coupled FEM[J]:Computers and Geotechnics 31 (2004) 339-355
    [46]冯忠居等.高等级公路桥头跳车的危害及其机理的分析.[J]西安公路交通大学学报.1999,19(4)33-35
    [47]何启魁,田贵川·沈大高速公路的桥头跳车及防治[J].东北公路,1994,(2):47-48
    [48]鲍明伟,金太学.公路桥头台阶的防治[J].公路,1994,(5):20-23
    [49]王秉纲,胡长顺,等.跨越构造物路面结构设计与施工技术研究总报告[R].西安公路交通大学,1999
    [50]张洪亮.路桥过渡段车路动力学分析及容许差异沉降研究[D].长安大学博士学位论文,2003,6
    [51]凌建明,袁捷,严永斌等.高等级道路桥头引道沉降处理决策辅助系统研究[J].中国公路学报.2001(14)Sup.:16-18
    [52]Ir.Gue See Sew & Ir.Tan Yean Chin. Prevention of Failure of Bridge Foundation and Approach Embankment on Soft Ground. 2nd International Conference on Soft Soil Engineering and Technology, Putrajaya,Selangor,2-4July,2003
    [53](社)日本道路协会:道路桥示方书·同解说,2002.3.
    [54]F., Tatsuoka, G., Modoni, GL., Jiang, L.Q., Anh Dan, A., Flora, M., Matsushita, and J., Koseki, (1999), "Stress-strain behavior at small strains of unbound granular materials and its laboratory tests." Proceedings of an International Workshop on MODELLING AND ADVANCED TESTING FOR UNBOUND GRANULAR MATERILAS, January 21 and 22,1999, Lisboa, Portugal. Balkema, 17~61.
    [56]G.Geoffrey Meyerhof. Evolution of safety factors and geotechnical limit state design[R].The Second Spencer J.Buchanan Lecture, TexasA&M University, 1994.,30
    [57]日本铁道総合技術研究所.铁道構造物等設計標準辈—同解說(基礎構造物—抗土压構造物)[S].束京:丸善株式会社,1997.3.
    [58]周健,曾庆有,王浩.沉降控制复合桩基在桥头跳车问题中的应用[J].土木工程学报.2006,39(1):83-86
    [59]Sam M.B. Helwany, Jonathan,T.H.Wu, Burkhard Froessl. GRS bridge abutments-an effective means to alleviate bridge approach settlement.Geotextile and geomembranes 21 (2003).177-196.
    [60]刘振兴.公路桥涵通病防治技术规范[M].吉林音像出版社,2004
    [61]M.D. Bolton, H.W. Sun. Finite element analyses of bridge abutments on firm clay.[J].Computer and Geotechnics, 1993, 15: 221-245
    [62]M.D. Bolton, H.W. Sun. The displacement of bridge abutments on clay[A]. Centrifuge 91: Proceedings of the International Conference Centrifuge 91 [C] Netherlands:A.A. Balkema, 1991
    [63]TB10002.1-2005.铁路桥涵设计基本规范[S].2005.
    [64]陈顺平,王德志.深厚软土地区桥台稳定性设计探讨[J].铁道标准设计.2005(11)63-66
    [65]U.S. Department of Transportation,(1985).Tolerable movement criteria for highway bridge. Final Report FHWA/RD-85/107, Federal Highway Administration, USA.
    [66]Fellenius, B.H. Buckling of Piles due to lateral soil movements. Proceeding of the 5th European Conference on Soil Mechanics and Foundation Engineering, Madrid, 1972, Vol.2, pp.282-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700