补体C3a、C5a及其受体在IgA肾病发病中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     1968年Berger首次发现IgA肾病(IgA nephropathy, IgAN)以来,IgAN已成为世界范围内最常见的一种原发性肾小球肾炎,北京大学第一医院统计资料显示在我国其发病率占所有原发性肾小球疾病的58.2%,IgAN并非良性过程,30%-40%IgAN患者在20年内会进展为终末期肾脏病。IgAN确切的发病机制至今尚不清楚。目前多数学者认为人类IgA1分子铰链区O-糖基化缺失,异常IgA1分子及其免疫复合物在肾小球系膜区沉积而导致IgAN。IgAN典型的临床特点为上呼吸道感染后1-3天内出现肉眼血尿,无论血循环中或肾小球系膜区沉积的异常IgA1分子,诱发机体获得性免疫反应需要一定的时间,完全由获得性免疫不能解释IgAN最典型的临床特点。日本一项510例肾移植前零点肾活检显示,16.1%健康供肾者存在肾小球系膜区IgA分子沉积,其中不伴C3沉积的则无现尿检异常,而伴有C3沉积的病例,出现微量白蛋白尿,且病理表现为系膜轻度增生和巨噬细胞浸润,提示肾小球系膜区IgA的沉积并不一定发生IgA肾病,而补体激活在IgA肾病发生中很可能有着不可或缺的作用。有文献报道补体通过旁路途径、MBL途径活化,参与IgA肾病的发病过程。补体活化过程中产生的C3a、C5a片段是补体活化过程中产生的最重要致炎症分子,本研究旨在探讨C3a、C5a在IgA肾病的发病机制中的作用,为进一步发现IgAN治疗的新靶点提供可能的理论依据。
     方法
     选取郑州大学第一附属医院肾脏内科2011年1月至12月住院行肾穿刺活检术,并经临床和病理诊断为IgAN患者的石蜡标本共83例,按照Lee氏病理分级标准,分为Ⅱ级(30例)、III级(30例)、Ⅳ级(23例),选取10例同期泌尿外科住院行肾脏肿瘤肾切除术患者远离肿瘤5cm以上的正常肾组织作为对照,采用免疫组织化学染色的方法分别检测IL-6、TNF-α、C3a、C5a、C3aR及C5aR在IgAN患者肾组织中的表达;收集这83例IgAN患者血清、尿液标本作为病例组,同时收集10例门诊体检健康成人血清、尿液标本作为正常对照,10例同期ICU住院确诊脓毒血症患者血清、尿液标本作为阳性对照,采用酶联免疫吸附双抗夹心法(enzyme linked immunosorbent assay-sandwich technique, ELISA)检测各组血清、尿液中C3a、C5a水平。
     结果
     (1)C3a、C5a在不同病理级别IgA肾病患者肾组织中沉积增多,且随病理严重程度增加而增多(P<0.05)。(2)C3aR、C5aR在不同病理级别IgAN患者肾组织中表达增强,且与病理损伤程度呈正比关系(P<0.05)。(3)IgAN患者肾组织中C3a、C5a的沉积分别与IL-6、TNF-a的表达呈正相关关系(P<0.05),且其相应受体C3aR、C5aR的表达亦与IL-6、TNF-α的表达呈现正相关关系。(4)C3a、C5a Ⅱ、Ⅲ、Ⅳ级IgAN、脓毒血症患者较健康人血清、尿液中C3a、C5a水平升高(P<0.05),且不同病理级别IgAN患者尿液中C3a、C5a水平与病理严重程度呈正比关系(P<0.05)。
     结论
     (1)C3a、C5a参与IgAN的发生,在IgAN的发展过程中有重要作用。
     (2)C3a、C5a可能通过促进IgAN炎症反应的发生,影响IgAN进展。
Backgroud and Objective
     IgA nephropathy (IgAN) is considered the most common primary glomerulonephritis worldwide and leads to renal failure in a substantial number of patients. Recent studies have suggested that complement activation may play a part in the inflammatory injury process in IgAN. Complement activation products C3a and C5a have broad pro-inflammatory potential and contribute to the pathogenesis of several inflammatory and autoimmune diseases. However, their roles in IgAN are not well-defined. In this study, we investigated the role of C3a, C5a and their receptors in the pathogenesis of IgA nephropathy.
     Methods
     Eighty-three IgAN patients proved by renal biopsy were investigated,30patients as Lee's Ⅱ,30as Lee's Ⅲ,23as Lee's Ⅳ, meanwhile10cases of normal renal tissue from nephrectomy patients with kidney tumor were selected as controls. Immunhistochemistry of TNF-a and IL-6were performed to measure the pro-inflammatory mediators expression in the kidney tissue. The deposition of C3a and C5a was assessed using immunohistochemical staining. The expressions of C3aR and C5aR in renal tissue were detected respectively using immunohistochemical staining. These83IgA nephropathy patients'serum and urine samples were collected, meanwhile10healthy volunteers'as normal controls, and10sepsis patients' as positive controls. C3a and C5a levels in serum and urine in each group were detected respectively using ELIS A.
     Results
     (1) The deposition of C3a,C5a in renal tissue in IgAN increased with the degree of kidney pathological injury (P<0.05). Moreover, the deposition of C3a,C5a were proportional to the expression of TNF-a and IL-6(P<0.05).(2) Along with the increasing pathological injury levels, C3aR and C5aR expressed enhanced in renal tissue of IgAN patients. Furthermore, the expression had a positive correlation with the expression of TNF-a and IL-6(P<0.05).(3)The levels of serous and urinary C3a,C5a were significantly higher in those IgAN and sepsis patients than those healthy volunteers. Furthermore, the levels of urinary C3a,C5a in those IgAN patients were proportional to the degree of kidney pathological injury (P<0.05). However, it showed no significant difference between IgAN and sepsis patients (P>0.05).
     Conclusions
     (1) C3a and C5a play an important role in renal pathological injury and evidently contributes to the pathogenisis and progression of IgAN.
     (2) C3a, C5a may promote the inflammatory response to induce the development of IgA nephropathy.
引文
[1]Richard J.Glassock.The pathogenesis of IgA nephropathy.Current Opinion in Nephrology and Hypertension,2011,20:153-160.
    [2]Zhou FD, Zhao MH, Zou WZ, et al. The changing spectrum of primary glomerular diseases within 15 years:a survey of 3331patients in a single Chinese centre. Nephrol Dial Transplant,2009,24:870-876.
    [3]Berthoux FC, Mohey H, Afiani A, et al. Natural history of primary IgA nephropathy. Semin Nephrol,2008,28:4-9.
    [4]Mestecky J,Tomana M, Crowley-Nowick PA, et al. Defective galactosylation and clearance of IgAl molecules as possible etipathogenic factor in IgA nephropathy. Contrib Nephrol,1993,104:172-182.
    [5]Tomana M, Novak J, Julian BA, et al. Circulating immune complexes in IgA nephropathy consist of IgAl with galactose-deficient hinge region and antiglycan antibodies. J Clin Invest,1999,104:73-81.
    [6]Suzuki H, Fan R, Zhang Z, et al. Aberrantly glycosylated IgAl in IgA nephropathy patients is recognized by IgG antibodies with restricted hereogeneity. J Clin Invest,2009,119:1668-1677.
    [7]Barratt J, Eitner F, Feehally J, et al. Immune complex formation in IgA nephropathy:a case of the'right'antibodies in the'wrong' place at the 'wrong' time. Nephropathy Dial Transplant.2009,24:3620-3623.
    [8]Barratt J, Smith AC, Moyyneux K,et al. Immunopathogenesis of IgA nephropathy. Semin Immunopathol,2007,29:427-443.
    [9]Kalambokis G, Christou L, Stefanou D, Arkoumani E, Tsianos EV. Association of liver cirrhosis related IgA nephropathy with portal hypertension. World J Gastroenterol.2007; 13(43):5783-6.
    [10]Amore A, Roccatello D, Picciotto G. Processing of IgA aggregates in a rat model of chronic liver disease. Clin Immunol Immunopathol.1997;84(2):107-114.
    [11]Sumida K, Ubara Y, Hoshino J. Hepatitis C virus-related kidney disease:various histological patterns. Clin Nephrol.2010;74(6):446-456.
    [12]Rifai A, Wu CG. Clearance kinetics, tissue localization and fate of IgA-anti-idiotype complexes. Immunology.1990;69(4):610-615.
    [13]Suzuki K, Honda K, Tanabe K, et al. Incidence of latent mesangial deposition in renal allograft donors in Japan. Kidney International,2003,63:2286-2294.
    [14]Ohsawa I, Ishii M, Ohi H, et al. Pathological Scenario with the Mannose-Binding Lectin in Patients with IgA Nephropathy. J Biomedicine Biotechnology,2012,2012:476739.
    [15]Hiemstra PS, Gorter A, Stuurman ME,et al. Activation of the alternative pathway of complement by human serum IgA. Eur J Immunol.1987 Mar; 17(3):321-6.
    [16]Espinosa M, Ortega R, G6mez-Carrasco JM, et al. Mesangial C4d deposition:a new prognostic factor in IgA nephropathy. Nephrol Dial Transplant.2009 Mar; 24(3):886-891.
    [17]Roos A, Rastaldi MP, Calvaresi N, et al. Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol.2006;17:1724-1734.
    [18]Wyatt RJ, Kanayama Y, Julian BA, et al. Complement activation in IgA nephropathy. Kidney Int.1987 Apr; 31(4):1019-23.
    [19]Zwirner J, Burg M, Schulze M, et al. Activated complement C3:a potentially novel predictor of progressive IgA nephropathy. Kidney Int.1997 Apr; 51(4):1257-64.
    [20]Chen M, Daha MR, Kallenbeng CG. The complement system in systemic auto-immune disease. J Autiimmune,2010,34:275-286.
    [21]Abe K,Miyazaki M,Koji T,et al. Enhanced expression of complement C5a receptor mRNA in human diseased kidney assessed by in situ hybridization. Kidney Int,2001,60:137-146.
    [22]Michael C, Braun, Rose Y,et al.Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. J Immunl,2004,173: 41904196.
    [23]Abou-Ragheb HH, Williams AJ, Brown CB, et al. Plasma levels of the anaphylatoxins C3a and C4a in patients with IgA nephropathy/Henoch-Schonlein nephritis. Nephron, 1992,62:22-6.
    [24]Janssen U, Bahlmann F, Kohl J,et al. Activation of the acute phase response and complement C3 in patients with IgA nephropathy. Am J Kidney Dis,2000,35:21-8.
    [25]Lakin, Leung JC, Chan LY, et al. Activation of podocytes by mesangial-derived TNF-a:Glomerulo-podocytic communication in IgA nephropathy. J. Am J Physiol Renal Physiol 2008,294(4):945-F955.
    [26]Sato S, Nagaoka T, Hasegaw AM, et al. Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis; association with extent of skin sclerosis andseverityof pulmonary fibrosis. J. JRheumato,l 2000,27(1):149-154.
    [27]邹万忠.肾活检病理学[M].北京:北京大学医学出版社,2006;104-105.
    [28]Iwano M, Dohi K, Hirata E, et al. Induction of interleukin-6 synthesis in mouse glomeruli and cultured mesangial cells. Nephton,1992,62:58-65.
    [29]Taniguchi Y, Yorioka N, Kumagai J, et al. Interleukin-6 localization and the prognosis of IgAN nephropathy. Nephron,1999,81:94-98.
    [30]Zeng CH, Le W, Ni Z, Zhang M, et al. A multicenter application and evaluation of the oxford classification of IgA nephropathy in adult Chinese patients. Am J Kidney Dis.2012 Nov;60(5):812-20.
    [1]Ehrnthaller C, Ignatius A, Gebhard F, et al. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med, 2011,17:317-29.
    [2]Aresu L, Pregel P, Bollo E.,et al. Immunofluorescence staining for the detection of Immunoglobulins and complement(C3) in dogs with lenal disease. Vet Rec,2008,163(23): 679-682.
    [3]Espinosa M, Ortega R, G6mez—CarrascoJM, et al. Mesangial C4d deposition:a new prognostic factor in IgA nephropathy. Nephrol Dial Transplant.2009,24(3):886-891.
    [4]Choi J, Cho YM, Yang WS, et al. Peritubular capillary C4d deposition and renal outcome in post-transplant IsA nephropathy. ClinTransplant.2007,21 (2):159-165.
    [5]Stangou M, Alexopoulos E, Pantzaki A, et al. C5b-9 glomerular deposition and tubular alpha3betal-integrin expression are implicated in the development of chronic lesions and predict renal function outcome in immunoglobulin A nephropathy. Scand J Urol Nephro 2008,42(4):373-380.
    [6]Li Q, Peng Q, XingG, et al. Deficiency of C5aR prolongs renal allograft survival. J Am Soc Nephrol,2010,21(8):1344-1353.
    [7]Pan H, Shen Z, Mukhopadhyay P, et al. Anaphylatoxin C5a contfibutes to the pathogenesis of cisplatin—induced nephrotoxicity. Am J Physiol Renal Physiol,2009,296(3):496-504.
    [8]Sheerin NS,Sacks SH.Leaked protein and inerstitial damage in the kidney:is complement the missing link? Clin Exp Immunol,2002,130,1-3
    [9]RosenbergME,Girton R,Finkel D,et al.Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging.Mol Cell Biol,2002,22,1893-1902
    [10]Endo M, Ohi H, Ohsawa I, Fujita T, Matsushita M, Fujita T. Glomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy. Nephrol Dial Transplant.1998;13(8):1984-1990.
    [11]Oortwijn BD, Roos A, Royle L, et al. Differential glycosylation of polymeric and monomeric IgA:a possible role in glomerular inflammation in IgA nephropathy. J Am Soc Nephrol.2006; 17(12):3529-3539.
    [12]Suzuki H, Kiryluk K, Novak J, et al. The pathophysiology of IgA nephropathy. J Am Soc Nephrol.2011;22(10):1795-1803.
    [13]Lai KN. Pathogenesis of IgA nephropathy.Nat Rev Nephro 1.2012;8(5):275-283.
    [14]Matsuda M, Shikata K, Wada J, et al. Deposition of mannan binding protein and mannan binding protein-mediated complement activation in the glomeruli of patients with IgA nephropathy. Nephron.1998;80(4):408-413.
    [15]Berger SP, Daha MR. Complement in glomerular injury. Semin Immunopathol 2007;29(4):375-384.
    [16]Roos A, Rastaldi MP, Calvaresi N, et al.Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol.2006;17(6):1724-1734.
    [17]Chen M, Daha MR, Kallenbeng CG. The complement system in systemic auto-immune disease. J Autiimmune,2010,34:275-286.
    [18]Ohsawa I, Ishii M, Ohi H, et al.Pathological Scenario with the Mannose-Binding Lectin in Patients with IgA Nephropathy. J Biomedicine Biotechnology,2012,2012:476739.
    [19]Fakhouri F, Fremeaux-Bacchi V, Noel LH, et al. C3 glomerulopathy:a new classification. Nat Rev Nephro 1.2010;6:494-499.
    [20]Levy M, Halbwachs-Mecarelli L, Gubler MC, et al. H deficiency in two brothers with atypical dense intramembranous deposit disease.Kidney Int.1986;30:949-956.
    [21]Jokiranta TS, Solomon A, Pangburn MK, Zipfel PF, Meri S. Nephritogenic lambda light chain dimer. a unique human miniautoantibody against complement factor H. J Immunol. 1999;163:4590-4596.
    [22]Strobel S, Z immering M, Papp K, Prechl J, Jozsi M. Anti-facto r Bauto antibody in d ensedeposit disease.Mol I mmunol.2010;47:1476-1483.
    [23]Pickering MC, Cook HT, Warren J, et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat Genet.2002;31:424-428.
    [24]Rose KL, Paixao-Cavalcante D, Fish J, et al. Factor I is required for the development of membranoproliferative glomerulonephritis in factor H-deficient mice. J Clin Invest. 2008;118:608-618.
    [25]Martinez-Barricarte R, Heurich M, Valdes-Canedo F, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest.2010;120:3702-3712.
    [26]Servais A, Fremeaux-Bacchi V, Lequintrec M, et al. Primary glomerulonephritis with isolated C3 deposits:a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet.2007;44:193-199.
    [27]Levy M, Gubler MC, Sich M, et al. Immunopathology of membranoproliferative glomerulonephritis with subendothelial deposits (Type I MPGN). Clin Immunol Immunopathol.1978; 10:477-492.
    [28]Neary J, Dorman A, Campbell E, et al. Familial membranoproliferative glomerulonephritis type III. Am J Kidney Dis.2002;40:E1.
    [29]Gale DP, de Jorge EG, Cook HT, et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis.Lancet. 2010;376:794-801.
    [30]Abrera-Abeleda MA, Nishimura C, Smith JL, et al. Variations in the complement regulatory genes factor H (CFH) and factor H related 5 (CFHR5) are associated with membranoproliferative glomerulonephritis type II (dense deposit disease). J Med Genet. 2006,43:582-589.
    [31]Beck LH Jr, Bonegio RG, Lambeau G, et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med.2009;361:11-21.
    [32]Cybulsky AV, Rennke HG, Feintzeig ID, Salant DJ. Complement-induced glomerular epithelial cell injury. Role of the membrane attack complex in rat membranous nephropathy. J Clin Invest.1986,77:1096-1107.
    [33]Saran AM, Yuan H, Takeuchi E, et al. Complement mediates nephrin redistribution and actin dissociation in experimental membranous nephropathy. Kidney Int.2003, 64:2072-2078.
    [34]Stanescu HC, Arcos-Burgos M, Medlar A, et al. Risk HLA-DQA1 and PLA(2)R1 alleles in idiopathic membranous nephropathy. N Engl J Med.2011;364:616-626.
    [35]Ma H, Beck LH Jr, Salant DJ. Membranous nephropathy-associated anti-phospholipase A2 receptor IgG4 autoantibodies activate the lectin complement pathway. Oral presented at: American Society of Nephrology Kidney Week; November 8-13,2011; Philadelphia, PA.
    [36]Nath KA. The tubulointerstitium in progressive renal disease. Kidney Int. 1998;54:992-994.73.
    [37]Remuzzi G, Benigni A, Remuzzi A. Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest.2006; 116:288-296.
    [38]Eddy AA. Interstitial nephritis induced by protein-overload proteinuria. Am J Pathol.l989;135:719-733.
    [39]The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia). Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997,349:1857-1863.
    [40]Lai KN, Leung JC, Chan LY, et al. Interaction between proximal tubular epithelial cells and infiltrating monocytes/T cells in the proteinuric state. Kidney Int.2007;71:526-538.
    [41]Honkanen E, Teppo AM, Tornroth T,et al. Urinary transforming growth factor-beta 1 in membranous glomerulonephritis. Nephrol Dial Transplant.1997;12:2562-2568.
    [42]Morita Y, Ikeguchi H, Nakamura J, et al. Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol.2000; 11:700-707.
    [43]Camussi G, Tetta C, Mazzucco G, Vercellone A. The brush border of proximal tubules of normal human kidney activates the alternative pathway of the complement system in vitro. Ann N Y Acad Sci.1983;420:321-324.
    [44]Ichida S, Yuzawa Y, Okada H, Yoshioka K, Matsuo S. Localization of the complement regulatory proteins in the normal human kid-ney. Kidney Int.1994;46:89-96.
    [45]Nangaku, M., J. Pippin, and W.G. Couser, Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol,1999. 10(11):p.2323-31.
    [46]Mosolits, S., T. Magyarlaki, and J. Nagy, Membrane attack complex and membrane cofactor protein are related to tubulointerstitial inflammation in various human glomerulopathies. Nephron,1997.75(2):p.179-87.
    [47]Rangan, G.K., J.W. Pippin, and W.G. Couser, C5b-9 regulates peritubular myofibroblast accumulation in experimental focal segmental glomerulosclerosis. Kidney Int,2004.66(5): p.1838-48.
    [48]Mezzano, S.A., et al., Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int,2000.57(1):p.147-58.
    [49]Morita, Y., et al., Complement activation products in the urine from proteinuric patients. J Am Soc Nephrol,2000.11(4):p.700-7.
    [50]Okuda, S., et al., Adriamycin-induced nephropathy as a model of chronic progressive glomerular disease. Kidney Int,1986.29(2):p.502-10.
    [51]Lenderink, A.M., et al., The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy. Am J Physiol Renal Physiol,2007.293(2):p. F555-64.
    [52]Turnberg, D., et al., Complement activation contributes to both glomerular and tubulointerstitial damage in adriamycin nephropathy in mice. J Immunol,2006.177(6):p. 4094-102.
    [53]Boor, P., et al., Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol,2007.18(5):p.1508-15.
    [54]Berger SP, Daha MR. Complement in glomerular injury. Semin Immunopathol 2007;29(4):375-384.
    [55]Pickering MC, Walport MJ. Links between complement abnormalities and systemic lupus erythematosus. Rheumatology (Oxford).2000;39(2):133-141.
    [56]Pickering MC, Botto M, Taylor PR, et al. Systemic lupus erythematosus, complement deficiency, and apoptosis.Adv Immunol.2000;76:227-324.
    [57]Nauta AJ, Trouw LA, Daha MR, et al. Direct binding of C1q to apoptotic cells and cell blebs induces complement activation. Eur J Immunol.2002;32(6):1726-1736.
    [58]Botto M, Walport MJ. Clq, autoimmunity and apoptosis. Immunobiology. 2002;205(4-5):395-406.
    [59]Seelen MA, Trouw LA, Daha MR. Diagnostic and prognostic significance of anti-Clq antibodies in systemic lupus erythematosus. Curr Opin Nephrol Hypertens 2003;12(6):619-624.
    [60]Moroni G, Trendelenburg M, Del Papa N, et al. Anti-C1q antibodies may help in diagnosing a renal flare in lupus nephritis. Am J Kidney Dis.2001;37(3):490-498.
    [61]Kusunoki Y, Akutsu Y, Itami N, et al. Urinary excretion of terminal complement complexes in glomerular disease. Nephron,1991;59(1):27-32.
    [62]Biesecker G, Katz S, Koffler D. Renal localization of the membrane attack complex in systemic lupus erythematosus in nephritis. J Exp Med.1981; 154(6):1779-1794.
    [63]Wang Y, Hu Q, Madri JA, et al. Amelioration of lupus-like autoimmune disease in NZB/WFlmice after treatment with a blocking monoclonal antibody specific for complement component C5. Proc Natl Acad Sci U S A,1996;93(16):8563-8568.
    [64]Kerr, L.D., et al., Factor B activation products in patients with systemic lupus erythematosus. A marker of severe disease activity. Arthritis Rheum,1989.32(11):p. 1406-13.
    [65]Watanabe, H., et al., Modulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B. J Immunol,2000.164(2):p.786-94.
    [66]Elliott, M.K., et al., Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int,2004.65(1):p.129-38.
    [67]Sekine, H., et al., Complement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice. J Immunol,2001.166(10):p.6444-51.
    [68]Sheerin, N.S., et al., Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3-and C4-deficient mice. Clin Exp Immunol,1997.110(3): p.403-9.
    [69]Jozsi, M. and P.F. Zipfel, Factor H family proteins and human diseases. Trends Immunol, 2008.29(8):p.380-7.
    [70]Zhao, J., et al., Association of genetic variants in complement factor H and factor H-related genes with systemic lupus erythematosus susceptibility. PLoS Genet,2011.7(5):p. e1002079.
    [71]Fritsche, L.G., et al., An imbalance of human complement regulatory proteins CFHR1, CFHR3 and factor H influences risk for age-related macular degeneration (AMD). Hum Mol Genet,2010.19(23):p.4694-704.
    [72]Heinen, S., et al., Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood,2009.114(12):p.2439-47.
    [73]Atkinson, C, et al., Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J Immunol,2008. 180(2):p.1231-8.
    [74]The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med,1993;329:977-986.
    [75]Falk RJ, Sisson SP, Dalmasso AP, et al. Ultrastructural localization of the membrane attack complex of com-plement in human renal tissues.Am J Kidney Dis,1987;9:121-128.
    [76]Halperin JA, Taratuska A, Nicholson-Weller A. Terminal complement complex C5b-9 stimulates mitogenesis in 3T3 cells.J Clin In-vest,1993;91:1974-1978.
    [77]Ziyadeh FN. The extracellular matrix in diabetic nephropathy. Am J Kidney Dis, 1993;22:736-744.
    [78]Acosta J, Hettinga J, Fluckiger R, et al. Molecular basis for a link be-tween complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A.2000;97:5450-5455.
    [79]Qin X, Goldfine A, Krumrei N, et al. Glycation inactivation of the complement regulatory protein CD59:a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes,2004;53:2653-2661.
    [80]Orchard TJ, Virella G, Forrest KY, et al. Antibodies to oxidized LDL predict coronary artery disease in type 1 diabetes:a nested case-control study from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabe-tes.1999;48:1454-1458.
    [81]Neumann I, Regele H, Kain R, Birck R, Meisl FT. Glomerular immune deposits are associated with increased proteinuria in patients with ANCA-associated crescentic nephritis.Nephrol Dial Transplant,2003;18:524-531.
    [82]Schlieben DJ, Korbet SM, Kimura RE, et al. Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis.2005;45:758-761.
    [83]Xiao H, Heeringa P, Hu P, et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice.J Clin Invest. 2002;110:955-963.
    [84]Xiao H, Heeringa P, Liu Z, et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol.2005;167:39-45.
    [85]Wirthmueller U, Dewald B, Thelen M, et al. Properdin, a positive regulator of complement activation, is released from secondary granules of stimulated peripheral blood neutrophils. J Immunol,1997;158:4444-4451.
    [86]Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol,2007; 170:52-64.
    [87]Xing GQ, Chen M, Liu G, et al. Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis.J Clin Immunol.2009;29:282-291.
    [88]Huugen D, van Esch A, Xiao H, et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007;71:646-654.
    [89]Noris M, Remuzzi G. Hemolytic uremic syndrome. J Am Soc Nephrol.2005;16:1035-1050.
    [90]Kavanagh D, Goodship TH. Atypical hemolytic uremic syndrome, genetic basis,and clinical manifestations. HematologyAm Soc Hematol EducProgram.2011;2011:15-20.
    [91]Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS:the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006;108:1267-1279.
    [92]Esparza-Gordillo J, Goicoechea de Jorge E, Buil A, et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in Iq32. Hum Mol Genet.2005; 14:703-712.
    [93]Jozsi M, Zipfel PF. Factor H family proteins and human diseases. Trends Immunol. 2008;29(8):380-387.
    [94]Sanchez-Corral P, Melgosa M. Advances in understanding the aetiology of atypical haemolytic uraemic syndrome. Br J Haematol.2010,150(5):529-542.
    [95]Richards A, Buddies MR, Donne RL, et al. Factor H mutations in hemolytic uremic syndrome cluster in exons 18-20, a domain important for host cell recognition. Am J Hum Genet.2001;68(2):485-490.
    [96]Jozsi M, Heinen S, Hartmann A, et al. Factor H and atypical hemolytic uremic syndrome: mutations in the C-terminus cause structural changes and defective recognition functions. J Am Soc Nephrol.2006;17(1):170-177.
    [97]Kavanagh D, Goodship T. Genetics and complement in atypical HUS. Pediatr Nephrol. 2010;25(12):2431-2442.
    [98]Caprioli J, Noris M, Brioschi S, et al. Genetics of HUS:the impact of MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood. 2006; 108(4):1267-1279.
    [99]okiranta TS, Cheng ZZ, Seeberger H, et al. Binding of complement factor H to endothelial cells is mediated by the carboxy-terminal glycosaminoglycan binding site.Am J Pathol,2005,167(4):1173-1181.
    [100]Qi Peng, Ke Li, Lesley A, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol.2012;23(9):1474-1485.
    [101]Thurman JM, Lucia MS, Ljubanovic D, et al. Acute tubular necrosis is characterized by activation of the alternative pathway of complement.Kidney Int,2005;67:5240-530.
    [102]Walsh MC, Bourcier T. Takahashi K et al.Mannose-binding lectin is a regulator of inflammation that accompanies myocardial ischaemia and reperfusion injury. J lmmunol,2005;175:541-546.
    [103]Hart ML, Ceonzo KA, Shaffter LA,et al. Gastrointestinal ischaemia-reperfusion injury is lectin complement pathyway dependent without involving Clq.J Immunol,2005;174:6373-6380.
    [104]de Vries B. Walter SJ,Peutz-Kootstra CJ, et al. The mannose-binding lection-pathyway is involved in complement activation in the course of renal ischaemia-reperfusion injury. Am J Pathol,2004;165:1677-1688.
    [105]Li Q, Peng Q, Xing G, et al. Deficiency of C5aR prolongs renal allograft survival. J Am Soc Nephrol.2010;21(9):1344-1353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700