7050铝合金圆锭超声铸造微观组织及热裂敏感性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半连续铸造是目前最常用的一种铸造方式,其过程是一个复杂的动态凝固过程,包含几何非线性、材料非线性等众多非线性因素。在铸造过程中容易产生各种铸造缺陷,如晶粒粗大、缩孔缩松、开裂、组织和成份偏析等。本文通过数值模拟和试验研究的方法,主要从微观组织和热裂纹敏感性两方面,探讨工艺参数和超声场对7050铝合金圆锭的影响。
     1、概述了7xxx铝合金半连续铸造的发展及研究现状,分析了铸造微观组织数值模拟的发展,总结了现有的几种模拟方法,分析了目前铸造热裂数值模拟与热裂判据的研究现状。
     2、进行了7050铝合金超声半连续铸造试验,对试验结果进行了总体分析,总结了超声场对铸锭组织、力学性能以及裂纹产生的影响规律。
     3、利用ProCAST软件的CAFE模块进行了铸造过程的微观组织模拟,建立了基于CAFE的数学模型,设置和选择了相关的模拟条件及参数,从而分析了不同工艺参数对7050铝合金圆锭微观组织的影响规律;同时通过探讨超声场对形核率和过冷度的影响,等效模拟了施加不同功率超声场对微观组织的影响。
     4、利用ProCAST软件的HCS模块进行了铸造过程的热裂纹敏感性模拟,采用了基于凝固补缩理论的热裂判据——RDG判据,设置和选择了相关的模拟条件及参数,从而得出了不同工艺参数和超声场对7050铝合金圆锭热裂纹敏感性的影响规律。
Semi-continuous casting which relates to dynamic solidification process is the most popular casting way these days. It involves many nonlinear factors including geometry nonlinear and material nonlinear. It is liable to produce various casting defects, such as coarse grain, shrinkage cavity, shrinkage porosity, hot tearing, microstructure segregation and solute segregation. The effects of technological parameters and ultrasonic field on 7050 aluminum alloy ingot are studied by numerical simulation and experimental investigation, which mainly focused on microstructure and hot tearing sensitivity.
     1. The development and present status of 7xxx aluminum alloy semi-continuous casting are summarized. The microstructure numerical simulation of casting and some existing simulation methods are introduced. The simulation and criterions of hot tearing are also analyzed.
     2. The experiment of 7050 alloy ultrasonic semi-continuous casting is processed and the results are analyzed. The effects of ultrasonic field on microstructure, mechanic property and hot tearing formation are summarized.
     3. The microstructure of casting ingot is simulated by CAFE module which belongs to ProCAST. The mathematic model of CAFE is set up, meanwhile the correlative condition and parameters are chosen. The effects of different technological parameters on microstructure of 7050 aluminum alloy ingot are analyzed. The effect of ultrasonic on nucleation rate and undercooling is researched and the influences of different ultrasonic power on microstructure are also simulated.
     4. The hot tearing sensitivity in the casting process is simulated by HCS module which belongs to ProCAST, and the criterion of judging hot tearing formation-RDG criterion is chosen, which is analyzed based on the view of solidification and compensation. The effects of different technological parameters and ultra-sonic field on the hot tearing sensitivity of 7050 aluminum alloy ingot are also obtained.
引文
[1]田福泉,李念奎,崔建忠.超高强铝合金强韧化的发展过程及方向[J].轻合金加工技术,2005,33(12):1-9
    [2]曾渝.超高强Al-Zn-Mg-Cu-Zr合金组织与性能研究[D].长沙:中南大学,2004
    [3]关敬波.7050铝合金大扁锭半连铸工艺参数匹配规律的仿真研究[D].长沙:中南大学,2007
    [4]Miha Zaloznik, Bozidar Sarler. Modeling of macrosegregation in direct-chill casting of aluminum alloys:Estimating the influence of casting parameters [J]. Materials Science and Engineering A,2005,413-414(13):85-91
    [5]L. J. Colley, M. A. Wells, D. M. Maijer. Tensile properties of as-cast aluminum alloy AA5182 close to the solidus temperature [J]. Materials Science and Engineering A,2004,386(1-2):140-148
    [6]W. M. van Haaften, W. H. Kool, L. Katgerman. Tensile behavior of semi-solid industrial aluminum alloys AA310-4 and AA5182 [J]. Materials Science and Engineering A,2002,336(1-2):1-6
    [7]Hiromi Nagaumi, Takateru Umeda. Prediction of internal cracking in a direct-chill cast, high strength, Al-Mg-Si alloy [J]. Journal of Light Metals,2002,2(3): 161-167
    [8]胡化文,陈康华.超声熔体处理对合金显微组织和性能的影响[J].金属热处理,2005,30(5):43-46
    [9]G. I. Eskin. Ultrasonic Treatment of Molten Aluminum [M]. Moscow: Metallurgiya,1985:1-10
    [10]X. Liu, Y. Osawa. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration [J]. Materials Science and Engineering A, 2008,487(1-2):120-123
    [11]Z. Yubo, H. Nagaumi. Study on the sump and temperature field during low frequency electromagnetic casting a super high strength Al-Zn-Mg-Cu alloy [J]. Journal of Materials Processing Technology,2008,197(1-3):109-115
    [12]S. P. Wu, D. R. Liu, et al. Modeling of microstructure formation of Ti-6Al-4V alloy in a cold crucible under electromagnetic field [J]. Journal of Alloys and Compounds,2008,456(1-2):85-95
    [13]Q. Zhang, J. Z. Cui. Microstructural refinement mechanism on aluminum alloy produced by semi-continuous casting in electromagnetic vibration [J]. Chinese Journal of Nonferrous Metals,2003,13(6):1500-1504
    [14]于艳梅.过冷熔体中枝晶生长的相场法数值模拟[D].西安:西北工业大学,2002
    [15]J. A. Spittle, S. G. Brown. Computer simulation of the effects of alloy variables on the grain structures of castings[J]. Acta Metall,1989,37(7):1803-1810
    [16]陈晋.基于元胞自动机方法的凝固过程微观组织数值模拟[D].南京:东南大学,2005
    [17]S. Wolfram. Statistical mechanics of cellular automata [J]. Rev. Mod. Phys., 1983,55(3):601-644
    [18]P. P. Zhu, R. W. Smith. Dynamic simulation of crystal growth by Monte Carlo method-I model description and kinetics[J]. Acta Metall, Mater.,1992,40(4): 683-693
    [19]C. A. Gandin, M. Rappaz. A coupled finite element-cellular automaton model for the prediction of dendritic grain structure in solidification process [J]. Acta Metall, Mater.,1994,42(7):2233-2246
    [20]K. G. F. Janssens. Random grid, three-dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth [J]. Modelling and Simulation in Materials Science and Engineering,2003,11(2):157-171
    [21]M. B. Cortie. Simulation of metal solidification using a cellular automaton [J]. Metallurgical Transactions B (Process Metallurgy),1993,24B(6):1045-1053
    [22]S. G. R. Brown, N. B. Bruce. Three-dimensional cellular automaton models of microstructural evolution during solidification [J]. Journal of Materials Science, 1995,30(5):1144-1150
    [23]V. Marx, F. R. Reher. Simulation of primary recrystallization using a modified three-dimensional cellular automaton [J]. Acta Materialia,1999,47(4): 1219-1230
    [24]Q. Y. Xu, B. C. Liu. Modeling of As-cast microstructure of Al alloy with a modified cellular automaton method [J]. Materials Transactions,2001,42(11): 2316-2321
    [25]M. F. Zhu, C. P. Hong. A three dimensional modified cellular automaton model for the prediction of solidification microstructures [J]. ISIJ International,2002, 42(5):520-526
    [26]S. Raghavan, S. S. Sahay. Modeling the grain growth kinetics by cellular
    automaton[J]. Materials Science and Engineering A,2007,445-446(1):203-209
    [27]S. P. Wu, D. R. Liu. Modeling of solidification grain structure for Ti-45%Al alloy ingot by cellular automaton[J]. Transactions of the Nonferrous Metals Society of China,2005,15(2):291-295
    [28]Y. Xin, Z. Zhilong. Microstructure evolution of the K4169 super alloy blade based on cellular automaton simulation[M]. Springer:Lecture Notes in Computer Science (Advances in Natural Computation),2005:980-983
    [29]R. Parkitny, M. Marek. Cellular automaton model for binary alloy microstructure prediction [C].35th Solid Mechanics Conference, Warszawa,2006:331-332
    [30]Huo Liang, Li Bin. Simulation of Magnesium Alloy AZ91D Microstructure Using Modified Cellular Automaton Method [J]. Tsinghua Science And Technology,2009,14(3):307-312
    [31]L. Darning, L. Ruo. A cellular automaton technique for the modeling of solidification microstructure in multi-component [C].2006 First International Multi-Symposiums on Computer and Computational Sciences, Los Alamitos, 2006:800-806
    [32]M. F. Zhu, W.S. Cao. Modified cellular automaton model for modeling of microstructure and micro segregation in solidification of ternary alloys [J]. Transactions of Nonferrous Metals Society of China (English Edition),2006, 16(S2):180-185
    [33]F. Chen, Z. Cui. Modeling and simulation on dynamic recrystallization of 30Cr2Ni4MoV rotor steel using the cellular automaton method [J]. Modeling and Simulation in Materials Science and Engineering,2009,17(7):1-17
    [34]D. P. DeLo, S. L. Semiatin. Finite-element modeling of nonisothermal equal-channel angular extrusion [J]. Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science),1999,30A (5):1391-1402
    [35]S. C. Lee, S. Y. Ha, et al. Finite element analysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP [J]. Materials Science and Engineering A (Structural Materials:Properties, Microstructure and Processing),2004, A371(1-2):306-312
    [36]J. M. Fragomeni, S. Pochampally. Effect of extrusion processing deformation and heat treating on the plastic flow, microstructure, and mechanical behavior of an aluminum alloy [J]. Computer Assisted Mechanics and Engineering Sciences, 2004,11(1):77-98
    [37]F. Krumphals, I. Flitta. Comparison of experimental and finite element modelling of the extrusion of AA6082 on both tools and extrudate as a function of process parameters [J]. International Journal of Material Forming,2008,1(1):427-430
    [38]K. F. Zhang, J. S. J. Chen, et al. Finite element analysis of heat transfer and microstructure in melt-spinning of Ti-Al[C]. TMS Annual Meeting, San Antonio,1998:255-269
    [39]J. B. Rao, S. Kamaluddin. Finite element analysis of deformation behavior of Aluminium-Copper alloys [J]. Materials and Design,2009,30(4):1298-1309
    [40]Daymond, M. R., P. J. Withers. Examination of tensile/compressive loading asymmetrics in aluminium based metal matrix composites using finite element method [J]. Materials Science and Technology,1995,11(3):228-236
    [41]邵军超,刘越.颗粒增强金属基复合材料力学行为有限元模拟研究现状[J].材料导报,2007,21(9):111-115
    [42]A. Venkatesan, V. M. Gopinath. Simulation of casting solidification and its grain structure prediction using FEM [J]. Journal of Materials Processing Technology, 2005,168(1):10-15
    [43]王金龙,赖朝彬.CAFE模型机理及应用[J].钢铁研究学报,2009,21(10):10-14
    [44]C. A. Gandin, J. L. Desbiolles. Three-dimensional cellular automaton-finite element model for the prediction of solidification grain structures [J]. Metallurgical and Materials Transactions A:Physical Metallurgy and Materials Science,1999,30(12):3153-3165
    [45]T. Ohira, O. Ukai. Prediction technology on grain structure defects in directional solidification casting (application of cellular automaton method for the prediction of solidification grain structures) [J]. Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineers, Part B,2002,68(667):819-824
    [46]M. Vandyoussefi, A. L. Greer. Application of cellular automaton-finite element model to the grain refinement of directionally solidified Al-4.15 wt% Mg alloys [J]. Acta Materialia,2002,50(7):1693-1705
    [47]Z. Ignaszak, M. Hajkowski. Prediction of dendritic microstructure using the cellular automaton finite element method for hypoeutectic Al-Si alloys castings [J]. Materials Science,2006,12(2):124-128
    [48]S. Seong-Moon, K. In-Soo. Grain structure prediction of Ni-base superalloy castings using the cellular automaton-finite element method [J]. Materials Science and Engineering A (Structural Materials:Properties, Microstructure and Processing),2007,449-451(3):713-716
    [49]J. Gawad, B. Niznik. Validation of multi-scale model describing microstructure evolution in steels [J]. Steel Research,2008,79(8):652-659
    [50]G.Guillemot, C. A. Gandin. A new cellular automaton-finite element coupling scheme for alloy solidification [J]. Modeling and Simulation in Materials Science and Engineering,2004,12(3):545-556
    [51]G. Guillemot, C. A. Gandin. Interaction between single grain solidification and macrosegregation:Application of a cellular automaton-Finite element model [J]. Journal of Crystal Growth,2007,303(1):58-68
    [52]G. Guillemot, C. A. Gandin, et al. Modeling of macrosegregation and solidification grain structures with a coupled cellular automaton-Finite element model [J]. ISIJ International,2006,46(6):880-895
    [53]L. Madej, P. D. Hodgson. Comparison of the strain distribution obtained from multi scale and conventional approaches to modelling extrusion [C]. Diffusion and Defect Data Part B (Solid State Phenomena),2007,129(1):25-30
    [54]A. Shterenlikht, I. C. Howard. The CAFE model of fracture-application to a TMCR steel [J]. Fatigue and Fracture of Engineering Material and Structures, 2006,29(9-10):770-787
    [55]S. Das, E. J. Palmiere, et al. Modelling recrystallisation during thermomechanical processing using CAFE [C]. Materials Science Forum 2004, Annecy,2004, 467-470:623-628
    [56]王金龙,王福明.基于CAFE法优化易切削钢9SMn28锰、硅、硫含量[J].铸造技术,2009,30(2):216-223
    [57]Jin-long Wang, Fu-ming. Numerical simulation of 3D-microstructures in solidification processes based on the CAFE method [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(6):640-645
    [58]王东岭,苏勇.热型连铸Cu-10Al合金温度场及晶粒结构的数值模拟[J].特种铸造及有色合金,2009,29(3):276-279
    [59]林柏年.铸造流变学[M].哈尔滨:哈尔滨工业大学出版社,1991:50-62
    [60]T. Isobe, Kubota M. Influence of Semi-Solid Temperature Range and the Rate of Increase in Strength during Solidification Process on Hot Tearing of Cast Aluminium Alloys [J]. Japan Foundryman's Soc.1978,50(7):425-430
    [61]康进武,熊守美.铸件热裂数值模拟研究进展[J].铸造,1998,47(5):48-51
    [62]B. Magnin, L. Katgerman. Physical and numerical modeling of thermal stress generation during DC casting of aluminum alloys [C]. Modeling of Casting, Welding and Advanced Solidification Processes VII, Proceedings of the Seventh Conference in a Series on Modeling Casting and Welding Processes, London, 1995:303-310
    [63]王恒林,郑贤淑,姚山,等.热裂预测的等效应变判据[J].大连理工大学学报,1998,38(2):194-197
    [64]赵良毅,靳红梅.热裂的相对应力梯度和频率因子无量纲判据[J].铸造,1996,45(12):15-17
    [65]张家泉,金山同,于震宗,等.合金热裂的凝固力学判据[J].北京科技大学学报,1995,17(1):36-40
    [66]杨屹,蒋玉明.铸件凝固过程中热应力场及热裂的数值模拟研究分析[J].铸造技术,2000,21(2):36-39
    [67]贾宝仟.铸钢件热裂预测及其数值模拟[D].北京:清华大学,1996
    [68]程军,程眉.铝合金铸件凝固过程热应力数值模拟[J].特种铸造及有色合金,1995,15(5):1-4
    [69]Clyne. T. W, Wolf. M, Kurz. W. The effect of melt composition solidification cracking of steel with particular reference to continuous casting [J]. Metal Trans. 1982,13B(2):259-266
    [70]Feurer U. Mathematical model of hot tearing of binary aluminum alloys [J]. Giesser forshung,1976,28(2):75-80
    [71]Su. Yitno, W. H. Kool, L. Katgerman. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metallurgical and Materials Transactions A,2005,36A(6):1537-1546
    [72]P. R. Sahm, P. N. Hansen, Numerical simulation and modeling of casting and solidification processes for foundry and cast house [M].Zurich:International Committee of Foundry Technical Associations,1984:135-136
    [73]徐东,安阁英.铸钢件热裂纹的预测[J].上海交通大学学报,1994,28(3):10-16
    [74]M. Rappaz, J. M. Drezet, M. Gremaud. A new hot tearing criterion [J]. Met. Trans.1999,30A(2):449-455
    [75]J. M. Drezet, M. Rappaz. A new hot yearing criterium for aluminium alloys [C]. Proceedings of the First EsaForm Conference on Material Forming, Sophia Antipolis,1998:49-52
    [76]J.M. Drezet, M. Gremaud, R. Graf, et al. A new hot tearing criterion for steel [C]. Proceedings of the 4th European Continuous Casting Conference, Birmingham, 2002:755-763
    [77]李军文,桃野正,付莹.超声波功率对铸锭内的气孔及组织细化的影响[J].铸造,2007,156(2):152-155
    [78]袁易全.近代超声原理及应用[M].南京:南京大学出版社,1996:133-144
    [79]L. F. Mondolfo. Structure and properties of aluminum alloys [M]. London: Butterworths Press,1976:200-400
    [80]冯诺,李化茂.声化学及应用[M].合肥:安徽科技出版社,1990:112-115
    [81]周家荣.铝合金熔铸生产技术问答[M].北京:冶金工业出版社,2008:114
    [82]丁恒敏.铸造合金的微观组织模拟[D].武汉:华中科技大学,2005
    [83]严卫东,刘林.铝合金及高温合金铸件凝固过程中晶粒组织形成的计算机模拟[D].西安:西北工业大学,2002
    [84]刘清梅.超声波对金属凝固特性及组织影响的研究[D].上海:上海大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700