水稻籽粒植酸含量性状的遗传及QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植酸通常与Ca2+、Mg2+、Zn2+、Fe3+、Mn2+等阳离子形成不能被人体和非反刍动物吸收利用的盐,因此,植酸普遍被认为是谷物籽粒中重要的抗营养成分和造成环境P富营养化的重要原因之一。本实验利用不同类型的水稻品种和构建的完全双列杂交群体,系统地分析了植酸含量在品种间、籽粒不同部位间积累差异和植酸含量性状的一般配合力和特殊配合力等遗传效应;通过籽粒灌浆时期动态取样方法,分析了不同品种、不同器官氮、磷、钾积累和转移对籽粒植酸积累的影响以及品种间动态差异;利用植酸含量差异较大的水稻品种中花11和LPA构建的F2代群体,对植酸含量性状的QTL进行分析,在染色体连锁图谱上初步定位了控制籽粒内植酸含量的QTL,并进行了基因互作分析。主要研究结果总结如下:
     1.对水稻籽粒不同部位植酸含量及其与稻米主要品质间的相关性进行比较分析,供试13个水稻品种米糠、糙米、颖壳、精米的植酸含量平均值分别为48.51、9.77、1.40和0.91 mg/g,而且水稻品种间籽粒不同部位的植酸含量存在极显著差异。在籽粒中,米糠中植酸积累最多,其次是精米,颖壳最少。米糠中植酸含量与糙米和颖壳中植酸含量呈极显著正相关。糙米和米糠中植酸含量与粗蛋白均呈显著的负相关,与千粒重均呈显著正相关。
     2.完全双列杂交群体中,在供试组合中水稻籽粒植酸含量受加性效应和非加性效应以及细胞质效应的共同作用,而且加性效应占优势,反交效应均大于非加性效应。一般配合力(GCA)效应品种间表现各异,其中冷水谷亲本呈正向一般配合力效应,而沈农265负向一般配合力效应,均呈极显著水平。植酸含量杂种一代的表现与一般配合力无明显的相关性,但受特殊配合力的影响,表明利用亲本值和一般配合力很难正确预测杂种优势。特殊配合力(SCA)优良的组合,其亲本自身表现不一定优良,与一般配合力(GCA)也没有明显的相互关系。
     3.水稻籽粒灌浆过程中乳熟期和成熟期籽粒内的植酸含量间有很高正相关趋势,成熟期籽粒内的植酸含量与乳熟期和成熟期籽粒内的氮、磷、钾含量均呈正相关,与抽穗期和成熟期叶片内的氮素含量呈显著的正相关,与抽穗期鞘内的氮含量、乳熟期茎内的钾含量以及成熟期茎内的磷含量均呈显著的负相关。成熟期籽粒内的植酸含量与灌浆期的茎、叶、鞘干物质含量,都表现高度的负的相关关系。
     4.水稻籽粒植酸含量呈现接近正态的单峰连续分布,所考察的粒型、千粒重性状也均呈现接近正态的单峰连续分布,说明这些性状是由多基因控制的数量性状。
     5.构建了一张包含126个SSR标记和4个STS标记,覆盖水稻基因组约1522.9cM,标记间平均距离为11.71cM。
     6.利用贝叶斯方法,共检测到3个与植酸含量有关的QTL,它们分布在第3、5、6染色体上,对表型变异的解释范围为4.62-8.02%,2logBF范围为3.6-5.23;位于这三个染色体的QTL均来自亲本LPA的等位基因提供增效作用。与籽粒长度、籽粒宽度相关的QTL分别为6个,分布于3,5,6,7,11,12和1,2,5,7,8,10染色体上,对表型变异的解释范围分别为1.16%-11.30%,4.41%-10.89%,与千粒重相关的QTL有3个,分布于1,3,8染色体上,对表型变异的解释范围为1.49%-12.45%。
     7.检测到10对两位点上位性效应影响籽粒植酸含量的QTL,分布于水稻1、3、5、6、11五条染色体片段上,互作效应值变幅为1.69~5.18,其表型变异的解释率范围为8.67%-24.73%。
Phytic acid (PA) is the primary storage form of phosohorus (P) in cereal seeds; it chelates important minerals such as Ca2+、Mg2+、Zn2+、Fe3+、Mn2+ and virtually renders them indigestible by human and non-ruminant animals. Therefore, PA is commonly regarded as the major anti-nutritional component in cereal grains and can result in P pollution. Phytic acid accumulation difference at different position in rice,and generally the combining ability (GCA) effects and special combining ability effects were analyzed by complete diallel cross. Phytic acid accumulation was effected by N、P、K accumulation and metastasis at different organ and dynamic difference in different types of rice by using grouting period dynamic sampling method. F2 population was destructed by Zhonghua11 and LPA which there were great difference. Preliminary orientation QTL which controlled phytic acid content on chromosome linkage map, gene interaction effects was analyzed.
     The results were summaried as follows:
     1. Phytic acid contents in different parts of grain and rice quality traits were analyzed by using different types of rice. The average phytic acid contents in rice bran, brown rice, glume, and milled rice was 48.51, 9.77, 1.40 and 0.91 mg/g, respectively. Phytic acid contents in different parts of grain for different types of rice had a significant difference. The order of the phytic acid accumulation was as follows: rice bran>milled rice>glume. The phytic acid content in rice bran had a significantly positive correlation with those in brown rice and glume. The phytic acid contents in brown rice and rice bran both had significantly negative correlation with the protein content in rice, and significantly positive correlation with 1000-grain weight.
     2. In completely diallel hybridization population, PA was influenced by additive, non–additive effects and the cytoplasm effects, and mainly by additive effects. Generally the combining ability (GCA) effects was varied between varieties, Lengshuigu showed positive general combining ability effects, but Shennong265 showed negative general combining ability effects, both showed high significantly levels. Phytate content expression of F1 hybrid were not correlated with general combining ability effects, but was influenced by the special combining ability effects, was indicated that the performance and GCA effects for its parents could not be used to forecast the heterosis in hybrid rice. The crosses with larger specific combining ability effects did not exhibit high phytic acid content compared to their parents and were not correlated with crosses with good general combining ability effects.
     3. The phytic acid contents between milk stage and maturity had a highly positive correlation trend of grain-filling in rice grain, phytic acid contents in maturity had positive correlation with N、P、K content in milk stage and maturity, and significantly positive correlation with N content in leaves in heading date and maturity, had significantly negatively correlation among N content in sheath in heading date, and K content in stem in milk stage, and P content in stem in maturity, and dry matter content in leaves , sheath, stem in filling stage.
     4. Phytic acid contents in rice and the important agronomic were continuously distributed as almost normally in F2, which were quantitative traits controlled by multiple genes.
     5. A molecular linkage map of 126 SSR and 4 STS markers was constructed, and covered a total length of 1522.9cM with an average distance of 11.71cM between adjacent markers in rice genome.
     6. Three QTL related to phytic acid content in rice seed were detected with Bayesian model selection. These located on chromosome 3, 5, 6, which explained 4.62%-8.02% of observed phenotypic variation, and the 2logBF variation is 3.6-5.23. The three positive alleles were from the parent“LPA”. Six QTL for grain length and width was respectively located on chromosome 3, 5, 6, 7, 11, 12 and 1, 2, 5, 7, 8, 10, which respectively explained 1.16%-11.30%, 4.41%-10.89%, Three QTL for 1000-grain weight was located on chromosome 1, 3, 8, which explained 1.49%-12.45%.
     7. Ten pairs epistasis interaction effects effected phytic acid contents had been detected, which was located on chromosome 1, 3, 5, 6, 11, which explained 8.67%~24.73%. Interaction effects amplitude 1.69~5.18.
引文
[1] Alnwick D. Combating micronutrient defiencie: problems and perspectives. Proc. Nutr Soc, 1998, 57: 137-147
    [2] Underwood B. Perspectives from micronutrient malnutrition elimination eradication programme. Bull World Health Organ, 1998, 76: 34S-37S
    [3] Gregorio G B. Progress in breeding for trace minerals in staple crops. Nutr., 2002, 132: 500S-502S
    [4] Welch R M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. Nutr, 2002, 32: 495S-499S
    [5] Correll D L. The role of phosphorus in the eutrophication of receiving waters. J Envir Qual, 1998, 27(2): 261-266
    [6] Reddy K R, Kadlec R H, Flaig E, et al. Phosphorus retention in streams and wetlands: A revies. Cri Rev Envi Sci Tech, 1999, 29 (1): 83-146
    [7] Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in sea grasses. J Exp Mar Bio Eco, 2000, 250: 133-167
    [8] Paik I K. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production-Review. Asina-Australasian. J Animal Sci, 2001, 14 (3): 384-394
    [9] Dalal R C. Soil organic phosphorus. Adv Agro, 1997, 29: 83-117
    [10] Stevenson F J. Cycles of soil, carbon, nitrogen, phosphorus, sulfur, micronutrients. New York, John Wiley & Sons, 1986
    [11] Richardson A E, Hadobas P A. Soil isolates of Pseudomonas spp that utilize inositol phosphates. Can J Microbio, 1997, 43: 509-516
    [12] Li M G, Osaki M, Rao I M, et al. Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil, 1997, 195: 161-169
    [13] Henrik B P, Lisbeth D S, Preben B H. Engineering crop plants: getting a handle on phosphate. Trends in Plant Sci, 2002, 7(3): 118-125
    [14] Reddy N R, Sathe S K, Salunkhe D K. Phytates in legumes and cereals. Adv Food Res, 1982, 28: 1-91
    [15] Maga J A. Phytate: its chemistry, occurrence, food interactions, nutritional siginficance, and methods of analysis. J Agric Food Chem, 1982, 30: 1-9
    [16] Johnson L F, Tate M E. Structure of‘phytic acids’. Can J Chem, 1969, 47: 63-73
    [17] Cosgrove J. Inositol phosphates: Their chemistry, biochemistry and physiology. Elsevier Scientific Publishing Company, pathways, New York, 1980
    [18] Stephens L T, Radenberg U, Thiel G, et al. The detection, purification, structural characterization and metabolism of diphosphoinositol pentakisphosphate (s). Biol Chem, 1993, 268: 4009-4015
    [19] Ravindran V, Ravindran G, Sivalogan S. Total and Phytate Phosphorus Contents of Various Foods and Feedstuffs of Plant Origin. Food Chem, 1994, 50: 133-136
    [20] Raboy V. Myo-Inositol-1, 2, 3, 4, 5, 6-hexakisphosphate. Phytochem, 2003, 64: 1033-1043
    [21]张玉良,李文星.作物种子的植酸及研究概况[J].种子, 1991, 54(4): 33-34
    [22] Lott J N A. Accumulation of seed reserves of phosphorus and other minerals. in Murray D R. Seed physiology, volume I. Sydney, Acadmic Press, 1984, 139-166
    [23] Jackson J F, Jones G, Linskens H F. Phytic acid in pollen. Phytochemistry, 1982, 21: 1255-1258
    [24] Helsper J P, Linskens H F, Jackson J F. Phytate metabolism in Petunia pollen. Phytochemistry, 1984, 23: 1841-1845
    [25] Demaggio A E, Stetler D A. Mobilisation of storage reserves during fern spore germination. Proceedings of the Royal Society of Edinburgh, 1985, 86B: 195-202
    [26] Roberts R M, Loewus F. Inositol metabolism in plants. VI. Conversion of myo-inositol to phytic acid in Wolffiella floridana. Plant Physiol, 1968, 43: 1710-1716
    [27] Campbell M, Dunn R, Ditterline R, et al. Phytic acid represents 10 to 15% of total phosphorus in alfalfa root and crown. Plant Nutr, 1991, 14: 925-937
    [28] O’Dell B L, de Boland A R, Koirtyohann S R. Distribution of phytate and nutritionally important elements among the morphological components of cereal grains. Agric Food Chem, 1972, 20: 718-721
    [29]吕耀昌,张玉良,李文星.农作物籽粒中植酸盐离子交换测定方法的研究.作物品种资源, 1990 (2): 28-31
    [30]胡正芝,刘青.离子色谱-柱后反应与分光光度联用法测定植物性食品中植酸的研究.食品与发酵工业,(5):18-27
    [31]刘兴旺,韩晓杰,李玉玖等.常见植物性食物植酸含量的测定.中国医科大学学报,22(2):110-112
    [32] Cosgrove D J. Microbial transformations in the phosphorus cycle. In Alexander M. (Ed) Advances in microbial ecology. New York, Plennum Press. 1976: 95-134
    [33] Raboy V. Accumulation and storage of phosphate and minerals. In: Larkins B.A, Vasil I.K. Cellular and Molecular Biology of Plant Seed Development. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1997: 441-447
    [34] Raboy V, Dickinson D B. Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc. Plant physiol. 1984, 75: 1094-1098
    [35] Raboy V, Noaman M M, Taylor G A, et al. Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci, 1991, 31: 631-635
    [36] Lickfett T, Matthaus B, Velasco L, et al. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply. Eur J Agro, 1999, 11: 293-299
    [37]赵建军,许泽永,方小平等.甘蓝型油菜种子无机磷含量变异的初步分析[J].中国油料作物学报,2002,24(2):79-81
    [38] Batten G D, Lott J N A. The influence of phosphorus nutrition on the appearance and composition of globoid crystals in wheat aleurone cells. Cereal Chem, 1986, 63: 14-18
    [39] Lott J N A, Buttrose M S. Location of reserves of mineral elements in seed protein bodies macadamia nut, walnut and hazel nut. Can J Bot, 1978a, 56: 2072-2082
    [40] Lott J N A, Buttrose M S. Thin sectioning, freeze fracturing, and chemical analysis in the study of inclusions seed protein bodies: almond, difpersive x-ray analysis, Brazil nut and quandong. Can J Bot, 1978b, 56: 2050-2061
    [41] Chen P, Lott J N A. Studies of Capsicum annuum seeds: structure, storage reserves and mineral nutrients. Can J Bot, 1992, 18-529
    [42] Wada T, Lott J N A. Light and electron microscopic and energy dispersive X-ray microanalysis studies of golboids in protein bodies of embryo tissues and the aleurone layer of rice grains. Can J Bot, 1997, 75, 1137-1147
    [43] Lott J N A, West M M, Clark B, et al. Changes in the composition of globoids in castor bean cotyledons and endosperm during early seedling growth with and without complete mineral nutrients. Seed Sci Res, 1995b, 5: 121-125
    [44] Strother S. Homeostasis in germinating seeds. Ann Bot, 1980, 45: 217-218
    [45] Safrany S T, Caffrey J J, Yang X, et al. Diphosphoinositol polyphosphates: the final fronter for inositide research. Biol Chem, 1999, 380: 945-951
    [46] Shears S B. Assessing the omnipotence of inositol hexakisphosphate. Cellular Signaling, 2001, 13: 151-158
    [47] Hanakahi L A, West S C. Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBOJ, 2002, 21: 2038-2044
    [48] Asada K, Kasai Z. Formation of myo-inositol and phytin in ripening rice grains. Plant and Cell Physiol, 1962, 3(4): 397-406
    [49] Yoshida K T, Wada T, Koyama H, et al. Temporal and spatial patterns of accumulation of the transcript of myo-Inositol-1-Phosphate synthase and phytin containing particles during seed development in rice. Plant Physiol, 1999, 19: 65-72
    [50] Hegeman C E, Good L L, Grabau E A. Expression of D-myo-inositol-3-phosphate synthase in soybean. Implication for phytic acid biosynthesis. Plant Physiol. 2001, 125: 1941-1948
    [51] Berrideg M J, Irvine R F. Inositol phosphates and cell signalling. Nature, 1989, 341: 388-389
    [52] Brearley C A, Hanke D E. Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duck weed Spirodela polyrhiza. L. Biochem J. 1996b, 314: l227-233
    [53] Loewus F A, Murthy P P N. Myo-Inositol metabolism in plants. Plant Sci. 2000, 150: 1-19
    [54] Raboy V. Myo-Inositol-1, 2, 3, 4, 5, 6-hexakisphosphate, Phytochemistry, 2003, 64: 1033-1043
    [55] Brown E C, Heit M L, Ryan D E. Phytic acid: an analytical investigation. Can J Chem, 1961, 39: 1290-1297
    [56] Oatway L, Vasanthan T, Helm J H. Phytic acid. Food Rev Int, 2001, 17(4): 419-431
    [57] Lott J N A. Accumulation of seed reserves of phosphorus and other minerals.pp, in Murray D R.Seed physiology, volumel. Sydeny, Academic Press, 1984, 139-166
    [58] Lott J N A, Greenwood J S, Battern G D. Mechanisms and regulation of mineral nutrient storage during seed development, in Kigel J, Galili G. Seed development and germination. New York, Marcel Dekker, Inc. 1995a, 215-235
    [59] Raboy V. Progress in breeding low phytate crops. Nutr, 2002, 132: 503s-505s
    [60] Turnlund J R, King J C, Keyes W R, et al. Stable isotope study of zinc absorption in young men: effects of phytate and alpha-cellulose. Am. J Clin Nutr, 1984A, 40: 1071-1077
    [61] Hallberg L, Rossander L, Skanberg A B. Phytates and the inhibitory effect of bran on iron absorption in man. Am. J Clin Nutr, 1987, 45: 988-996
    [62] Reddy M B, Hurrell R F, Juillerat M A, et al. The influence of different protein sources on phytate inhibition of nonheme-iron absorption in humans. Am. J Clin Nutr, 1996, 63: 203-207
    [63] Hallberg L, Brune M, Rossander L. Irion absorption in man: ascorbic acid and dose-dependent inhibition by phytate. Am. J Clin Nutr, 1989, 49: 140-144
    [64] Cosgrove D J. The chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl Chem, 1966, 16: 209-224
    [65] Arnone A, Perutz M F. Structure of inositol hexaphosphate-human deoxyhaemoglobin complex. Nature, 1974, 249: 34-36
    [66] Vaintraub L A, Bulmaga V P. Effect of phytate on the in vitro activity of digestive proteinnases. Agric Food Chem, 1991, 39: 859-861
    [67] Jongbloed A W, de Jonge L, Kemme P A, et al. Non-mineral related effects of phytase in pig diets. 6th Forum on Animal Nutrition, Ludwigshafen: BASF, 1997: 92-106
    [68] Okubo K, Waldrop A B, Iacobucci G A, et al. Preparation of low-phytate soybean protein isolates and concentrates by ultra. Itration. Cereal Chem, 1975, 52: 263-571
    [69] Omosaiye O, Cheryan M. Low-phytate, full fat soy protein product by ultrailtration of aqueous extracts of whole soybeans.Cereal Chem, 1979, 56: 58-62
    [70] Prattley C A, Stanley D W. Protein-phytate interactions in soybeans. Localisation of phytate in protein bodies and globoids. Food Biochem, 1982, 6: 243-253
    [71] Champagne E T, Fisher M S, Hinojosa O. NMR and ESR studies of interactions among divalent cations, phytic acid and N-acetyl-amino acids. Inorg Biochem, 1990, 38: 199-215
    [72] Singly M, Krikorian A D. Inhibition of trypsin activity by phytate. Agric Food Chem, 1982, 30: 799-800
    [73] Caldwell R A. Effect of calcium and phytic acid on the activation of trypsinogen and the stability of trypsin. Agric Food Chem, 1992, 40: 43-46
    [74] Mroz Z, Krasuki W, Grela E. Physiological responses of lactating sows to feeding rapeseed and microbial phytase. Hennessy and PD Cramwell, editors.Werribee, Australasian Pig Science Association, 1995, 5
    [75] Thompson L U. Antinutrients and blood glucose. Food Tech, 1988, 42: 123-131
    [76] Thompson L U, Yoon J H. Starch digestibility as affected by polyphenols and phytic acid. Food Sci, 1984, 49: 1228-1229
    [77] Ravindran V, Cabahug S, Selle P H, et al. Response of broiler chickens to microbial phytase supplementation as in uenced by dietary phytic acid and non-phytate phosphorus levels. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. Bri Poultry Sci, 2000a, 41: 193-200
    [78] Sharma C B, Goel M, Irshad M. Myoinositol hexaphosphate as a potential inhibitor of a-amylases. Phytochemistry, 1978, 17: 201-204
    [79] Graf E, Empson K L, Eaton J W. Phytic acid: a natural antioxidant. J. Biol Chem, 1987, 262: 11647-11650
    [80] Jariwalla R J, Sabin R, Lawson S, et al. Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary phytate. J Appl Nutr, 1990, 42: 18-28
    [81] Ferry S, Matsuda M, Yoshida H, et al. Inositol hexakisphosphat blocks tumor cell growth by activating apoptotic machinery as well as by inhibiting the Akt/NFkB-mediated cell survival pathway. Carcinogenesis, 2002, 23: 2031-2041
    [82] De Boland A R, Garner G B, O’Dell B L. Identification and Properties of“Phytate”in Cereal Grains and Oilseed Products. J. Agric. Food Chem, 1975, 23: 1186-1189
    [83] Vidal-Valverde C, Frais J, Estrella I, et al. Effect of processing on some antinutritional factors of lentils. J. Agric. Food Chem, 1994, 42: 2291-2295
    [84] Kennedy B M, Schelstraete M, Tamai K. Iron, Calcium, Magnesium, Phosphorus, Sodium, Potassiumk, and Phytic Acid. Cereal Chem, 1975, 52: 173-182
    [85] Marfo E K, Simpson B K, Idow J S, et al. Effect of Local Food Processing on Phytate Levels in Cassava, Cocoyam, Yam, Maize, Sorghurn, Rice, Cowpea, and Soybean. J. Agric. Food Chem, 1990, 38: 1580-1585
    [86] Tangkongchitr U, Seib P A, Hoseney R C. Two Barriers to the Loss of Phytate During Breadmaking. Cereal Chem, 1982, 59: 216-222
    [87] Hara A, Ebina S, Kondo A, et al. A new type of phytase from pollen of Typha latifolia L. Agric. Biol. Chem, 1985, 49: 3539-3544
    [88] Nahm K H. Additives to reduce phosphorus excretion and phosphorus solubility in poultry and swine manure. Aus. J. Exp. Agr, 2004, 44(8): 717-728
    [89] Vats P, Banerjee U C. Production studies and catalytic properties of phytases (myo-inositolhexakis phosphate phosphohydrolases): an overview. Enz. Microb. Tech, 2004, 35(1): 3-14
    [90] Oh B C, Choi W C, Park S, et al. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl. Microbio. Biotech, 2004, 63(4): 362-372
    [91] Centeno C, Viveros A, Brenes A, et al. Effect of several germination conditions on total P, phytate P, phytase, and acid phosphatase activities and inositol phosphate esters in rye and barley. J. Agri. Food Chem, 2001, 49(7): 3208-3215
    [92] King J C. Evaluating the impact of plant biofortification on human nutrition. J. Nutr, 2002, 132: 511S-513S
    [93] Welch R M. Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J. Nutr, 2002, 132: 495S-499S
    [94] Pen J, Verwoerd T C, Beudeker R F, et al. A Phytasecontaining transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio. Technol, 1993, 11: 811-814
    [95] Denbow D M, Grabau G H, Lacy E T, et al. Soybeans transformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Sci, 1998, 77: 78-881
    [96] Zhang Z B, Kornegay E T, Radeliffe J S, et al. Comparison of genetically engineered microbial and plant phytases for young broilers. Poultry Sci, 2000a, 79: 709-717
    [97] Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor. Appl.Genet, 2001, 102: 92-397
    [98] Brinch-Pedersen H, Olesen A, Rasmussen S K, et al. Generation of transgenic wheat(Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Mol. Breed, 2000, 6: 195-206
    [99] Coello P, Maughan J P, Mendoza A, et al. Generation of low phytic acid Arabidopsis seeds expressing an ecoli phytase during embryo development. Seed Sci. Res, 2001, 11: 285-292
    [100] Wyss M, Pasamontes L, Remy R, et al. Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A.niger phytase, and A.niger PH 2.5 acid phosphatase. Appl. Environ. Microbiol, 1998, 64(11): 4446-4451
    [101] Golovan S P, Hayes M A, Phillips J P, et al. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature, 2001, 19: 429-433
    [102] Hulke B S, Fehr W, Welke G A. Agronomic and characteristics of soybean with reduced phytate and palmitate. Crop Sci, 2004, 44: 2027-2031
    [103] Oltmans S E, Fehr W R, Welke G A, et al. Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop Sci., 2005, 45: 593-598
    [104] Meis S J, Fehr W R, Schnebly S R. Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci., 2003, 43: 1336-1339
    [105] Plaxton W C. Preiss pyrophosphorylase from maize Purification endosperm and properties of nonproteolytic degraded ADP glucose. Plant Physiol, 1987, 83: 105-112
    [106] Spencer J D, Allee G L, Sauber T E. Phosphorus bioavailability and digestibility of normal and genetically modified low -phytate corn for pigs. Anim Sci, 2000, 786: 675-681
    [107] Li Y C, Ledoux D R, Veum T L. Effects of low phytic acid corn on phosphorusutilization, performance and bone mineralization in broiler chicks. Poultry Sci, 2000, 79: 1444-1450
    [108] Larson S R, Young K E, Cook A, et al. Linkage mapping two mutations that reduce phytic acid content of barley grain. Theor Appl Genet, 1998, 97: 141-146
    [109] Rasmussen S K, Hatzack F. Identification of two low-phytate barley grain mutants TLC and genetic analysis. Hereditas, 1998, 29: 107-112
    [110] Raboy V, Gerbasi P. Genetics of myo-inositol phosphate synthesis and accumulation. In: Biswas BB, Biswas S. myo-Inositol phosphates, phosphoinositides and signal transduction. Plenum Press, New York, 1996, 257-285
    [111] Raboy V. Low phytic-acid grains. Food Nutr Bull, 2000, 21: 423-427
    [112] Pilu R, Panzeri D, Gavazzi G, et al. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant. Theor Appl Genet, 2004, 107: 980-987
    [113] Yoshida K T, Wada T, Koyama H, et al. Temporal and Spatial Patterns of Accumulation of Transcript of Myo-Inositol-1-Phosphate Synthase and Phytin Containing Particles during Seed Development in Rice. Plant Physiol, 1999, 119: 65-72
    [114] Rutger J N, Raboy V, Moldenhauer K A K, et al. Registration of KBNT lpa1-1 low phytic acid germplasm of rice. Crop Sci, 2004, 44: 363
    [115]王玉华,任学良,刘庆龙等.水稻高无机磷突变体的筛选和培育技术研究.中国水稻科学, 2005, 19(1): 47-51
    [116] Sebastian S A, Kerr P S, Pearlstein R W, et al. Soybean gennplasm with novel genes for improved digestibility. In: Drackley J K. Soy in animal nutrition. Federation of Animal Science Societies Savoy, Illinois, 2000, 56-74
    [117] Hitz W D, Carlson T J, Kerr P S, et al. Biochemical and molecular characterization of a mutation that confers a decreased rafinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiol, 2002, 128: 650-660
    [118] Wilcox J R, Premachandra C S, Young K A, et al. Isolation of high seed inorganic low-phytate soybean mutants. Crop Sci, 2000, 40(6): 160-1605
    [119] Guttieri M, Bowen D, Dorsch J A, et al. Identification and characterization of a low phytic acid wheat. Crop Sci, 2004, 44: 418-424
    [120] Shi J R, Wang H Y, Wu Y S, et al. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131: 507-515
    [121] Shi J R, Wang H Y, Hazebroek J, et al. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. The Plant J, 2005, 42: 408-411
    [122] Oltmans S E, Fehr W R, Welke G A, et al. Inheritance of low-phytate phosphorus in soybean. Crop Sci, 2004, 44: 433-435
    [123]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    [124] Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations quantitative trait loci in maize.I. Numbers, genomic distribution and types of gene action. Genetics, 1987, 116(1): 113-125
    [125] Lander E S, Green P, Abrahamson J, et al. Mapmarker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics, 1987, 1: 174-181
    [126] Paterson A H, Saranga Y, Menz M, et al. QTL analysis of genotype environment interaction affecting cotton fiber quafity. Theor Appl Genet, 2003, 106: 394-396
    [127] Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457~1468
    [128]吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位[J].福建农业大学学报, 1996, 25(4): 394-399
    [129] Kao C H, Zeng Z B, Teasdaler R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152: 203- 216
    [130]章元明.作物QTL定位方法研究进展.科学通报, 2006, 51(19):2223-2231
    [131] Green P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 1995, 82: 71-732
    [132] Satagopan J M, Yandell B S, Newton M A, et al. A Bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo. Genetics, 1996, 144: 805-816
    [133] Yi N, Yandell B S, Churchill G A, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics, 2005, 170: 1333~1344
    [134] Yi N. A unified Markov chain Monte Carlo framework for mapping multiple quantitative trait loci. Genetics, 2004, 167: 967~975
    [135] Xu S. Estimating polygenic effects using markers of the entire genome. Genetics, 2003, 163: 789~801
    [136] Zhang Y M, Xu S. Mapping quantitative trait loci in F incorporating phenotypes of F2 progeny. Genetics, 2004, 166: 1981~1993
    [137] Zhang Y M, Xu S. Advanced statistical methods for detecting multiple quantitative trait loci. Recent Res Dev Genet Breed, 2005, 2: 1~23
    [138] Wang H, Zhang Y M, Li X M. Bayesian shrinkage estimation of quantitative trait loci parameters. Genetics, 2005, 170: 465~480
    [139] Wu W R, Li W M. A new approach for mapping quantitative trait loci using complete genetic marker linkage maps. Theoretical and Applied Genetics, 1994, 89: 535-539
    [140] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci., 1991, 88: 9828~9832
    [141]徐云碧,朱立煌.分子数量遗传学,北京:中国农业出版社,1994
    [142] Collard B C Y, Jahufer M Z Z, Brouwer J B, et al. An introduction to markers,quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica, 2005, 142: 169-196
    [143] McCouch S B, Cho Y G, Yano M, et al. Report on QTL nomenclature. Rice Genet Newslett, 1997, 14: 11-13
    [144]陈洪,朱立焊,叙吉臣等. RAPD标记构建水稻分子连锁图[J].植物学报,1995, 37(9): 677-684
    [145]熊立仲,王石平,刘克德等.微卫星DNA和AFLP标记在水稻分子标记连锁图上的分布[J].植物学报,1998, 40(7): 610-614
    [146] Temnykh S, Park W D, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet, 2000, 100: 697-712
    [147] Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatelfites in rice (Oryza sativa L.): frequency, length, transposon associations, and genetic marker potential. Genome Res, 2001, 11: 1441-1452
    [148] McCouch S R, Teytelman L, Xu Y B, et al. Development and Mapping of 2240 new SSR Markers for Rice[J]. DNA Research, 2002, 9: 199-207
    [149] Mendoza C. Effect of genetically modified low phytic acid plants on mineral absorption. International Journal of Food Science and Technology, 2002, 37: 759-767
    [150] WHO Global database on body mass index (MBI). Geneva: World Health Organization, 1999
    [151] Fairweather-Tait S J, Hurrell R F. Bioavailability of minerals and trace elements. Nutr Res Rev, 1996, 9: 295-324
    [152] Welch R M, House W A, Beebe S, et al. Testing iron and zinc bioavailability in genetically enriched beans haseolus Vulgaris L.)and rice (Oryza sativa L.) in a rat model. Food Nutr Bull, 2000, 21: 428-433
    [153]任学良,舒庆尧.低植酸作物的研究进展及展望.核农学报,2004, 18(6 ): 438-442
    [154] Miller G A, Youngs V L, Oplinger E S.Enviorment and cultivar effects on oat phytic acid concentration. Cereal Chemistry, 1984, 57: 189-191
    [155]伍时照,黄超武.不同水稻品种的稻米品质性状研究.中国农业科学, 1985, 8(5):1-7
    [156]中华人民共和国农业部.食用稻米品种品质NT/T593-2002.北京:中国标准出版社, 2002
    [157] Wang Z, Fang X J. Plant DNA isolation. Mol Plant Breeding, 2003, 1(2): 281-288
    [158] Pmaud O, Chen X, McCouch S R. Development of microsatellite and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza Sativa L.). Mol Gen Genet, 1996, 252: 597-607
    [159]潘家驹.作物育种学总论.中国农业出版社,1988
    [160]莫惠栋.农业试验设计.上海科学技术出版社,1999
    [161]郭平仲.数量遗传分析.北京师范学院出版社,1987
    [162] Kass R E, Raftery A E. Bayes factors. J. Amer. Stat. Assoc. 1995, 90: 773-795
    [163]周世英,钟丽玉.粮食学与粮食化学.北京:中国商业出版社, 1986. 473
    [164] Carlin B P, Louis T A. Bayes and empirical bayes methods for data analysis [M]. London, UK: Chapman&Hall, 2000
    [165] Gelman A, Carlin J B, Stern H S, et al. Bayesian data analysis [M]. London, UK: Chapman&Hall, 1995
    [166] Yi N, Yandell B S, Churchill G A, et al. Bayesian model selection for genome-wide epistatic quantitative trait loci analysis. Genetics, 2005, 170: 1333–1344
    [167] Yandell B S, Mehta T, Banerjee S, et al. R/qtlbim: QTL with Bayesian interval mapping in experimental crosses. Bioinformatics, 2007, 23: 634-641
    [168] GA A B, Pomp D , Shriner D ,et al. Genetic influences on growth and body composition in mice: multilocus interactions. International Journal of Obesity, 2009, 33: 89-95
    [169] Yang R Q, Xu S Z. Bayesian Shrinkage Analysis of Quantitative Trait Loci for Dynamic Traits. Genetics, 2007, 176: 1169-1185
    [170] Harland B F, Morris E R. A good or a bad food component. Nutrition Research.1995, 15: 733~754
    [171]居超明,周勇,陈建国等.杂交水稻的植酸含量分析.湖北农业科学,2000 (1): 16-17
    [172]吴伟,程方民,方正辉.我国江浙地区粳稻品种间的植酸与蛋白质组分差异及相关性.中国水稻科学, 2007, 21(3): 331-334
    [173]叶常丰,戴心维.种子学.北京:中国农业出版社,1994. 93
    [174] Hartman G H. Removal of phytate from soy protein. Journal of American Oil Chemist’s Society, 1979, 56 (2): 731-735
    [175] Liu Z H, Cheng F M, Cheng W D, et al. Positional variations in phytic acid and protein content within a panicle of japonica rice. J Cereal Sci, 2005, 41: 297-303
    [176] Loewus F A, Murthy P P N. Myo-inositol metabolism in plants. Plant Sci, 2000, 150: 130-139
    [177] Raboy V, Noaman M M, Taylor G A, et al. Grain phytic acid and protein are highly correlated in winter wheat. Crop Sci, 1991, 31: 631-635
    [178] Dai F, Wang J M, Zhang S H, et al. Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chem, 2007, 105: 606-611
    [179] Raboy V, Gerbasi P F, Young K A ,et al. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology, 2000, 124: 355-368
    [180] Larson S R, Rutger J N, Young K A, et al. Isolation and genetic mapping of a non-lethal rice low phytic acid mutation. Crop Sci, 2000, 40: 1397-1405
    [181]彭侯华,曾得初,龙太康等.利用不完全双列杂交法协作选配杂交水稻新组合的研究.数量性状配合力和遗传力的分析.西南农业学报, 1996, 9(3): 12-20
    [182]翟虎渠,曹树青等.籼型杂交水稻光合性状的配合力及遗传力分析.作物学报, 2002, 28(2): 154-160
    [183]金正勋,秋太权,孙艳丽等.粳稻杂种后代稻米垩白率的配合力分析.中国水稻科学,2000, 14(4): 199-202
    [184]金正勋,崔成焕,秋太权.水稻杂种后代稻米直链淀粉含量的配合力分析.东北农业大学学报, 1999, 30(2): 122-127
    [185]宋启建,盖钧镒,马育华.大豆杂种后代蛋白质和脂肪含量的配合力研究.作物学报, 1991, 17(2): 128-134
    [186] Raboy V, Dickinson D B, Below. Effect of phosphorus and zinc nutrition no soybean seed phytic acid and zinc. Plant Physiol, 1984, 75: 1094-1098
    [187]赵宁春,张其芳,程方民等.氮、磷、锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性. 2007,21(2):185-190
    [188] Andaya C B, Tai T H. Fine mapping of the rice low phytic acid(lpa1) locus. Theor Appl Genet, 2005, 111: 489-495
    [189] Liu Q L, Xu X H, Ren X L, et al. Generation and characterization of low phytic acid germplasm in rice (Oryza saliva L.). Theor Appl Genet, 2007, 114: 803-814
    [190] Stangoulis J C R, Huynh B L, Welch R M,et al. Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica, 2007, 154: 289-294
    [191] Cao G Q, Zhu J, He C X,et al. QTL Analysis for Epistatic Effects and QTL×Environment Interaction Effects on Final Height of Rice. Acta Genetica Sinica, 2001, 28(2): 135-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700