山地常绿落叶阔叶林空间异质性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间异质性是生态学研究的一个极为重要的理论问题,也是生态学家研究不同尺度的生态系统功能和过程中最感兴趣的问题。由于森林群落在结构、功能上的异质性及在时空上的动态变化,加之表达的多样化,使得群落异质性度量变得非常困难,所以本研究以四川省雅安天全县白沙河景区天然亚热带山地常绿落叶阔叶林为研究对象,采用样地调查方法,设立1个100m×100m样地,采用传统的罗盘仪对树体的空间位置进行准确定位,通过不同的分析方法,从林分局部和整体出发,开展了常绿落叶阔叶林空间异质性研究。其结果如下:
     (1)运用两参数Weibull方程对林分进行分层模拟,能更好地分析林分树体大小(tree sizes)的结构;H≥10m层对林分树体大小的结构起主导作用;运用Weibull方程对林分密度进行模拟,反映天然林在一定地域空间范围内也呈连续分布状态。
     (2)在0-75m范围内不同层的空间格局(全林、H<10m层、H≥10m层)呈规则分布且趋于随机分布,不同树种的空间点格局亦呈规则分布且趋于随机分布;通过Ripley's K函数分析,不同层、不同树种在每个空间格局下都存在多个尺度转折点,表明与林分的结构和外部环境有密切的关系。
     (3)通过半方差函数分析,表明林分的DBH、BA的空间自相关范围狭窄,在45°方向上空间变异性表现明显。
     (4)各树种的林分断面积增长量的时间序列以AR(2)为主,且林分林木断面积增长量在1986-1991年,1986-1996年,1986-2001年,1986-2006年,在45°方向上空间变异较为明显;林木生物量有较强的空间变异,且在45°和97°方向最为明显。
     (5)冠层下散射的光通量密度(PPFDDiffuseU)与空隙度(Gapfraction)、开度(Openness)和叶面积指数(LAI)有极强的线性相关关系;通过半方差分析,冠层下散射的光通量密度(PPFDDiffuseU)、叶面积指数(LAI)、丛生指数(ClumpFact)具有较高的异质性,而林分冠层结构指数(空隙度、开度)的空间变异较差。同时,结果证明了光环境对林分冠层结构空间依赖的重要性,也强调了单次数据的局限性,光能利用的长时间观测和实验手段对林分结构研究是必须的。
     (6)山地常绿落叶阔叶林、常绿落叶阔叶林次生林和人工林(柳杉、杉木林)之间的土壤有机质含量差异性明显。山地常绿落叶阔叶林土壤有机质具有较大的空间自相关距,土壤有机质含量分布趋于大块状变异,在45°和90°这两个方向上的变异最大。
     (7)在0-100m的尺度下,H、E具有负空间自相关性,但这种空间自相关性不明显;H、E在各个方向上异质性表现不明显,在整个尺度上具有恒定的变异。
     (8)在全尺度下,通过主轴邻距法对林分环境异质性的空间分析是可行的。PCNM的分析表明,土壤有机质、胸高断面积、林分密度、空隙度和开度与PCNM在小尺度上是十分显著的;多样性指数、土壤有机质、断面积、林分密度、空隙度和开度在中大尺度呈显著状态。
     (9)相关分析表明,林分结构因子和冠层光因子相关性明显,它们与PCNM变量相互影响,相关性较高。
     (10)林分在时间和空间表现为连续变化的状态,这也表明了林分结构因子在一定尺度内可简化为区域连续变量;同时证明了林分结构因子为连续变量的假定是成立的。
Abstracts: As 0patial heterogeneity becomes a major theme in a wide range of ecological studies, the concepts of scale and hierarchy become increasingly important in ecology in general. This confirms, and is indicative of, the rapidly rising awareness of the importance of scale and hierarchy by ecologists. Since structures of forest communities, functional heterogeneity and its spatially and temporally dynamic varieties which expresses by many approaches, it is difficult to quantity community heterogeneity. In this research, one sampling in sizes of 100 m×100 m were established in subtropical hilly evergreen-deciduous broad-leaved forest in Baisha River of southwestem Sichuan province, and expanded the researches of forest spatial heterogeneity by many statistics methods. The results were as following:
     (1) To simulate stand structures of different forest layers using two-parameter Weibull function, it can prefer to elucidate the structures of tree sizes. And the results demonstrated that H≥10m layer was important layer that controlled the forest stand structure, in simultaneity, we obtained better simulated forest stem density by Weibull function, and this reflected continuous distributions about nature forests at certain spatial ranges.
     (2) Spatial patterns of different layers which included whole stand, H<10m layer and H≥10m layer represented Regularity distribution tending to randomness, and the same as different tree species at the distance interval 75m. By analysis of Ripley's K function, inflexions in multi-scales were presented in spatial patterns of different forest layers and tree species that indicated the affinities between forest structures and exterior conditions.
     (3) By analysis of semivariogram function, diameter at breast height and basal area of forest stand show spatial autocorrelations in strict ranges, further more, they represented spatial varieties only in orientations of 45 degree.
     (4) Time series equations of basal area increment of each tree species were established, and AR (2) was suit for many tree species. By analysis of semivariogram function, basal area increment of each tree species showed spatial varieties only in orientations of 45 degree during 1986-1991, 1986-1996, 1986-2001, 1986-2006. In addition, trees biomass represented spatial varieties only in orientations of 45 and 97 degree.
     (5) There were robust linear relationships between diffuse of Photosythetically active Flux Density under canopies (PPFDDiffuseU) and gapfraction, openness as well as leaf area index (LAI) (R~2=0.9836, P<0.00001), moreover, PPFDDiffuseU had positive linear correlations with gapfraction, openness, and had negative linear correlation with the LAI. By analysis of semivariance PPFDDiffuseU and LAI had obvious spatial heterogeneities, however gapfraction, openness had weak spatial variability. Our results confirm importance of examining spatial dependence of light availability in studies of forest canopy, but they also underscore the limitations of a single period of data collection. Long-term studies as well as experimental manipulations of light availability are needed to establish causal relationships between light availability and stand-level patterns.
     (6) Organic matters contents which were in hilly evergreen-deciduous broad-leaved forest, second forest of hilly evergreen-deciduous broad-leaved forest and plantation forest such as Japan cedar and fir forest, showed evidently different. Organic matters contents in hilly evergreen and deciduous broad-leaved forest represented spatial autocorrelations in large ranges, and tended to distributions of patchiness varieties, at same time, represented spatial varieties only in orientations of 45 and 97 degree.
     (7) Linear models for isotropy were optimal models by simulating Shannon-Wiener diversity indices (H) , Pielou evenness indices (E) ; and for anisotropy linear model was optimal model to H, as well as Gaussian model to E. moreover, the ratio of C/(C_0+C) showed that anisotropic heterogeneities was not obvious, namely isotropy of H and E was effective to spatial pattern of tree species diversity, and appeared steady variances in whole scales; in sampling scales, H and E represented negatively spatial autocorrelation, and its spatial autocorrelation presented not remarkable in regional scales (-0.6386、-1.0902<-1.96)
     (8) Under all scales, principal coordinates of neighbour matrices (PCNM) analysis was best approach to spatial analysis of ecologically environment data, by means of PCNM varieties in fine scale of OM contents, DBH, stem densities, gapfraction and openness were very outstanding, Moreover, diversity indices, OM contents, BA, stem densities, gapfraction and openness in middle scales showed very outstanding.
     (9) By analysis of canonical correlation, the results showed that they had obvious correlations among forest structures, canopy structures and light environment factors, additionally, they represented high affinities with PCNM variables.
     (10) From above analysis, we know that forest stand represent continuous change situations in space and time, and this confirms that forest stand structures factors can simplify regional continuous variables, and this proved that previous hypothesises were correct.
引文
[1] Kareiva P. Space: the final frontier for ecological theory. Ecology, 1994,75:1-2.
    
    [2] Wu J G.and Loucks O. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology. The Quarterly Review of Biology. 1995, 70:439-466.
    
    [3] Wu J G. Paradigm shift in ecology: An overview. Acta Ecologica Sinica, 1996,16:449—460.
    [4] Sparrow A D. A heterogeneity of heterogeneities. Trends in Ecology Evolution. 1999,14: 422— 423
    [5] Mclntosh R P. Concept and terminology of homogeneity and heterogeneity in ecology. In: Kolasa J and Picker S T A. ads. Ecological heterogeneity. New York: Spdnger-Verlag, 1991, 24-46.
    
    [6] Levin S A. The problem of pattern and scale in ecology. Ecology. 1992,73:1943-1967.
    [7] Turner M G. Landscape ecology: the effect of pattern on process. Ann,. Rev. Erol. Syst., 1989, 20: 171—197.
    [8] Pickett S T A and Cadenasso M L. Landscape Ecology; Spatial heterogeneity in ecological systems. Science. 1995,269:331—334.
    
    [9] Wu J G. Landscape ecology. Beijing; Higher Education Press. 2000.
    [10] Li H and Reynolds J F. On definition and quantification of heterogeneity. Oikos,1995, 73: 280-284.
    
    [11] Dutilleul P and Legendre P. Spatial heterogeneity against heteroscedasticity: an ecological paradigm versus a statistical concept. Oikos,1993,66: 152-171.
    
    [12] Kolasa J and Rollo C D. Introduction: the heterogeneity of heterogeneity: A glossary. In: Kolasa J and Picket S T A. ads. Ecological heterogeneity. New York: Springer-Verlag,1991,1 — 23
    [13] Hutchinson G E. The concept of pattern in ecology. Proceedings of the National Academy of Sciences (USA). 1953,105: 1—12.
    [14] Allen T F H and Hoekstra T W. The confusion between scale-defined l-els and conventional of organization in ecology. Journal of Vegetation Science. 1990,1:5-12.
    [15] KodiarNB and Wiens 1 A. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 1990, 59:253-260.
    [16] Turner M G. O'Neil R V, Gardner R H, et al. Effects of changing spatial scale on the analysts of landscape pattern. Landscape Ecology. 1989, 3: 153 — 162.
    [17] O'Neil R V. Gardner R H. Milne B T, et al. Heterogeneity and spatial hierarchies. In: Kolasa 1 and Pickett S T A, ids. Ecological Heterogeneity. New York; Springer-Verlag. 1991, 85—96.
    [18] Qi Y and Wu J. Effects of changing spatial resolution on the results of landscape pattern analysis using spatial correlation indices. Landscape Ecology, 1995,11:39—50.
    [19] O'Neil R V. Hunsaker C T, Timmins S P, et al. Seal, problems in reporting landscape patern at the region scale. Landscape Ecology. 1996, 11-16
    [20] Delcourt H R. Delcourt P A, Webb 111 T. Dynamic plant ecology; the spectrum of vegetation change in space and time. Quert. Sci. Rev, 1983, 1: 153—175.
    
    [21] Urban D I O'Neill R V. Shugart H H J r. Landscape Ecology. Bioscience. 1987,37: 119-127.
    [22] Simon H A. The architecture of complexity. Proc. Am. Philos. Soc., 1962, 106:467—482.
    [23] Fiebleman J K. Theory of integrative levels. Brit. J. Philos. Sci.,1954, 5: 59—66.
    [24] Patten B C. Systems approach to the concept of environment. Ohto. J. Sci., 1978, 78: 206—222.
    [25] Odum E P. Basic Ecology. New York; Saunders College Publishing. 1983.
    [26] O'Neil R V, DeAngelis D L, Waide J B. et al. A hierarchical concept of the ecosystem. Princeton; Princeton University Press. 1986.
    [27] O'Neil R V. Hunsaker C T, Jones K B, et al. Monitoring environmental quality at the landscape scale.BioScience, 1997,47: 513—519.
    [28] Wu J, Jelinski D E. Luck M, et al. Multiscale analysis of landscape heterogeneity: Scale variance and pattern metrics. Geographic Information Systems (Abroad). 2000,6: 6-19.
    [29] Robertson G P, Gross K L. Assessing the Heterogeneity of Belowground Resources: Quantifying Patern and Scale. In: Caldwell M M and Pearcy R W, ads. Evocation of Environmental Heterogeneity Plants. New York: Academic Press. 1994, 237-253.
    [30] Li H and Reynolds J F. A new contagion index to quantify spatial patterns of landscapes. Landscape Ecology, 1993, 8: 155-162.
    [31] Li H and Reynolds J F. A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology. 1994, 75, 2446-2455.
    [32] Greig—Smith P. Quantitative plant ecology. Berkeley and Los Angeles: University of California Press, 1983.
    [33] Sokal R R and Oden N L. Spatial autocorrelation in biology: some biological implication and four examples of evolutionary and ecological interest. Biological Journal of the linnean Society, 1978, 10: 229-249.
    [34] Burrough P A. Multiscale sources of spatial variation in soil. Application of fractal concepts to nested levels of soil variation. Journal of Soil Science. 1983, 34: 577-597.
    [35] Burrough P A. Multiscale source of spatial variation in soil. A non—Browman fracytal model and its applications in soil survey. Journalof Soil Silence. 1983, 34: 599—620.
    [36] Burrough P A. Spatial aspects of ecological data. In: Jongman R H G, ter Braak C J F. van Tongeren O F R,eds. Data analysis in community and landscape ecology. Wageningen: Pudoc Wageningen, 1987,213-251
    [37] Palmer M W. Fractal geometry: a tool for describing spatial pattern of plant communities. Vegetatio, 1988, 75:91-102.
    [38] Sokal R R. Jacque, G M, Wooren M C. Spatial autocorrelation analysis of migration and selection. Genet,cs.1989, 121: 845-856
    [39] Burrough P A. Fractal dimensions of landscapes and other environmental data. Nature. 1981, 294:240-242.
    [40] Milne B T. Measuring the fractal geometry of landscapes. Applied Mathematics and Computation, 1988,27: 67-79.
    [41] Sugihara G. May R M. Applications of fractals in ecology. Tends in Ecology & Evolution, 1990, 5: 79-86.
    [42] Jongman R H G, ter Braak C J F. van Tongeren O F R. Data analysis m community and landscapes ecology.Wageningen: Parlor, 1987.
    [43] Rensahaw E and Ford E D. The description of spatial patern using two—dimensional spectral analysis.Vegetatio, 1984, 56: 75-85.
    
    [44] Chatfield C. The analysis of time series; an introduction. London: Chapman and Hall, 1984.
    [45] Krummel J P. Gardner R H. Sugihara G. et al. Landscape patterns in a disturbed environment. Oikos, 1987,48:321-324.
    [46] Robertson G P, Huston M A. Evans F C, et al. Spatial patterns in a successional plant community: patterns of nitrogen availability. Ecology, 1988,69:1517-1524.
    [47] Legendre P and Fortin M J. Spatial pattern and ecological analysis. Vegetatio, 1989, 80: 107-138.
    [48] Turner M G and Gardner R H. Quantitative methods in landscape ecology: An introduction. In:Turner M G and Gardner R H. eds. Quantitative methods in landscape ecology: the analysis and interpretation可landscape heterogeneity. New York:Springer-Verlag, 1991,3-16.
    [49] Hansson L. On the importance of landscape heterogeneity in northern regions for the breeding population densities of homeotherms: a general hypothesis. Oikos. 1979,33: 182-189
    [50] Den Boer P J. On the survival of populations in a heterogeneous and variable environment. Oecologica. 1981, 50:39-53
    [51] Freemark K E and Merrmn H G. Importance of area and habitat heterogeneity to bird assemblages m temperate forest fragments. Biological Conservation, 1986, 31:95-105
    [52] Van Dorp D and Opdam P F M. Effects of patch size, isolation and regional abundance on forest bird communities. Landscape Ecology, 1987, 1: 59-73.
    [53] Swanson F J, Kratz T K. Caine N, et al. Landform effects on ecosystem pattern and processes. Bioscience.1988,38: 92-98.
    [54] Chen Y F. Dong M. Soil variation along a sandy hill lope in Ordos Plata, Quaternary Sciences. 2000,20: 569.
    [55] Gardner R H. Milne B T, Turner M G, et al. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology, 1987, 1: 19 28.
    [56] SklarF H and Costa- R. The development of dynamic spatial models for landscape ecology: a review and prognosis. In: Turner M G and Gardner R H, ads. Quantitative methods in landscape ecology: the analysis and interpretation of landscape heterogeneity. New York: Springer-Verlag, 1991,239-288.
    [57] White P S and Pickers S T A. Natural disturbance and dynamics, an introduction. In: Pickett S T A and White P S. eds. The ecology of natural disturbance and patch dynamic. New York: Academic Press, 1985.
    [58] 包维楷.四川瓦屋山原生和次生常绿阔叶林的群落学特征.应用与环境生物学报,2002,8(2):120~126
    [59] 包维楷.中亚热带常绿阔叶林自然恢复15年群落乔木层的动态变化.植物生态学报,2000,24(6):702-709
    [60] 包维楷等.亚热带常绿阔叶林主要乔木种群自然恢复15年来的变化.林业科学,2001,5:55-62.
    [61] 宋永昌编著.植被生态学.上海:华东师范大学出版社,2001.
    [62] 《四川森林》编辑委员会.四川森林[M],北京:中国林业出版社,1984.
    [1] Bailey, R. L., AND Dell, T. R. Quantifying diameter distributions with the Weibull function [J]. For. Sci., 1973, 19: 97-104.
    [2] Bronson, P. B., AND Harold, E. B. Juvenile diameter distributions of loblolly pine characterized by the two-parameter Weibull function[J]. New Forests 2005, 29: 233-244.
    [3] David, B. L., Chris, R. M. AND Daniel, B. B. Indicators of biodiversity for ecologically sustainable forest management [J]. Conservation Biology, 2000, 14: 941-955.
    [4] Gilliam, F. S., Tun-ill, N. L., AND Adams, M. B. Herbaceous-layer and overstory species in clear-cut and mature central appalachian hardwood forests [J]. Ecological Applications, 1995, 5: 947-955.
    [5] Giustino, T., Pietro, P., AND Giacomo, G. Spatial dynamics of late successional species under Pinus nigra stands in the northern Apennines (Italy) [J]. Ann. For. Sci., 2005, 62: 669-679.
    [7] Hector, E. G., Douglas, A. M. et al. Stand-level height-diameter equations for young Ponderosa pine plantations in Neuquen, Patagonia, Argentina: Evaluating applications of equations developed in the Western United States [J]. West. J. Appl. For., 2004, 19: 202-210.
    [8] Hilbom, R., AND Mangel, M. The ecological detective: confronting models with data [M]. Princeton University Press, Princeton, New Jersey, USA. 1997.
    [9] Ishii, H. T., Tanabe, S., AND Hiura, T. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperate forest ecosystems [J]. For. Sci., 2004, 50: 342-355.
    [10] Kangas, A., Maltamo, M. Calibrating Predicted Diameter Distribution with Additional Information[J]. For. Sci., 2000, 46: 390-396.
    [11] Keenan, P. et al. Restoration of plant biodiversity beneath tropical tree plantations in northern Australia [J]. For. Ecol. Manage, 1997, 99: 117-131.
    [12] Kint, V. et al. Spatial methods for quantifying forest stand structure development: a comparison between nearest-neighbor indices and variogram analysis [J]. For. Sci., 2003, 49: 36-49.
    [13] Mabvurira, D., Maltamo, M. AND Kangas, A. Predicting and calibrating diameter distributions of Eucalyptus grandis (Hill) Malden plantations in Zimbabwe [J]. New Forests, 2002, 23: 207-223.
    [14] Maltamo, M., Puumalalnen, J., AND Paivinen, R. Comparison of beta and Weibull functions for modeling basal area diameter distribution in stands of Pinus sylvestris and Picea abies [J]. Scandinavian Journal of Forest Research, 1995, 10: 284-295.
    [15] Manuel, R. G., Robin, L. H. et al. Structure and flofistics of secondary and old-growth forest stands in lowland Costa Rica [J]. Plant Ecology, 1997,132: 107-120.
    [16] Mehtatalo, L. An algorithm for ensuring compatibility between estimated percentiles of diameter distribution and measured stand variables [J]. For. Sci., 2004, 50: 20-32.
    [17] Shimano, K. A power function for forest structure and regeneration pattern of pioneer and climax species in patch mosaic forests [K]. Plant Ecology, 2000, 146: 205-218.
    [18] Shiyomi, M., AND Takahashi, S. et al. Roles of plant biomass, vegetational heterogeneity, and energy matter cycling in grass land sustainability [J]. Ecological Modelling, 2005, 132: 135-149.
    [19] Timothy, B. H., John, C. et al. Predicting average growth and size distributions of Douglas-fir saplings competing with sprout clumps of tanoak or Pacific madrone [J]. New Forests (Historical Archive), 1991, 5: 109-130.
    [20] Van Pelt, R., AND Nadkarni, N. M. Changes in the vertical and horizontal distribution of canopy structural elements in an age sequence of Pseudotsuga menziesii forests in the pacific northwest[J]. For. Sci., 2004, 50: 326-341.
    [21] 张金屯.草地群落主要种群的小格局分析[J].草业学报,1994,3(4):7-11.
    [22] 张金屯.植被数量生态学方法[M].北京:中国科学技术出版社,1995.
    [23] Barbour M. G. AND Billings W. D. North America terestrial vegetation [M]. New york: Cambridge University Press, 1993.
    [24] Diggle P. J. Statistical analysis of spatial point patterns [M]. New York: Academic Press, 1983.
    [25] Gittins R. Canonical analysis: A review with applications in ecology [M]. Berlin: Sprinter Verlag, 1985.
    [26] Greig-Smith P. Quantitative Plant Ecology. 3rd ed [M], London: Blackwell Scientific Publications, 1983.
    [27] Ripley B. D., Modelling spatial pattern [J]. Journal of the Royal statistical Society. Series B, 1977, 39: 17-212.
    [28] Ripley B. D Spatial statistics[M], New York: Wiley, 1981.
    [29] Sterner R. W. Testing for life historical changes in spatial patterns of four tropical tree species[J]. Journal of Ecology, 1986, 74: 621-633.
    [30] Sewart G. H. & Rose A. B., The significance of life history strategies in the developmental history of mixed beech forests [J]. New Zewland. Vegetatio, 1990, 87: 101-114.
    [31] Ward J. S et al. Long-term spatial dynamics in an old growth deciduous forest[J]. Forest Ecology and Management, 1996, 83: 189-202.
    [32] 寇文正.林木直径分布的研究[J].南京林产工业学报,1982(1):51-65.
    [33] 陆元昌,杨宇明,杜凡,等.西双版纳热带森林生长动态模型及可持续经营模拟[J].北京林业大学学报,2002,24(5/6):139-144.
    [34] 孟宪宇.使用Weibull分布对人工油松林直径分布的研究[J].北京林学院学报,1985(1):30-39
    [35] 惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究,1995,8(2):127-131.
    [36] 唐守正.一种与直径分布无关的预测林分直径累积分布的方法[J].林业科学,1997,33(3):193-201.
    [37] 吴承祯,洪 伟.杉木人工林直径结构模型的研究[J].福建林学院学报,1998,18(2):110-113.
    [38] 段爱国,张建国,童书振.6种生长方程在杉木人工林林分直径结构上的应用[J].林业科学研究,2003,16(4):423-429.
    [39] Kershaw K A, Looney H H. Quantitative and dynamic plant ecology, 3rd[M], London, UK: Edward, 1985.
    [40] Steele J H. Discussion: Scale and coupling in ecological systems. In: Roughgarden J, May R M, Levin S ed. Perspectives in theoretical ecology [M]. Princetom, New Jersey, USA: Princeton University Press, 1989, 177-180.
    [41] Wiens J A. Spatial scaling in ecology [J]. Functional Ecology, 1989, 3: 385-397.
    [42] Wu J. Hierarchy and scaling: Extrapolating information along a scaling ladded [J]. Canadian Journal of Remote Sensing, 1999, 25: 367-380.
    [43] Zhang, L. J, Jeffrey, H. G. et al. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated-sigmoid, uneven-aged stands [J]. Can. J. For. Res. 2001, 31: 1654-1659.
    [44] Cao Quang. Predicting parameters of a Weibull function for modeling diameter distribution [J]. For. Sci. 2004, 50(5): 682-685.
    [45] Zhang Yujia, Bruce E Borders, Rodney E Will, Hector De Los Santos Posadas. A model for foliage and branch biomass prediction for intensively managed fast growing loblolly pine [J]. For. Sci. 2004, 50(1): 65-80.
    [46] Wang Mingiiang, Keith Rennolls. Tree diameter distribution modelling: introducing the logit-logistic distribution [J]. Canadian Journal of Forest Research, 2005, 35(6): 1305-1313.
    [1] Baidwin, V. C., K. D. Peterson, H. E. Burkilart, R. L. Amateis, and P. M. Dougherty. Equation for estimating loblolly pine branch and foliage weight and surface area distributions [J]. Can. J. For. Res., 1997, 27: 918-927.
    [2] Bailey, R. L., and T. R. Dell. Quantifying diameter distributions with the Weibull function [J]. For. Sci., 1973, 19(2): 97-104.
    [3] Bailey, R. L. A compatible volume-tape model based on the schumacher and hall generalized constant form factor volume equation [J]. For. Sci., 1994, 40: 303-313.
    [4] Yang, X., J. J. Witcosky, and J. J. Miller. Vertical overstory canopy architecture of temperate deciduous hardwood forests in the Eastern United States [J]. For. Sci., 1999, 45(3): 349-358.
    [5] Yujia Zhang, Bruce E Borders, Rodney E Will, Hector De Los Santos Posadas. A model for foliage and branch biomass prediction for intensively managed fast growing loblolly pine [J]. Forest Science 2004, 50(1): 65-81.
    [6] Wichmann, L. Modelling the effects of competion between individual trees in forest stands. PhD thesis, Royal Veterinary and Atricultural University, Copenhagen, Denmark, 2002, 112.
    [7] Melisa L Holman, David L Peterson. Spatial and temporal variability in forest growth in the Olympic Mountains, Washington: sensitivity to climatic variability[J]. Canadian Journal of Forest Research, 2006, 36(1): 92-105.
    [8] Jill M Nakawatase; David L Peterson. Spatial variability in forest growth - climate relationships in the Olympic Mountains, Washington [J]. Canadian Journal of Forest Research, 2006, 36(1): 77-92.
    [9] Haijin Shi, Lianjun Zhang, Jianguo Liu. A new spatial-attribute weighting function for geographically weighted regression [J]. Canadian Journal of Forest Research, 2006, 36(4): 996-1006.
    [10] Porte A, Hartelin H H. Modelling mixed forest growth: a review of models for forest management[J]. Ecological Modelling, 2002, 150: 141-188.
    [11] 唐守正,李希菲,孟阳和.林分生长棋型研究的进展[J].林业科学研究,1993,29(6):672-679.
    [12] Jiquan Chen, Bo Song, Mark Rudnicki, Melinda Moeur, et al. Spatial relationship of biomass and species distribution in an old-growth Pseudotauga-Tsuga forest[J]. Forest Science, 2004, 50, (3): 364-376.
    [13] Bradshaw, G. A., and T. A. Spies. Characterizing canopy gap structure in forests using the wavelet transform [J]. J. Ecol., 1992, 80: 205-215.
    [14] Chen, J., and G. A. Bradshaw. Forest structure in space: a case study of anold growth spuce fir forest in Changbaishan Natural Reserve. PR China [J]. For. Ecol. Manage, 1999, 120: 205-215.
    [15] Cressii, N. A. Staistics for spatial data. John Wiley & Sona, New York, NY. 1993.
    [16] Anselin, L. Spatial econometrics: Methods and models. The Netherlands: Dordresht, Kluwer Academic Publishers, 1988.
    [17] Anselin, L. What is special about special data? Alternative perspectives on spatial data analysisin Spatial statistica: Past, present, and future, Griffith, D. (ed.). Inst. of Math. Geog., Ann Arbor. MI. 1990, 63-77
    [18] Anselin, L. and D.A.Griffith. Do spatial effects really matter in regression analysis[J]. Pap.Reg.Sci.Assoc, 1988,65:11-34.
    [19] Dovciak,M.,L.E.Frelich,and P.B.Reich. Discordance in spatial patterns of white pine size-classes in a patchy near-boreal forest [J]. J. Ecol. 2001,89:280-291.
    [20] Gregoire,T.G., O.Schabenberger, and J.P.Barrett. Linear modelling of irregular spaced, unbalanced, longitudinal data from permanent-plot measurements [J]. Can. J. For. Res. 1995,25:137-156.
    [21] Gregoire,T.G.,and O.Schabenberger. A non-linear mixed-effects model to predict cumulative bole volume of standing trees[J]. J. Appl. Sta. 1996,23:257-271.
    [22] Kenkel,N.C.,J.A.Hoskina,and W.D.Hoskins. Local competition in a naturally established jack pine stand [J]. Can. J. Bot. 1989,67:2630-2635.
    [23] Koistinen,E., and S.Valkonen. Models for height development of Norway spruce and Scots pine advance growth after release in southern Finland [J]. Sil. Fen.,1993,27:179-194.
    [24] Kuuluvalnen,T., and T.Pukkala. Effect of crown shape and tree distribution on the spatial distribution of shade [J]. Agric. For. Meteorol. 1987,40:215-231.
    [25] Lappi,J. Mixed linear models for analyzing and predicting stem form variation of Scott pine[J]. Commun. Inst. For. Fen., 1986,134:1-69.
    [26] Lappi,J. Calibration of height and volume equations with random parameters[J]. For. Sci. 1991,37:781-801.
    [27] Miller,T.E. and J.Weiner. Local density variation may mimic effects of asymmetric competition on plant size variability [J]. Ecology, 1989,70:1188-1191.
    [28] Moeur, M. Charaterizing spatial patterns of trees using stem-mapped data[J]. For. Sci.,1993,39:756-775.
    
    [29] Monserud,R.A. Time-series analysis of tree-ring chronologies[J]. For. Sci., 1986,32:349-372.
    [30] Fang J Y, Chen A P, Peng CH, et al.2001.Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292:2320—2322
    [1] Monsi M & T Saeki. Ueber den Lichtfaktor in den Pflanzengesellschaften und seine Bedeutung fuer die Stoffproduktion. Japanese Journal of Botany, 1953, 14: 22-52.
    [2] Whitmore TC, ND Brown, MD Swaine, D Kennedy. Use of hemispherical photographs in forest ecology, measurement of gap size and radiation totals in a Bomean tropical rain forest. J. Trop. Ecol., 1993, 9: 131-151.
    [3] Belsky A J, RG Amundson, JM Duxbury. The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. J. Appl. Ecol, 1989, 26: 1005-1024.
    [4] Belsky AJ, SM Mwonga, RG. Amundson. Relative effects of trees on their understory environments in high-rainfall versus low-rainfall amounts. J. Appl. Ecol., 1993, 30: 143-155.
    [5] Jackson LE, RB Strauss MK Firestone, JW Bartolome. Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agric. Ecol. Environ., 1990, 32: 89-105.
    [6] Mcguire JP, RJ Mitchell, EB Moser, SD Pecot, DH Gjerstad. Gaps in a gappy forest, Plant resources, longieaf pine regeneration, and understory response to tree removal in longieaf pine savannas. Can. J. For. Res., 2001, 31: 756-778.
    [7] Palik BJ, RJ Mitchell, GA Houseal, N Pederson. Effects of canopy structure on resource availability and seedling responses in a longleaf pine ecosystem.. Can. J. For. Res., 1997, 27: 1458-1464.
    [8] Cartham CD, JS Denslow, WJ Platt. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res., 1990, 20: 620-631.
    [9] Easter MJ & TA Spies. Using hemispherical photography for estimating photosynthetic photon flux density under canopies and gaps in Douglas-fir forests of the Pacific Northwest. Can. J. For. Res., 1994, 24: 2050-2058.
    [10] Gay LW, KR Knoerr, MO Braaten. Solar radiation variability on the floor of a pine plantation. Agric. Meteorol., 1971, 8: 39-50.
    [11] Reisnyder WE, GM Furnival, JL Hororwitz. Spatial and temporal distribution of solar radiation beneath forest canopies. Agric. Meteorol., 1971, 9: 21-37.
    [12] Messier C & P Bellefleur. Light quantity and quality on the forest floor of pioneer and climax stages in a birch-beech-sugar maple stand. Can. J. For. Res., 1988, 18: 615-622.
    [13] Constabel AJ & VJ Lieffers. Seasonal patterns of light transmission through boreal mixed wood canopies. Can. J. For. Res., 1996, 26: 1008-1014.
    [14] Parent S & C Messier. A simple and efficient method to estimate microsite light availability under a forest canopy. Can. J. For. Res., 1996, 26: 151-154.
    [15] Chazdon RL & N Fetcher. Photosynthetic light environments in a lowland tropical rainforest in Costa Rica. J. Ecol., 1984, 72: 553-564.
    [16] Chazdon RL & CB Field. Photographic estimation of photosynthetically active radiation, evaluation of a computerized technique. Oecologia, 1987, 73: 525-532.
    [17] Pearcy RW. The light environment and growth of C3 and C4 tree species in the understory of a Hawaiian forest. Oecologia, 1983, 58: 19-25.
    [18] Rich PM, DB Clark, DA Clark, SF Oberbauer. Long-term study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agric. For. Meteorol., 1993, 65: 107-127.
    [19] Frankin JF, K Cromack, W Denison, A Mckee. Ecological characteristics of old-growth Douglas-fir forests. 1981, 48.
    [20] Spies TA & JF Franklin. The structure of natural young, mature and old-growth Douglas-fir forests in Oregon and Washington. Wildlife and vegetation of unmanaged Douglas-fir forests, 1991, 533.
    [21] Koike F. Reconstruction of two-dimensional tree and forest canopy profiles using photographs. J. Appl. Ecol., 1985, 22: 921-929.
    [22] Hedman CW & D Binckley. Canopy profiles of some Piedmont hardwood forests. Can. J. For. Res., 1988, 18: 1090-1093.
    [23] Carey AB, J Kershner, B Biswell, L Dominguez De Toledo. Ecological scale and forest development, Squirrels, dietary fungi, and vascular plants in managed and unmanaged forests. Wildl. Monogr., 1999, 142: 1-71.
    [24] Yang X, JJ Witcosky, DR Miller. Vertical overstory canopy architecture of temperate deciduous hardwood forests in the Eastern United States. FOR. SCI., 1999, 45: 349-358.
    [25] Van pelt R & N Naclkami. Changes in the vertical arid horizontal distribution of canopy structural elements in an age sequence of Pseudotsuga forests in the Pacific Northwest. FOR. SCI., 2004, 50: 326-341.
    [26] Song B, J Chen, JM Silbernagel. Slicing the 3-D canopies of an old-growth Douglas-fir forest for structural analysis. FOR. SCI., 2004, 50: 376-386.
    [27] Brockway DG & KW Outcalt. Gap-phase regeneration in longleaf pine wiregrass ecosystems. For. Ecol. Manage., 1998, 106: 125-139.
    [28] Aber JD. Foliage-height profiles and succession in Northern hardwood forest. Ecology, 1979, 60: 18-23.
    [29] Baldocchi D & S Collineau. The physical nature of solar radiation in heterogeneous canopies, Spatial and temporal attributes, in Exploitation of environmental heterogeneity by plants; Eeophysiological processes above and below ground, Caldwell, M. M., et al. (eds.). Academic Press, New York. 1994, 21-71.
    [30] Brown MJ., & GC Parker. Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Canadian Journal of Forest Research, 1994, 24: 1694—1703.
    [31] Horn HS. The adaptive geometry of trees. Princeton University Press, Princeton, New Jersey, USA. 1971, 35-40.
    [32] Clark DB, DA Clark, PM Rich, S Weiss. Landscape-scale analyses of forest structure and understory light environments in a neotropical lowland rain forest. Canadian Journal of Forest Research, 1996, 26: 747-757.
    [33] Van gardingen PR, Jackson GE. Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agric. For. Meterol., 1999, 243-257
    [34] Wu Jianguo. Landscape Ecology - Concepts and Theories. Chinese Journal of Ecology, 200019: 42-52
    [35] Isaacs E & R Srivastava. Applied geostatistics. Oxford University Press. 1989, 50-55.
    [36] Michael A Battaglia, Robert J Mitchell, Paul P Mou, Stephen D Pecot. Light transmittance estimates in a longieaf pine woodland. FOR. SCI., 2003, 49: 752-762
    [37] Gholz HL, SA Vogel, WP Cropper. Dynamics of canopy structure and light interception in Pinus elliottii stands, North Florida. Ecol. Monogr., 1991, 61: 33-51.
    [38] Law BE, A Cescatti, DD Baldoechi. Leaf area distribution and radiative transfer in open-canopy forests, implications for mass and energy exchange. Tree Physiol., 2001, 21: 777-787.
    [39] Law BE, SV Tuyl, A Cescatti, DD Baldoechi. Estimation of leaf area index in open-canopy ponderosa pine forests at different successional stages and management regimes in Oregon. Agric. For. Meteor., 2001, 108: 1-14.
    [40] Whitehead D, JC Grace, MJS Godfrey. Architectural distribution of foliage in individual Pinus radiata D. Don crowns and the effects of clumping on radiation interception. Tree Physiol., 1990, 7: 135-155.
    [41] Fortin MJ, P Drapeau, P Legendre. Spatial autocorrelation and sampling design in plant ecology. Vegetatio, 1989, 83: 209-222.
    [42] Legendre P & MA Fortin. Spatial pattern and ecological analysis. Vegetatio, 1989, 80: 107-138.
    [43] Rossi RE, DJ Mulla, AG Journal, EH Franz 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs, 62: 277-314.
    [44] Becker P & AP Smith. Spatial autocorrelation of solar radiation in a tropical moist forest understory. Agricultural and Forest Meteorology, 1990, 52: 373-379.
    [45] Pacala SW, CD Canham, J Saponara, JA Silander Jr, RK Kobe. Forest models defined by field measurements, estimation, error analysis and dynamics. Ecological Monographs, 1996, 66: 1-43.
    [46] Smith TM & DL Urban. Scale and resolution of forest structural pattern. Vegetatio, 1988, 74: 143-150.
    [47] Weishampel JF, DL Urban, HH Shugart, JBJ Smith. Semivafiograms from a forest transect gap model compared with remotely sensed data. Journal of Vegetation Science, 1992, 3: 521-526.
    [48] Rich PM. Characterizing plant canopies with hemispherical photographs. Remote Sensing Reviews, 1990, 5: 13-29.
    [49] Rich, P. M.. Characterizing plant canopies with hemispherical photography. In: N. S. Goel and J. M. Norman (eds). Instrumentation for studying vegetation canopies for remote sensing in optical and thermal infrared regions. Remote Sensing Reviews, 1990, 5: 13-29.
    [50] Rich, P. M.. A manual for analysis of hemispherical canopy photography. Los Alamos National Laboratory Report, 1989, 113.
    [51] Pearcy, R. W. Radiation and light measurements. In: R. W. Pearcy, J. Ehleringer, H. A. 1989, 95-116.
    [52] Gates, D. M. Biophysical Ecology. Springer-Vedag, New York, 1980.
    [53] List, R. J. Smithsonian meteorological tables, Sixth revised edition, Smithsonian Miscellaneous Collections. Volume 114. Smithsonian Institution Press. Washington. 1971.
    [54] Barclay, H. Conversion of Total Leaf Area to Projected Leaf Area in Lodgepole Pine and Douglas Fir. Tree Physiology, 1998, (18): 185-193.
    [55] Chen, J. and Cihlar, J. Quantifying the Effect of Canopy Architecture on Optical Measurements of LAI Using Two Gap Size Analysis Methods. IEEE Transactions on Geoscience and Remote Sensing, 1995 (333): 777-787.
    [56] Nemani, R., Pierce, L., Running, S. and Band, L. Forest Ecosystem Processes at the Watershed Scale: Sensitivity to Remotely-Sensed LAI Estimates. International Journal of Remote Sensing, 1993, (1413): 2519-2534.
    [57] Pontailler, J., Hymns, G. and Drake, B. Estimation of LAI Using Ground-Based Remote Sensed NDVI Measurements: Validation and Comparison with Two Indirect Techniques. Canadian Journal of Remote Sensing, 2003, (293): 381-387.
    [1] Antonio P M. Spatial vrafiability pattern of phosphorus and potassium in no-tilled soils for tow sampling scales [J]. Soil Sci. Soc. Am. J, 1996, 60: 1743-1781.
    [2] Goovaerts P. Geostatistics in soil science: State of the art or Perspectives. Geoderma, 1999, 89: 1-45.
    [3] 张世熔,黄元仿,李保国,等.黄淮海冲积平原区土壤速效P、K的时空变异特征.植物营养与肥料学报,2003,9(1):3-8.
    [4] 周慧珍,龚子同,J Lamp.土壤空间变异性研究[J].土壤学报,1996,33(3):233-241.
    [5] 徐尚平,陶澍,曹军.内蒙古土壤pH值、粘粒和有机质含量的空间结构特征[J].土壤通报,2001,4:145-148.
    [6] 曹慧,杨浩,孙波,等.太湖流域丘陵地区土壤养分的空间变异[J].土壤,2002(4):201-205.
    [7] 孙波,赵其国,闾国年.低丘红壤肥力的时空变异[J].土壤学报,2002,39(2):190-197.
    [8] 王建红,傅庆林.土壤空间变异理论在海涂土壤研究中的初步应用[J].浙江农业学报,1998,10(5):230-234.
    [9] 张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究[J].地理学报,1998,53(1):87-95.
    [10] Husson O, Verburg P H. Spatial variabilty of soil sulphate soils in the Plain of Reeds, Mekong delta, Vietnam [J]. Geoderma, 2000, 97: 1-19.
    [11] 白军红,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用[J].农业环境保护2001,20(5):311-314.
    [12] 李哈滨,王政权,王庆成.空间异质性定量研究理论与方法.应用生态学报,1998,9:651-657.
    [13] 陈玉福,于飞海,董鸣.毛乌素沙地沙生半灌木群落的空间异质性.生态学报2000,20(4):568-572.
    [14] 沈思渊.地统计学在土壤空间研究中的应用综述与展望.土壤学展,1989,17(3):11-24.
    [15] Bringmark E, Bringmark L. Improved soil monitoring by use of spatial patterns [J]. AMBIO, 1998, 27(1): 44-51.
    [16] Webster R, Oliver M A. Sample adequately to estimate variograms of soil properties. J. Soil Sci., 1992, 43: 177-192.
    [17] 周慧珍,龚子同.土壤空间变化研究.土壤学报,1996,33(3):232-241.
    [18] 王正权.地统计学及其在生态学中的应用[M].北京:科学出版社,1999.
    [1] 胡隐月,等.环境梯度对森林生物多样性的影响[J].西南林学院学报,1996,24(1):74-79
    [2] 安树青,等.次生群落下土壤因素对生物多样性的影响[J].武汉生物研究,1997,15(2):143-150
    [3] 洪伟.闽江流域森林生态研究[M].厦门:厦门大学出版社,2000.
    [4] 洪伟,林成来,吴承祯,等.福建建溪流域常绿阔叶防护林物种多样性特征研究[J].生物多样性,1999,7(3):208-213
    [5] 贺金生,陈伟烈,等.中国东部中亚热带主要类型的常绿阔叶林的群落多样性[J].植物生态学报,1998,22(4):303-311
    [6] 张军丽,张炜银,王伯荪.海南岛热带山地雨林群落物种多样性的空间格局分析[J].热带亚热带植物学报,2001,9(3):229-234
    [7] 《四川森林》编辑委员会.四川森林[M],北京:中国林业出版社,1984.
    [8] 包维楷,刘照光.瓦屋山中亚热带湿性常绿阔叶林的林窗形成特征[J].应用生态学报,2001 12(4):485-490
    [9] 方精云,沈泽吴,崔海亭.试论山地的生态特征及山地生态学的研究内容[J].生物多样性,2004,12(1):10-19
    [10] Nagaike T, Hayashi A. Differences in plant species diversity in Larix kaempferi plantations of different ages in central Japan [J]. Forest Ecology and Management, 2003, 183: 177-193
    [11] Rossi RE, Mulla DJ and Journel AG. Geostatistieal tools for modelling and interpreting ecological spatial dependence [J]. Ecol. Monogr., 1992, 62: 277-314
    [12] 余莉,陈利顶,邱扬,等.黄土高原小流域土壤养分的空间异质性[J].生态学报,2002,22(8):1173-1178
    [13] White PJG, Welch RM, Norvell WA. Soil zinc map of the USA using geostatistics and geographic information systems[J]. Soil Sci Soe Am J., 1997, 61: 185-194
    [14] 布仁仓,李秀珍,胡远满等.尺度分析对景观格局指标的影响[J].应用生态学报,2003,14(12):2181-2186
    [15] 邬建国.景观生态学—概念与理论[J].生态学杂志,2000,19(1):42-52
    [16] Sokal RR 8L Oden NL. Spatial autocorrelation in biology Methodology[J]. Biological Journal of the Linnean society, 1978, 10: 199-228
    [17] Legendre P. Spatial autocorrelation: trouble or new paradigm? [J] Ecology, 1993, 74: 1959-1673
    [18] 姜勇,梁文举,闻大中.沈阳郊区农业土壤中微量元素[M].北京:中国农业科技出版社,2003.
    [19] 廖成章,洪伟,吴承祯.福建中亚热带常绿阔叶林物种多样性的空间格局[J].广西植物,2003,23(6):517-522
    [20] White PS and Miller RI. Topographic models of vascular plant richness in the southern Appalachian peaks [J]. Journal of Ecology, 1988, 76: 192-199
    [21] Kyfiakidis PC and Journey AG. Geostatistical space-time models: a review [J]. Math. Geol., 1999, 31: 651-684
    [22] Hock BK, Payn TW and Shirley JW. Using a geographic information system and geostatistics to estimate site index ofPinus radiata for Kaingaroa Forest, New Zealand. [J] N. Z. J. For. Sci., 1993, 23: 264-277
    [23] Samra JS, Gill HS, and Bhatia VK. Spatial stochastic modeling of growth and forest resource evaluation[J]. For. Sci., 1989,. 35: 663-676
    [24] Holmgren P and Thuresson T. Applying objectively estimated and spatially continuous forest parameters in tactical planning to obtain dynamic treatment units. [J] For. Sci., 1997, 43: 317-326
    [25] Biondi F, Myers DE, and Avery CC. Geostatistically modeling stem size and increment in an old-growth forest[J]. Can. J. For. Res., 1994, 24: 1354-1368
    [26] Mandallaz D. Estimation of the spatial covariance in universal kriging: application to forest inventory, environ [J]. Ecol. Stat., 2000, 7: 263-284
    [27] Nanos N, Tadesse W, Montero G, Gil L and Alia R. Modelling resin production distributions for Pinus pinaster Ait using two probability functions[J]. Ann. For. Sci., 2000, 57: 369-377
    [28] 陈雄文,张新时,周广胜,等.中国东北样带(NECT)森林区域中主要树种空间分布特征[J].林业 科学,2000,36(6):35-38
    [29] 王政权,王庆成.森林土壤性质的空间异质性研究[J].生态学报,2000,20(6):945-950
    [30] Cambardella CA, Moorman AT, Novak JM. Field scale variability of soil properties in central Iowa soils[J]. Soil Sci Soc Am J., 1994, 58: 1501-1511
    [31] Laura X. Payne, Daniel E. Schindler et al.. Quantifying spatial pattern with evenness indices. Ecological Applications, 200515, 507-520.
    [1] Legendre, P., and M. -J. Fortin. Spatial pattern and ecological analysis. Vegetatio ,1989, 80: 107-138.
    [2] Legendre, P. Spatial autocorrelation: trouble or new paradigm? Ecology, 1993, 74: 1659-1673.
    [3] Peterson, D. L., and V. T. Parker, editors. Ecological scale—theory and applications. Columbia University Press, New York, New York, USA. 1998.
    [4] Cormack, R. M., and J. K. Ord. Spatial and temporal analysis in ecology. International Co-operative Publishing House, Fairland. 1979.
    [5] Smith, E. P. Ecological statistics, in A. H. El-Shaarawi and W. W. Piergorsch, editors. Encyclopedia of Environmetrics. John Wiley and Sons, Chichester. 2002, 589-602
    [6] Blackburn, T. M., and K. J. Gaston. Spatial patterns in the species richness of birds in the New World. Philosophical Transactions of the Royal Society of London Series B - Biology, 1996, 19: 369-376.
    [7] Selmi, S., and T. Boulinier. Ecological biogeography of southern ocean islands: the importance of considering spatial issues. The American Naturalist, 2001, 158: 426-437.
    [8] Blackburn, T. M., and K. J. Gaston.. Spatial patterns in the geographic range sizes of bird species in the New World. Philosophical Transactions of the Royal Society of London Series B-Biology, 1996, 351: 897-912.
    [9] Roxburgh, S. H., and M. Matsuki. The statistical validation of null models used in spatial association analyses. Oikos, 1999, 85: 68-78.
    [10] Olden, J. D., D. A. Jackson, and P. R. Peres-Neto. Spatial isolation and fish communities in drainage lakes. Oecologia, 2001, 127: 572-585.
    [11] Boreard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 2004, 85: 1826-1832.
    [12] Boreard, D., P. Legendre, and P. Drapeau. Partialling out the spatial component of ecological variation. Ecology, 1992, 73: 1045-1055.
    [13] Peres-Neto, P. R. Patterns in the co-occurrence offish species in streams: the role of site suitability, morphology and phylogeny versus species interactions. Oecologia in press. 2004.
    [14] Wagner, H. H. Spatial covariance in plant communities: integrating ordination, geostatistics, and variance testing. Ecology, 2003, 84: 1045-1057.
    [15] Wagner, H. H. Direct multi-scale ordination with canonical correspondence analysis. Ecology, 2004,85:342-351.
    [16] Legendre, P., and L. Legendre. Numerical Ecology, 2nd English edition. Elsevier Science, Amsterdam. 1998.
    [17] Borcard, D., and P. Legendre. Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei). Environmental and Ecological Statistics, 1994,1:37-61.
    [18] Meot, A., P. Legendre, and D. Borcard. Partialling out the spatial component of ecological variation: questions and propositions in the linear modelling framework. Environmental and Ecological Statistics, 1998, 5:1-27.
    [19] Sokal, R. R. Testing statistical significance of geographic variation patterns. Systematic Zoology, 1979,28:227-232.
    [20] Student [Gosset], W. S. The elimination of spurious correlation due to position in time or space. Biometrika,1914,10:179-180.
    
    [21] Gittins, R. Trend-surface analysis of ecological data. Journal of Ecology, 1968,56:845-869.
    [22] Gimaret-Carpentier, C, S. Dray, and J.-P. Pascal. Large-scale biodiversity pattern of the endemic tree flora of the Western Ghats (India) using canonical correlation analysis of herbarium records. Ecography, 2003,26:429-444.
    [23] Gittins, R. Canonical analysis, a review with applications in ecology. Springer Verlag, Berlin. 1985.
    [24] Pelissier, R., S. Dray, and D. Sabatier. Within-plot relationships between tree species occurrences and hydrological soil constraints: an example in French Guiana investigated through canonical correlation analysis. Plant Ecology, 2002,162:143-156.
    [25] Norcliffe, G. B. On the use and limitations of trend surface models. Canadian Geographer, 1969,13:338-348.
    [26] Scarlett, M. J. Problems of analysis of spatial distribution. in W. P. Adams and F. M. Helleiner, editors. Congres international de geographie. University of Toronto Press, Montreal. 1972, 928-931
    [27] Wartenberg, D. Canonical trend surface analysis: a method for describing geographic pattern. Systematic Zoology, 1985,34:259-279.
    [28] Borcard, D., and P. Legendre. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling, 2002,153:51-68.
    [29] Borcard, D., P. Legendre, C. Avois-Jacquet, and H. Tuomisto. Dissecting the spatial structure of ecological data at multiple scales. Ecology, 2004,85:1826-1832.
    [30] O'Neill, R. V., and A.W. King. Homage to St. Michael; or, Why are there so many books on scale? in D. L. Peterson and V. T. Parker, editors. Ecological scale—theory and applications. Columbia University Press, New York, New York, USA. 1998,3-15.
    [31]Pelissier, Raphael & Goreaud, Francois. A practical approach to the study of spatial structurein simple cases of heterogeneous vegetation,Journal of Vegetation Science,2001,12: 99-108.
    [32] Pelissier, R. Tree spatial patterns in three contrasting plots in a southern Indian tropical moist evergreen forest. J. Trop. Ecol.,1998,14: 1-16
    
    [33] Shi Haijin,Lianjun Zhang,Jianguo Liu. A new spatial-attribute weighting function for geographically weighted regression Canadian Journal of Forest Research. 2006,36,4:996-1006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700