FRP加固钢筒仓强度与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筒仓广泛应用于工业和农业领域中散状物料的储存,相对于钢筋混凝土筒仓,其构造简单、施工方便。
     钢筒仓的仓壁是典型的圆柱薄壳结构,结构受力性能复杂。在储料产生的竖向摩擦力作用下,仓壁很容易发生屈曲破坏,而且仓壁的稳定性在很大程度上受到储料内部法向压力及几何缺陷的影响。储料内力在一定程度上能够降低仓壁的缺陷的敏感性,显著提高仓壁的稳定性强度。当法向压力过大时,仓壁在竖向摩擦力的作用下可能在局部区域发生屈曲,引起结构刚度的损失而使屈曲强度,发生“象腿”破坏。
     为了提高筒仓的稳定性,传统的方法是在仓壁的表面位置焊接加劲环梁。本文研究一种新的方法——利用纤维增强复合材料(Fiber Reinforced Polymers,简称FRP)粘贴到仓壁的关键位置来提高钢筒仓的稳定性和强度。FRP加固补强技术在各类工程中得到广泛的利用,尤其是混凝土结构。它利用树脂类胶粘剂将纤维增强复合材料粘贴在结构表面,来达到改善结构受力性能的目的。近年来,已有很多学者开始将FRP应用于金属结构的加固,尤其对钢结构加固的研究和应用最为广泛。FRP材料具有良好的材料性能,强度高,自重轻,相对于传统材料具有良好的耐久性等。与在仓壁上焊接加劲环梁相比,FRP加固钢筒仓具有许多突出的优点,如不会导致应力集中、不会产生残余应力、施工方便、维护简单等。
     本文以碳纤维增强复合材料(CFRP)加固某落地式钢板筒仓为研究对象,采用数值分析方法,包括线性应力分析、特征值屈曲分析、几何非线性分析、弹塑性屈曲分析,对其稳定性能和强度进行了系统的研究。研究表明,CFRP能够提高筒仓的强度和稳定性,CFRP的宽度和厚度是影响筒仓屈曲强度的重要因素,筒仓的屈曲强度随着CFRP的宽度和厚度的增加而增加,其中,增加CFRP的厚度比增加CFRP的宽度对提高筒仓的屈曲强度更加有效。
The steel silo is widely used for storage of bulk solid in industry and agriculture. Compared with reinforced concrete silo, it has a lot of advantages such as simple convenient construction, simplified structure and so on.
     As a typical cylindrical thin shell, the mechanical behavior of silo wall is very complicated. Silo wall is susceptible to buckle under vertical friction force. The geometrical imperfections and internal pressure play a great role in stability performance of silo wall. The internal pressure can reduce the sensitivity of imperfections to silo wall and increase buckling strength in some degree. If the internal pressure is too large, yielding of the wall near the base boundary leads to reductions in flexural stiffness and local amplifications of displacements. The circumferential membrane stress resultants are raised and elastic-plastic buckling occurs. This elastic-plastic instability failure near base boundary is know as elephant's foot buckling.
     To strengthen the silo wall against buckling, the tradition method is using a small ring stiffener. This paper presents a novel method of strengthening silo wall against buckling in which a small amount of fiber-reinforced polymer(FRP) composite, used at critical location, can effectively increase the buckling strength. FRP has been broadly used in strengthening structures, especially in concrete structure. It is bonded to surface of structures by adhesive to improve mechanical performance of structures. Many researchers start to use FRP to strengthen metallic structures such as steel structures. FRP composites have superior properties, including a high strength-to-density ratio and superior durability to many traditional materials. Bonding FRP to silo wall has many advantages compared with welding ring stiffener to it, such as no stress concentration, no residual stress, easy to construct and low maintenance.
     Numerical analyses including linear stress analyses, linear eigenvalue buckling analyses, geometrical nonlinear analyses, elastic-plastic analyses are carried out to investigate the stability behavior and strength of the ground-supported flat bottomed steel silo reinforced with CFRP. The results show that FRP jacketing can effectively improve structure mechanical behavior and increase buckling strength. In addition, the height and thickness of CFRP are main parameter that affect the buckling strength of the silo. The buckling strength of silo will continuously raise with the increase of the height and thickness of CFRP. Increasing the thickness is more effective than increasing the height of CFRP to enhance the stability of silo.
引文
[1]中华人民共和国国家标准.粮食钢板筒仓设计规范(GB50322-2001)[S].北京:中国计划出版社,2001.
    [2]Rotter J M. Local inelastic collapse of pressurized thin cylindrical steel shells under axial compression[J]. Journal of Structural Engineering, ASCE,1990,116(7):1955-1970.
    [3]Meier, U., Deuring, M., Meier, H. and Schwedger, G (1993) "CFRP bonded sheets", Fibre-Reinforcement for Concrete Structures:Properties and Applications, edited by A. Nanni, Elsevier Science Publishers B. V., The Netherlands.
    [4]Mertz D R, Gillespie J W. Rehabilitation of steel bridge girders through the application of advanced composite material. Final Report, NCHRP-93-ID11, Transportation Research Board, Washington D. C.,1996.
    [5]Abushaggur M, El Damatty A A. Testing of steel sections retrofitted using FRP sheets. Annual Conference of the Canadian Society for Civil Engineering. Moncton, Nouveau-Brunswick, Canada. June 4-7,2003.
    [6]侯发亮.建筑结构粘贴加固的理论与实践.武汉:武汉大学出版社,2003.
    [7]Miller T C. The rehabilitation of steel bridge members with FRP composite materials. Proc. CCC2001, Composites in Construction, Porto, Portugal,2001,613-617.
    [8]郑云,叶列平,岳清瑞.CFRP加固疲劳损伤结构的断裂力学分析.工业建筑,2005.
    [9]郑云.CFRP加固钢结构疲劳性能的试验和理论研究:[博士学位论文].北京:清华大学,2007.
    [10]Toutanji H, Dempsey S. Thin-Walled Stuctures,2001,39:153.
    [11]陈亚鹏.碳纤维复合材料加固水电站压力钢管模型试验研究:[硕士学位论文].武汉:武汉大学,2004.
    [12]彭福明,郝际平,岳清瑞等.FRP加固钢结构轴心受压构件的弹性稳定性分析[J].钢结构,2005(3):18~21.
    [13]Teng J G, Y M Hu. Behaviour of FRP-jacketed circular steel tubes and cylindrical shells under axial compression. Construction and Building Materials,2007,21:827-838.
    [14]Frsssine R. Adv Polym Techn,1997,16:33
    [15]孔杰.含缺陷输油管道复合材料修复技术的研究:[硕士学位论文].西安:西北工业大学,2002.
    [16]M. Batikha, J. F. Chen, J. M. Rotter, et al. Strengthening metallic cylindrical shells against elephant's foot buckling with FRP. Thin-Walled Structures,2009,47:1078-1091.
    [17]ENV 1993-1-6. Eurocode 3:Design of Steel Structures, General Rules:Supplementary Rules for Shell Structures, Part1(6),1999.
    [18]Timoshenko SP, Woinowsky-Krieger S. Theory of plates and shells. New York: McGraw-Hill,1959.
    [19]Rotter JM. Local collapse of axially compressed pressurized thin steel cylinders. Journal of Structure Engineering, ASCE,1990,116(7):1955-70.
    [20]Rotter JM. Elastic plastic buckling and collapse in internally pressurized axially compressed silo cylinders with measured axisymmetric imperfections:interactions between imperfections, residual stresses and collapse. In:Proceedings of the international workshop on imperfections in metal silos. Lyon:CA-Silo,1996,119-40.
    [21]Shaw, M. A. and Drewett, J. F. (1999) "Case studies of carbon fiber bonding worldwide", Strengthening of Reinforced Concrete Structures Using Externally-Bonded FRP Composites in Structural and Civil Engineering, edited by L. C. Hollaway and M. B. Leeing, Woodhead Publishing Limited, Cambridge, U. K.
    [22]Boncci, J. F. and Maalej, M. (2000) "Externally bonded FRP for service-life extension of RC infrastructure", Journal of Infrastructure Systems, ASCE, Vol.6, No.1,41-51.
    [23]Karbbhari, V. M. and Seible, F. (2000) "Fiber reinforced composites-advanced material for the renewal of civil infrastructure", Applied Composite Materials, Vol.7,95-124.
    [24]Neale, K. W. (2000) "FRPs for structural rehabilitation:a survey of recent progress" Progress in structural Engineering and Materials, Vol.2,133-138.
    [25]Rotter JM. Buckling of cylindrical shells under axial compression. In:Teng JG, Rotter JM, editors. Buckling of thin metal shells. London:spon,2004,42-87.
    [26]Rotter J M, Teng J G. Elastic stability of cylindrical shell with weld depressions. Journal of Structure Engineering, ASCE 1989,115(5):1244-63.
    [27]Teng JG, Rotter JM. Buckling of pressurized axisymmetrically imperfect cylinders under axial loads. Journal of Engineering Mechanics, ASCE 1992,118(2):229-47.
    [28]Rotter JM. Stress amplification in unstiffened cylindrical steel silos and tanks. Civil Engineering Transactions, Institution of Engineers, Australia 1989, CE31(3):142-8.
    [29]滕锦光,陈建飞,S.T史密斯等.FRP加固混凝土结构.中国建筑工业出版社,2005.
    [30]宋昌永,吴开成.平底圆柱钢筒仓稳定设计方法比较[J].浙江大学学报.2004,38(8)
    [31]Shen H S, Teng J G Interfacial stresses in beams and slabs bonded with a thin plate. Journal of Engineer Mechanics, ASCE,2001,127(4):399-406.
    [32]Gillie M, Holst JMFG. Structural behavior of silos supported on discrete, eccentric brackets. Journal of Constructional Steel Research.2003,59:887 — 910.
    [33]Hollaway LC, Zhang L, etc. Advances in adhesive joining of carbon fibre/polymer composites to steel members for repair and rehabilitation of bridge structures. Advances in Structural Engineering 2006,9(6):791-803.
    [34]Zhao XL, Zhang L. State-of-the-art review on FRP strengthened steel structures. Engineering Structures 2007,29(8):1808-23.
    [35]Teng JG, Hu YM. Suppression of local buckling in steel tubes by FRP jacketing. In: proceedings of the second international conference on FRP composites in civil engineering. Adelaide, Australia,2004,749-53.
    [36]Gilfillan JR, Gilbert SG, Patrick GRH. The use of FRP composites in enhancing the structure behavior of timber beams. Journal of Reinforced Plastics and Composites 2003,22(150: 1373-88.
    [37]Elchalakani, M., Bambach M. Plastic mechanism analysis of CHS stub columns strengthened using CFRP. In:Xie M, editor. Proceedings of the fourth international structural engineering and construction conference. Melbourne, Australia,2007,713-20.
    [38]曾丁,黄文彬,华云龙.筒仓壁压的有限元分析[J].农业工程学报,1998,14(2).
    [39]Osman H.E., Sreenivas A., Jonathan K... Application of FRP laminates for strengthening of a reinforced-concrete T-beam bridge structure. Composite Structures,2001,52(3):453-466.
    [40]Teng JG Combination of fibre-reinforced polymer and steel in structures. In:Yong B, editor. Proceedings of the international symposium on innovative designof steel structures. Hong Kong, China:University of Hong Kong; 2006,13-24.
    [41]徐建新,刘艳.红损伤金属结构的复合材料胶接修补实验研究.南京航空航天大学学报,2001,33(1):96-99
    [42]滕锦光,赵阳.大型钢筒仓的结构行为与设计[J].土木工程学报,2001,34(4):46-55.
    [43]赵阳,滕锦光.轴压圆柱钢薄壳稳定设计综述[J].工程力学,2003,20(6):116-126.
    [44]周志敏,宋存义.圆柱钢筒仓稳定设计计算方法的探讨[[J).山西建筑,2006,32(3):70-71.
    [45]叶菲.落地钢筒仓设计中的一些问题[J].轻金属,2005,(12):74-76.
    [46]华云龙,冯云田.圆形筒仓的塑性极限载荷[J].工程力学,1994,11(3):115-120.
    [47]王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [48]张宁,岳清瑞,杨勇新等.纤维布加固钢结构疲劳试验研究工业建筑,2004(34):19~21.
    [49]杨金辉,江仁和,张兴亮.浅谈建筑结构的加固.建筑科学,2008,9:96-97.
    [50]江克斌,许特.采用预应力碳纤维技术提高钢结构承载力的分析[J].解放军理工大学学报,2003,4(4):58-60.
    [51]张龙飞,张宗敏.FRP复合材料在结构加固工程中的应用.广东建材,2006,8:32-33.
    [52]尚晓江,邱峰等.ANSYS结构有限元高级分析方法与范例应用.中国水利水电出版社,2006.
    [53]沃丁柱.复合材料大全.北京:化学工业出版社,1999.
    [54]张宁,岳清瑞,佟晓利.碳纤维布加固修复钢结构技术性能研究.第二届全国土木工程纤维增强复合材料(FRP)应用技术学术交流会论文集.昆明,2002.
    [55]彭福明,郝际平,杨勇新等.CFRP加固钢梁的有限元分析.西安建筑科技大学学报,2006,Vol.38,No:18-22.
    [56]岳清瑞.我国碳纤维(CFRP)加固修复技术研究应用现状与展望.工业建筑,2000,30(10):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700