南海海域大气光通信信道模型研究与仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气光通信是无线通信领域的一个研究热点,它是一种以大气为传输媒质,通过激光或光脉冲传送数据的通信系统,又称为“无线激光通信”,享有“虚拟光纤”的美誉。大气光通信结合了微波通信和光纤通信的优点,具有传输容量大、建网速度快、无须授权、保密性好等特点。在大气光通信系统中,由于在传输过程中受气大气吸收、散射、湍流等众多因素的影响,造成了光能量的衰减、光强闪烁等现象,能否解决这些影响是大气激光通信推广应用的关键,因此,对大气光通信信道的研究就显得格外重要。
     本文首先系统叙述分析了大气衰减及湍流效应对激光传输的影响,以及对应的光信号的发射与接收,并详细分析了各种因素对误码率的影响。接着在此基础上结合通信理论给出信道模型,结合南海海域的大气特性进行仿真,以图形来观察激光传输受到大气影响、空间损耗等外界环境的作用后,激光能量的变化及分布情况。通过深入分析各种外在因素对大气光通信系统的影响,提出几种抑制大气信道影响的方法,为进一步研制出高性能的通信系统打好理论基础。
     本文的研究对大气无线光通信系统的设计具有重要的指导意义和参考价值。
Atmospheric laser communication has been a research focus in the field of wireless communication, it is a digital communication system transmitted by laser or optical plus in the atmosphere. It is also called "Wireless Optical Communication" and enjoys a good reputation with "virtual fiber". Atmospheric laser communication both has microware and laser communication's advantages. Further more. it is structured with some inimitable characters such as unlimited bandwidth, no frequency admission, low cost, strong anti-jamming, good transmission secrecy, ease and speed of deployment and so on. Because such a lot of factors as atmospheric scattering, refracting, turbulence, etc. in the course of transmitting in the atmospheric laser communication system will cause the energy of laser to decay, strength of laser to fluctuate, the random deflection of the light beam, it is a key to overcome the influence. So the study on atmospheric laser communication channel seems extremely important.
     This paper has narrated and analyzed the effect of atmospheric random channel to wireless laser communication and light transmit and receive correspond to wireless optical communication, in addition we detailed analysis of various factors on the bit error rate(BER). Then the paper provide the channel model based on it and communication theory, and combined with the South China Sea to simulate the atmospheric properties. On the basis of these figures, we can observe the change and distribution of laser energy goes through affected by atmospheric, space loss, and other external environment with all kinds of figure. Through in-depth analyzed of various external factors on the atmospheric optical communication systems. We brought forward a few of methods to reduce influence of air boundary layer for the further development of high performance communication system to lay a good theoretical basis.
引文
[1]罗先明.光无线通信[J].电信网技术,2001(4):53-55
    [2]张杰.无线大气激光通信损耗特性研究[D].南京:东南大学,2004:15-17
    [3]陈建文.激光大气传输的信道及性能研究[D].武汉:华中科技大学,2007:1-2
    [4]K.Wilson, M. Jeganathan, J. R Lesh, et al. Results from phase-1 and phase-2 GOLD experiments[R], TDA Progress Report,1996:42-128
    [5]韩天愈.自由空间光通信(FSO)大气信道传输关键技术的研究[D].广州:广东工业技术大学,2005:15-16
    [6]徐光勇.大气湍流中的激光传输数值模拟及其影响分析[D].成都:电子科技大学,2008,12-13
    [7]Y. Takayama, T. Jono, M. Toyoshima,et al.Tracking and pointing characteristics of OICETS optical terminal in communication demonstrations with ground stations[C].SPIE,2007,vol.6457-07~15
    [8]李翔.无线光传输系统研究[D].武汉:华中科技大学,2007:5-6
    [9]范国良.无线光通信技术及其应用[J].中国无线电,2007,(3):33-36
    [10]冷雪.大气激光通信系统信道研究[D].长春:长春理工大学,2007
    [11]陈建文.激光大气传输的信道及性能研究[D].武汉:华中科技大学,2007,123-125
    [12]陈纯毅.无线通信中的大气影响机理及抑制技术研究[D].长春:长春理工大学,2009,20-22
    [13]梁冀生.Ka频段卫星通信地空的链路的大气衰减[J].工程实践与应用技术,2006,32(1):56-58
    [14]余向东,沈常宇,王育红.大气衰减对自由空间光通信的影响及解决方法[a].全国第十一次光纤通信塈第二届集成光学学术会议论文集[C],2003
    [15]王明星,朱文琴.8-13微米大气窗区水汽吸收系数的观测分析[J].大气科学,1982,5(4):450-451
    [16]Nuber R. M, Shanmugan K. S. Mdeling the atmosphere as an unguided optical communications channel. Proc. IEEE,1989
    [17]时建群,魏山城,韩雪云等.激光大气传输吸收衰减效应研究[J].河南师范大学学报(自然科学版),2003,(3):33-36
    [18]边永昌.大气对空间光通信影响研究[D].长春:长春理工大学,2006,16-17
    [19]M. A. Naboulsi, H. Sizun, and F. de Fornel,"Fog attenuation prediction for optical and infrared waves,” Opt. Eng., vol.43, no.2, pp.319-329, Feb.2004
    [20]安敏英,刘断芳,李庆辉.光电子技术[M],电子工业出版社,2002,(3)
    [21]许国良,张旭苹,徐伟弘等.自由空间通信[J].光电子技术,2002(12):198-202
    [22]朱震,陈凌.自由空间光通信技术[J].光通信技术,2003,(1):22-26
    [23]Isaac I. Kim, Bruce McArthur, and Eric Korevaar. Comparison of laser beam propagation at 785 nm and 850 nm in fog and haze for optical wireless Communications [A]. In:Optical Wireless Communications Proc SPIE[C]. Boston, 2000
    [24]Isaac I. Kim, Eric Korevaar. Availability of Free Space Optics(FSO) and hybrid FSO/RF systems[EB/OL]. http://www.opticalaccess.com.2003
    [25]胡非.大气湍流[EB/OL].http://bbs.lasg.ac.cn/bbs/thread-32637-1-153.html
    [26]黄永平,赵光普.激光通信在大气湍流中的传输[J].大众科技,2009,7:39-40
    [27]万玲玉.气象条件对近地视距光通信链路的影响研究[D].南宁:广西大学,2002:13-15
    [28]东娅冰,赵尚弘,夏贵进.大气光通信中的信道损耗分析[J].无线电通信技术,2003,29(1):63-64
    [29]徐晓静.影响激光大气通信距离的诸因素分析[J].光学精密工程,2002,10(5):493-496
    [30]王丽黎,柯熙政.湍流效应对光通信链路的影响研究与仿真.光散射学报,2004,3(3):250-255
    [31]Uysal M, Jing Li. Error Rate Performance of Coded Free-Space Optical Links over Gamma-Gamma Turbulence Channels.Communications,2004 IEEE International Conference,2004(6):3331-3335
    [32]L. C. Andrews,Analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere, J. Mod. Opt, 1992,39:1849-1853
    [33]L. C. Andrews and R. L. Phillips, Mathematical genesis of the I-K distribution for random optical fields. J.Opt. Soc. Am,2003 A(3):1912-1919
    [34]陈纯毅,杨华民,佟首峰,等.空地光通信系统空间链路的建模与仿真[J].系统仿真学报,2007,19(12):2706-2719
    [35]张晓芳,俞信,阎吉祥,等.大气湍流对光学系统图像分辨力的影响[J].光学技术,2005,31(2):263-265
    [36]W. P. Brown, S. C. Fry, G C. Valley. Simulation of Ground-to-space Optical Propagation[R]. HUGHES RESEARCH LABS, Final rept,1982
    [37]M. A. Al-Habash, L. C. Andrews, and R. L. Philips,Mathematical model for the irradiance probability density function of a laser propagating through turbulent
    media, Opt. Eng., vol.40, no.8, pp.1554-1562, Aug.2001
    [38]Isaac I. Kim, Mary Mitchell, Eric Korevaar. Measurement of scintillation for free-space laser communication at 785nm and 1550nm. Proc. SPIE,1999
    [39]L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications. Bellingham, WA:SPIE,2001
    [40]张逸新,迟泽英.光波在大气中的传输与成像[M].北京:国防工业出版社,1997
    [41]柯熙政.大气激光通信DPPM调制解调技术研究[D].西安理工大学,2006:5-7
    [42]J.H Franz, V.K. Jan光通信器件与系统[M].徐宏杰,何珺,蒋剑良,等译.北京:电子工业出版社,2002
    [43]邓代竹.大气随机信道对无线激光通信的影响[D].西南交通大学,2002:26-27
    [44]D.K Mynbaev, L.L. Scheiner.光纤通信技术[M].徐公权,段鲲,廖光裕,等译.北京:机械工业出版社,2002
    [45]顾畹仪,李国瑞.光纤通信系统[M].北京:北京邮电大学出版社,1999
    [46]原荣.光纤通信技术[M].北京:电子工业出版社,2002
    [47]路远,凌永顺.红外辐射大气透射比的简易计算[J].红外技术,2003,(5)
    [48]吴晗平.红外辐射大气透过率的工程理论计算方法研究[J].光学精密工程,1998,(8)
    [49]张鸣平等.夜视系统[M].北京:兵器工业出版社,1992
    [50]周斌.大气光通信中的APT技术研究[J].中国新通信,2007,(7)
    [51]朱伟利,盛嘉茂著.信息光学基础[M].北京:中央民族大学出版社,1997
    [52]周炳琨,陈倜嵘等著.激光原理[M].北京:国防工业出版社,1984
    [53]V. Tartarski. Wave Propagatoin in Turbulent Media[J]. McGraw Hill, New York,1961
    [54]李玉权,朱勇,王江平.光通信原理与技术[M].北京:科学出版社,2006,309-358
    [55]张德良,姜文汉.自适应光学对大气扰动波前的补偿效果研究[J].光学学报,1998,18(10):1262-1267
    [56]张德良,姜文汉,水平均匀大气中多光束照明在目标上形成光班的漂移[J].光电工程,1998,25(2):1-6
    [57]黄印博,魏合理,梅海平等.大气信道对红外激光通信系统性能影响的实验研究[J].光子学报,2009,38(3):648-651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700