利用小麦F2代(SR3 X JN17)群体进行盐胁迫相关主效QTL的SSR及EST-SSR定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界上土壤盐渍化问题十分严重,而中国的土壤盐渍化更为突出。小麦是世界上重要的粮食作物,但它对盐渍环境敏感,土壤盐渍化已造成其产量和品质的大幅下降。因而,研究小麦耐盐机理、克隆小麦耐盐基因,并运用生物技术加快小麦育种进程、提高小麦产量、改善小麦品质显得格外重要。20世纪以来,各种DNA分子标记技术相继建立,并成功应用于基因图位克隆和分子标记辅助育种。但小麦是六倍体,基因组庞大,使得分子标记技术在小麦中的应用落后于大麦、玉米、水稻等作物。普通小麦起源的相对较近和它的多倍体性质既给其遗传研究带来了问题,同时也带来了特殊的机遇。
     本实验前期工作以耐盐的不对称体细胞杂交新品种山融3号为母本,盐敏感的常规品种济南17为父本,配置杂交组合,建立F2代分离群体,并利用SSR-BSA法初步将山融三号耐盐主效基因(QTL)定位于5A染色体长臂分子标记xgwm304与xgwm666之间。本研究通过两端分子标记辅助选择建池,并对更多的SSR、EST-SSR进行筛选及耐盐性相关分析,发现了6对差异引物,包括WMS410和Xcfa2141两个远端连锁引物。结合所有差异引物进行连锁分析,并整合到最新公布的小麦5A SSR连锁图谱,得出目的基因相对准确的位置,发现主效基因大致位于5A染色体长臂12-0.35-0.57缺失段处。利用区段内已知EST序列进行区段内差异STS引物的设计及筛选,分离出相关候选基因,以便于进一步研究。在本实验结果的基础上,可以继续从水稻、短柄草的对应EST开发设计引物,利用即将构建完成的重组自交系群体及回交群体,可对基因进行进一步精确定位,缩短耐盐相关分子标记与基因之间的距离,循环饱和目标区段直至逼近耐盐基因,最终期望完成耐盐主效基因的克隆。
Solid degradation, especially aridity and edaphic salinization, has been a very serious problem around the world. Common wheat(Triticum asetivum L.),one of the most important cereals, is very sensitive to salt-stress.Therefore, it is important to breed new salt-tolerance wheat cultivars by biotechnological methodologies. This urges us to elucidate the botanic salt-tolerant mechanisms as well as to map and clone salt-tolerant genes based on molecular marker technologies.Because of its hexaploidy and huge genome, the application of molecular marker technologies in wheat is behind other crops, e.g. barley, maize and rice. Recently, however, such application in the salt-tolerance of wheat has been largely accelerated following the development of the molecular marker numbers and technologies examination systems.
     A novel salt-tolerant, drought-resistant and high productive wheat variety Shanrong No.3(SR3)was generated via asymmetric somatic hybridization between common wheat Jinan 177 and Agropyron elongatum in our lab.Specifically, several pieces of chromatins from Argopyron elogatum were intrgressed into the Jinan 177 genome, which may offer the excellent traits of SR3.In our early research, salt-tolerance of the F2 population originating from a cross between SR3 and Jinan17, a salt-sensitive wheat cultivar, were determined by microsatellite(SSR) and BSA (bulked segregant analysis) techniques in combination with the SSR map of wheat.It has primarily presented that salt-tolerance of SR3 is likely controlled by a major QTL which locates on chromosome 5AL between markers xgwm304 and xgwm666.
     In this work, in order to gain a higher resolution mapping of the major QTL governing SR3's salt-tolerance, F2 population with 340 lines of SR3 and Jinan 17 was re-constructed.Besides, we improved the BSA techniques with molecular marker assisted selection. Genetic and SSR, EST-SSR, STS analysis were performed among individuals in F2 segregated population, using 59 SSR marker pairs,83 EST-SSR marker pairs and 31 rice SSR marker pairs. Among all of these marker pairs,27 showed polymorphism, with a lymorpolymorphic index of 15%.Then PCR amplification was carried out among the salt-tolerant pond and salt-sensitive pond with these marker pairs.Of them, Xcfa2141,WMS410, xgwm304, xgwm666, BE-5 and TC245679 showed coherence to the parents.Comparing with the high density genetic linkage map published, the major-QTL was located on the position of 5AL12-0.35-0.57 with the same similar rank and the genetic distances calculated by software Mapmaker 3.0.Based on this result, we searched all EST sequences in this interval and designed 96 STS primers. By the same PCR amplification, we found some polymorphic marker pairs which are related with salt-tolerance. Then EST sequences amplified with these polymorphic marker pairs were analyzed, and some of them were found to be salt-tolerance candidate genes for further study. Summarily, this work provides a solid foundation for the next map-basic cloning.
引文
Austin D F, M Lee. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments. Crop Sci,1998,38:1296-1308.
    Borner A, Roder M S,Unger. The detection and molecular mapping of a major gene for no-specific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor Appl Genet,2000,100(7):1095-1099.
    Bostein D,R L White, M H Skolnick. Construction of genetic map in man using restriction fragment length polymorphisms. Am. J. Human Genet,1980,32:314-331.
    Caitlin S.Byrt, J.Damien Platten, Wolfgang Spielmeyer, Richard A. James, Evans S.Lagudah, Elizabeth S.Dennis, Mark Tester, and Rana Munns,HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Plant Physiol,2007 April;143(4):1918-1928.
    Cao W G, Hucl P,Scoles G, et al.Genetic diversity within spelta and macha wheat based on RAPD analysis. Euphytica,1998,104:181-189
    Dopont FM. Salt2induced changes in ion transport:regulation of primary pump sand secondary transporters. In:Clarkson D Ted. Transport and Recep tor Proteins of PlantMembranes. New York:Plenum Press,1992.91~100
    Dubeovsky J, Maria G S, Epstein E, Dvorak J. Mapping of the K+/Na+ discrimination locus Knal in wheat. Theoretical and Applied Genetics,1996,92:448-454.
    Dudley J W. Molecular markers in plant improvement:manipulation of genes affecting quantitative traits.Crop Sci,1993,33:660-668.
    Flowers T J,Koyama M L, Flowers S A. QTL:their place in engineering tolerance of rice to salinity. Exp Bot,2000,51:99-106.
    Foolad M R. Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome,2001,44(3):444-454.
    Frary A, Nesbit T C,Grandillo S,et al. A quantative trait locus key to the evolution of tomato fruit size. Science,2000,289:85-88.
    Gao L F, Jing R L, Huo N X. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. TAG Theoretical and Applied Genetics,2004,108(7):1329-1400.
    Gioyannoni L, Wing R A. Isolation of molecular markers for specific chromosomal intervals using DNA pools from existing population. Nucleic Acids Res,1991,19:6553-6558.
    Glimelius Kristina, Fahlesson Jan, Landgren Maria. Gene Transfer via Somatic Hybridization in Plants. Trends in Biotechnology,1991,1(9):24-30.
    Gorham J, J Bridges, J Dubcovsky, J Dvorak, P A Hollington. Gentic analysis and physiology of a trait for enhanced K+/Na+ discriminarion in wheat. New Phytol.,1997,137,109-116.
    Guadagnuolo R,Savova B D,Felber F. Gene flow from wheat (Triticum aestivum L.)to jointed goatgrass (Aegilops cylindrical Host.),asrevealed by RAPD and microsatellite markers. Theor Appl Genet,2001,103:1-8
    Gupta PK, Varshney RK, Sharma PC,Ramesh B.Molecular markers and their applications in wheat breeding. Plant Breeding.1999;118(5):369-390.
    Haanatra J P W, Wye C,Verbakel H. An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum×L. pennellii F2 populations.Theor Appl Genet,1999,99: 254-271.
    Hamada H. A novel reptead elemeat with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA,1982, (79):64652-64691.
    Holton R A, Christopher J T, McClure L,Harker N, Henry R J1 Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheatl Molecular Breeding,2002,9:63-71
    Kasai K, Fukayama H.Salinity tolerance in Triticum aestivum-Lophopyrum elongatum amphiploid and 5E disomic addition line evaluated by NaCl effects on photosynthesis and respiration. Cereal Res. Comm.,1998,26:281-287.
    Keim P, Schupp J M, Travis S E.A high-density soybean genetic map based on AFLP markers. Crop Sci,1997,37:537-543.
    Koebner R M D, Martin P K, Orford S M. Responses to salt stress controlled by the homoeologous group 5 chromosomes of hexaploid wheat. Plant Breeding,1996,115:81-84.
    Lafitte H R, Price A H, Courtois B.Yield response to water deficit in an upland rice mapping population:associations among traits and genetic markers. Theor Appl Genet,2004,109: 1237-1246.
    Lander E S,Bolsteln S.Mapping mendelian factors underlying quantitative traits using linkage maps.Genetics,1989,121:185-199.
    Lee G J.Boerma M R, Villagarcia. A major QTL conditioning salt tolerance S-100 soybean and descent cultivars. Theor. Appl.Genet.,2004,109:1610-1619.
    Levitt J.Response of Plants to Environmental Stress (Vol II).2nd ed. New York:Academic Press, 1980.102-106
    Lin H X,Zhu M Z,Yano M,Gao J P,Liang Z W,Su W A,Hu X H,Ren Z H,Chao D Y. QTLs for Na+ and K+ uptake of the shootsand roots controlling rice salt tolerance. Theor Appl Genet, 2004,108:253-260.
    Maria G S, Epstein E, Dvorak J. Mapping of the K+/Na+ discrimination locus Knal in wheat. Theoretical and Applied Genetics,1996,92:448-454.
    Marion S R, Victor K, Katja W. A microsatellite map of wheat. Genetics,1998,149:2007-2023.
    Mathilde A C,Theresa M F, Cho Y. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics,1994,138:1251-1274.
    Meyer E,Wiegand P,Rand S P,Kuhlmann D,Brack M, Brinkmann B1 Microsatellite polymorphisms reveal phylogenetic relationships in primates 1 J Mol Evol,1995,41:10-14
    Michelet B, Boutry M. The p lasma membrane H+2ATPase a highly regulated enzyme with multip le physiological functions.Plant Physiol,1995,108:1-6
    Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic region by using seg regating populations. Proc Natl Acad Sci USA,1991,88:9828-9832.
    Moore S S,Sargeant L L,King T J,Mattick J S,Georges M,Hetzel D J.Conservation of dinucleotide microsatellites among mammalian genomes allows use of heterologous PCR primer pairs in closely related species.Genomics,1991,10:654-660.
    Morgan, J.B.,Savell, J.W.,Hale, D.S.,Miller, R. K.,Grifn, D.B.,Cross, H.R.. National beef tenderness survey. Journal of Animal Science,1991,69:3274-3283.
    Munns R. Comparative physiology of salt and water stress.Plant, Cell and Environment,2002,25, 239-250.
    Niu XM, Zhu J K, NarasimhanM L, et al. Plasma membrane H+2ATPase gene exp ression is regulated byNaCl in cell of the halophyte A triplexnum m alaria L. Planta,1993,190:433~438
    Olson M, Hood L, Cantor C.A common language for physical mapping of the human genome. Sci, 1989,245:1434-1435.
    Peil A,Korzum V,Schubert V,et al.The application of wheat microsatellites to identify disomic Triticum aestivum-Aegilops markgrafii addition lines. Theor Appl Genet, 1998,96:138-146
    P.K. Gupta, R. R. Mir, A. Mohan, and J.Kumar,Wheat Genomics:Present Status and Future Prospects.Int J Plant Genomics.2008;2008:896451.
    Quarrie S A, Steed A, Calestani C,Semikhodskii A, Lebreton C, Chinoy C,Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash D Z, Farmer P, Saker L, Clarkson D T,Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S,Tuberosa R, Sanguineti M C, Hollington P A, Aragues R, RoyoA, Dodig D.A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet,2005,110:865-880.
    Quesada V S,Garcia-Martinez, P Piqueras. Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiology,2002,130:951-963.
    Russel J R, Fuller J D, Macaulay M. Development of genetic variation among barley accessions detected by RFLP, AFLP, SSR and RAPD.Theor. Appl.Genet.,1997,95:714-722.
    Schachtman D P, Schroeder J I, Lucas W J. Science,1992,258:1654-1658.
    Schondelmaier J, Steinrucken G, Jung C.Integration of AFLP markers into a linkage map of sugar beet(Betavulgaris L.).Plant Breed,1996,115:231-237.
    Shaobai Huang, Wolfgang Spielmeyer, Evans S.Lagudah, Richard A. James, J. Damien Platten, Elizabeth S.Dennis, and Rana Munns,A Sodium Transporter (HKT7) Is a Candidate for Naxl, a Gene for Salt Tolerance in Durum Wheat,Plant Physiol.2006 December; 142(4):1718-1727.
    Somers D J, Lsaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics,2004,109:1105-1114.
    Sylvia Stack,Campbell L,Henderson K, Eujayl I,Hanafey M, Powell W, Wolters P1 Development of EST2derived microsatellite markers formapping and germplasm analysis in wheat1 Plant & Animal Genome Ⅷ Conference,San Diego,CA,2000,January 9-12
    Thoday J M. Location of Polygenes. Nature,1961,191,368-370.
    Thomas C M, Vos P, Zakeau M.Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to tomato cf9 gene for resistance to chdosporium fulvum. The Plant Journal,1995,8(5):785-794.
    Velappan N, Snodgrass J L, Hakovirta J R. Rapid Identification of Pathogenic Bacteria by Single-Enzyme Amplified Fragment Length Polymorphism Analysis. Diagn Microbiol Infect Dis,2001,39(2):77-83.
    Villagarcia. A major QTL conditioning salt tolerance S-100 soybean and descent cultivars. Theor. Appl.Genet.,2004,109:1610-1619.
    Wagdy A.Saweal,Ali H.HassonGeneration of transgenic wheat plants producing high levels of the osmoprotectant proline,Biotechnology Letters,2002,24(9):721-725
    Wei J Z,Wang R C.Genome-and species-specific markers and genome relationships of diplod perennial species in Triticease based on RAPD analysis. Genome,1995,38:1230-1236
    Wu G H,Ronald W. Isolation chromosomal localization and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copperozinc superoxide dismutase genes in wheat.Plant Physiology,1999,120:513-520.
    Williams KJ,Fisher J M, Langridge P.Development of a PCR-basedallele-specific assay from an RFLP probe linked to resistance to cereal cyst nematode in wheat.Genome,1996,39:798-801
    Xia G M. Progress of chromosome engineering mediated by asymmetric somatic hybridization. Genetics and Genomics,2009,(39):547-556.
    Xia G Xiang F, Zhou A. Asymmetric Somatic Hybridization Between Wheat(Triticum Aestivum L.) And Agropyron Elongatum (Host) Nevishi. Theor Appl Genet,2003,107(2):299-305.
    Yeo A R, Flowers T J.Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Plant Physoil,1986,13:161-173.
    Zhang G Y, Guo Y, Cheng S L. RFLP tagging of a salt tolerance gene in rice. Plant Science,1995, 110:227-334.
    Zhong G Y, Dvorak J.Chromosomal control of the tolerance of grandually and suddenly imposed salt stress in the Lophyrum elongatum and wheat (Triticum asetivum L.) genomes. Theoretical and Applied Genetics,1995,90:229-236.
    Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification.Genomics,1994,20:176-183.
    陈芳.小麦F2代群体(山融3号×济南177)的盐胁迫相关主效QTL的SSR标记定位.山东大学硕士论文,2007.
    程爱霞.小麦不对称体细胞杂种的供体基因组消减及核/质基因组分析.山东大学博士论文.pp74-85.
    单雷, 赵双宜, 陈芳, 夏光敏.小麦体细胞杂种山融3号耐盐相关SSR标记的筛选和初步定位.中国农业科学,2006,39(2):225-230.
    单雷.小麦耐盐体细胞杂种盐胁迫应答基因的分离、定位及其耐盐机理研究.山东大学博士论文.2004.
    李娜,焦浈,秦广雍.DNA分子技术及其在小麦育种及遗传研究中的应用.核农学报,2005,19(4):322-326.
    刘金元,刘大钧,陈佩度,等.分子标记辅助育种新尝试—与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病中的应用.南京农业大学学报,1997,20:1-5
    刘金元,刘大钧,陶文静,等.小麦白粉病抗性基因Pm4a的标记转化为STS标记的研究.农业生物技术学报,1999,7:113-116
    刘旭,史娟,张学勇,马缘生,贾继增.小麦耐盐种质的筛选鉴定和耐盐基因的标记.植物学报,2001,43(9):948-954.
    骆蒙,贾继增.国际麦类基因组EST计划研究进展.中国农业科学,2000,33(6):110-112.
    马三梅,王永飞,王得元.农作物分子遗传图谱的研究进展.干旱地区农业研究,2004,22(4).
    毛丽萍,任君,畅志坚.远缘杂种鉴定方法在小麦育种中的应用.山西农业科学,2006,34(1):81-85.
    申建斌,蒋昌顺.作物QTL定位的应用及限制性因素.热带农业科学,2006,26(4):59-63.
    陶文静,刘金元,刘大钧,等.普通小麦- 提莫菲维小麦白粉病抗性渐渗系中渗入片段的准确鉴定.植物学报,1999,41:941-946
    王宝山,赵可夫,邹奇.作物耐盐机理研究进展及提高作物耐盐性的对策.植物学通报,1997,33(6):423~426
    王成,曹后男,宗成文,赵成日,庄得凤,朴日子,赵恺.桃花粉可育基因连锁的RAPD标记与SCAR标记的转化.园艺学报,2007,34(4):865-870.
    翁跃进.作物耐盐品种及其栽培技术.农业出版社,2002.
    翁跃进,贾继增,董玉琛,等.利用RFLP分子标记鉴定小麦-顶芒山羊草异代换系.遗传学报,1997,24:248-254
    卫宪云,李斯深,蒋方山.小麦早衰及其相关生理性状的QTL分析.西北植物学报,2007,27(3).
    吴为人,李维明,卢浩然.数量性状基因座的动态定位策略.生物数学学报,1997,12(5):490-495.
    邢永忠,徐才国,华金平.水稻株高和抽穗期基因的定位和分离.植物学报,2001,43(7):721-726.
    徐云碧,朱立煌.分子数量遗传学.中国农业出版社,1994,110-113.
    杨春玲,侯军红,关立,王阔,宋志均,韩勇,祈国宾.分子标记技术及其在标记辅助选择中的最新应用.陕西农业科学,2006(4):62-70
    杨凯,吕小平,胡荣海.干早胁迫下小麦脯氨酸积累相关基因的染色体定位.作物学报,2001,27(3):363-366.
    张爱民,张树榛,黄铁城.小麦育种中杂交亲本选配理论与方法的研究.北京农业大学学报.1991,17(1):7-12.
    张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社,1993.206~230
    张娟,谢惠民,张正斌.小麦抗早节水生理遗传育种研究进展闭.干早地区农业研究,2005,23(3):231-236.
    张正斌,山仑,徐旗.控制小麦种、属旗叶水分利用效率的染色体背景分析.遗传学报,2000,27(3):240-246.
    张正斌.小麦遗传学.北京:中国农业出版社,2001,390-399.
    赵建伟,孟金陵.植物抗病基因的克隆及其在作物遗传育种改良中的意义.高技术通讯,1998,5:58-62
    赵风云,郭善利,王增兰,耐盐转基因植物研究进展1植物生理与分子生物学报,2003,29(3)171~178
    赵可夫,李法曾.中国盐生植物.北京:科学出版社,1999.191~200
    赵雪,谢华,马荣才.植物功能基因组研究中出现的新型分子标记.中国生物工程杂志,2007,27(8):104-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700