大鼠海马结构下托锥体神经元膜共振特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
频率选择性是神经元具有的内在特性之一。共振是用来描述神经元对输入信号的频率选择性的能力。神经元的共振特性和频率选择性具有重要作用,是脑内网络节律性活动的重要基础,在神经元之间的信息传递中也具有重要作用。下托是海马结构的主要输出结构。它有助于海马结构的信息处理过程,对海马theta节律(θ,4-10Hz)的输出具有重要作用,涉及到诸如学习和记忆等海马生理功能。此外,临床和基础研究显示,下托的病理性改变参与了Alzheimer病、癫痫等多种疾病的发生和发展。本课题分成三个部分,在大鼠水平脑片上使用红外可视全细胞膜片钳记录下托锥体神经元的电活动,对其膜共振的性质和离子机制,以及在动作电位序列和突触传递中的作用进行探讨。
     一、下托锥体神经元的膜共振特性及其离子机制
     Theta(θ)振荡(4-10Hz)是许多脑区的一个重要的生物节律,尤其是在海马结构中具有重要作用。目前,作为θ振荡内在机制之一的θ共振已经在海马CA1锥体神经元、始层水平中间神经元以及中部内嗅皮质Ⅱ层星形细胞等不同类型神经元中检测到。尽管下托在海马结构中具有重要的生理学意义和功能,关于下托神经元是否存在膜共振特性,其产生的离子机制为何,尚未见报道。因此,本课题的第一步就是给予下托锥体神经元以随时间增加频率连续变化的正弦电流(ZAP,0-15Hz,20s)
Frequency preference represents an intrinsic property of neurons. Resonance is described as the ability of neurons to respond selectively to inputs at a preferred frequency. It is essential to characterize the resonance and frequency preference of neurons because they serve as substrates for coordinating network activity in the brain. The subiculum is the pivotal output region of hippocampal formation. It connects the hippocampal formation with many cortical and subcortical regions. The subiculum contributes to the information processing and the theta (θ, 4 - 10 Hz) rhythm output of the hippocampal formation during physiological functions such as memory and learning. In addition, clinical and basic investigations show that changes within the subiculum are related to Alzheimer's disease and temporal lobe epilepsy. Our research include three parts that study the resonant characteristic of subicular pyramidal neurons and its ionic mechanisms, analysis its role in spike timing and synaptic transmission with infrared visual whole-cell patch clamp recording in rat horizontal brain slices.
    1. The resonant characteristic and its ionic mechanisms of subicular pyramidal neurons.
    θ oscillation (4-10 Hz) is an important biological rhythm in many brain regions, especially in the hippocampal formation. As one of these intrinsic neuronal properties, θ resonance has been found in hippocampal CA1
引文
1. Vinogradova OS. Expression, control, and probable functional significance of the neuronal theta-rhythm. Prog Neurobiol, 1995, 45: 523-583.
    2. Buzsaki G. Theta oscillations in the hippocampus. Neuron, 2002, 33: 325-340.
    3. Bland BH. The physiology and pharmacology of hippocampal formation theta rhythms. Prog Neurobiol, 1986, 26: 1-54.
    4. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A, 1998, 95: 7092-7096.
    5. Kahana M J, Seelig D, Madsen JR. Theta returns. Curt Opin Neurobiol,2001, 11: 739-744.
    6. Raghavachari S, Kahana M J, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE. Gating of human theta oscillations by a working memory task. J Neurosci, 2001, 21: 3175-3183.
    7. Winson J. Loss of hippocampal theta rhythm results in spatial memory deficit in the rat. Science, 1978, 201: 160-163.
    8. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature, 1993, 364: 723-725.
    9. Wilson MA, McNaughton BL. Reactivation of hippocampal ensemblememories during sleep. Science, 1994, 265: 676-679.
    10. Lynch G, Schubert P. The use of in vitro brain slices for multidisciplinary studies of synaptic functions. Ann Rev Neurosci, 1980, 3: 1-22.
    11. Konopacki J. Theta-like activity in the limbic cortex in vitro. Neurosci Biobehav Rev, 1998, 22:311-23.
    12. Vanderwolf CH. Neocortical and hippocampal activation relation to behavior: effects of atropine, eserine, phenothiazines, and amphetamine. J Comp Physiol Psychol, 1975, 88: 300-323.
    13. Bland BH, Oddie SD. Theta band oscillation and synchrony in the hippocampal formation and associated structures: the case for its role in sensorimotor integration.Behav Brain Res, 2001, 127:119-136.
    14. Petsche H, Stumpf C, Gogolak G. The significance of the rabbit's septum as a relay station between midbrain and the hippocampus arousal activity by the septum cells. Electroencephalogr Clin Neurophysiol, 1962, 14: 202-211.
    15. Borhegyi Z, Freund TF. Dual projection from the medial septum to the supramammillary nucleus in the rat. Brain Res Bull, 1998, 46: 453-459.
    16. Leranth C, Carpi D, Buzsaki G, Kiss J. The entorhino-septo-supramammillary nucleus connection in the rat: morphologcal basis of a feedback mechanism regulating hippocampal theta rhythm. Neuroscience, 1999, 88: 701-718.
    17. Vertes RP, Kocsis B. Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience, 1997, 81: 893-926.
    18. Bullock TH, Buzsaki G, McClune MC. Coherence of compound field potentials reveals discontinuities in the CA1- subiculum of thehippocampus in freely-moving rats. Neuroscience, 1990, 38: 609-619.
    19. Adey WR. Hippocampal states and functional relations with corticosubcortical systems in attention and learning. Prog. Brain Res, 1967, 27: 228-245.
    20. Mitchell S J, Ranck, JB. Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Res, 1980, 189: 49-66.
    21. Alonso A, Garcia-Austt E. Neuronal sources of theta rhythm in the entohrinal cortex of the rat. I. Laminar distribution of theta field potentials. Exp Brain Res, 1987, 67: 493-501.
    22. Leung LW, Borst JG. Electrical activity of the cingulate cortex. I. Generating mechanisms and relations to behavior. Brain Res, 1987, 407: 68-80.
    23. Pare D, Collins DR. Neuronal correlates of fear in the lateral amygdala: multiple extracellular recordings in conscious cats. J Neurosci, 2000, 20: 2701-2710.
    24. Buzsaki G, Leung L, Vanderwolf CH. Cellular bases of hippocampal EEG in the behaving rat. Brain Res Rev, 1983, 6: 139-171.
    25. Ylinen A, Soltesz I, Bragin A, Penttonen M, Sik A, Buzsaki G. Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells and basket cells. Hippocampus, 1995, 5: 78-90.
    26. Kamondi A, Acsady L, Wang X J, Buzsaki G. Theta oscillations in somata and dendrites of hippocampal pyramidal cells in vivo: activity dependent phase-precession of action potentials. Hippocampus, 1998, 8: 244-261.
    27. Amaral DG, Witter ME The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience, 1989,31: 571-591.
    28. Soltesz I, Deschenes M. Low- and high-frequency membrane potential oscillations during theta activity in CA1 and CA3 pyramidal neurons of the rat hippocampus under ketamine- xylazine anesthesia. J Neurophysiol, 1993, 70: 97-116.
    29. Moroni F, Corradetti F, Moneti G, Pepeu G. The release of endogenous GABA and glutamate from the cerebral cortex in the rat. Naunun-Schmiedeberg's Arch. Pharmacol, 1981, 316:235-239.
    30. Horvath Z, Kamondi A, Czopf J, Bliss TVP, Buzsaki G. NMDAreceptors may be involved in generation of hippocampal theta rhythm. In Synaptic Plasticity in the Hippocampus, H.L. Haas and G. Buzsaki, eds, 1988, (Berlin: Springer-Verlag): p. 45.
    31. Otmakhova, NA, Lisman JE. Dopamine, serotonin, and noradrenaline strongly inhibit the direct perforant path-CA1 synaptic input, but have little effect on the Schaffer collateral input. Ann NY Acad Sci, 2000, 911: 462-464.
    32. Cole AE, Nicoll RA. Acetylcholine mediates a slow synaptic potential in hippocampal pyramidal cells. Science, 1983, 221: 1299-1301.
    33. Hasselmo ME, Fehlau BE Differences in time course of cholinergic and GABAergic modulation of excitatory synaptic potentials in rat hippocampal slice preparations. J. Neurophysiol, 2001, 86:1792-1802.
    34. Hasselmo ME, Schnell E. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J Neurosci, 1994, 14: 3898-3914.
    35. Vizi ES, Kiss JE Neurochemistry and pharmacology of the majorhippocampal transmitter systems: synaptic and nonsynaptic interactions. Hippocampus, 1998, 8: 566-607.
    36. Hajos N, Papp EC, Acsady L, Levey AI, Freund TF. Distinct interneuron types express m2 muscarinic receptor immunoreactivity on their dendrites or axon terminals in the hippocampus. Neuroscience, 1998, 82:355-76.
    37. Stewart M, Fox SE. Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci, 1990, 13: 163-168.
    38. Freund TF, Antal M. GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature, 1988, 336:170-173.
    39. Ji DY, Dani JA. Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol, 2000, 83: 2682-2690.
    40. Bragin A, Jando G, Nadasdy Z, Hetke J, Wise K, Buzsaki G. Gamma frequency (40-100 Hz) patterns in the hippocampus of the behaving rat. J Neurosci, 1995, 15: 47-60.
    41. Kocsis B, Bragin A, Buzsaki G. Interdependence of multiple theta generators in the hippocampus: a partial coherence analysis. J Neurosci, 1999, 19: 6200-6212.
    42. Alonso A, Llinas RR. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature, 1989, 342: 175-177.
    43. Alonso A, Khateb A, Fort P, Jones BE, Muhlethaler, M. Differential oscillatory properties of cholinergic and noncholinergic nucleus neurons in guinea pig brain slice. J Neurosci, 1996, 8: 169-182.
    44. Serafin M, Williams S, Khateb A, Fort P, Muhlethaler M. Rhythmic firing of medial septum non-cholinergic neurons. Neuroscience, 1996, 75: 671-675.
    45. Leung LS, Yim CY. Intrinsic membrane potential oscillations in hippocampal neurons in vitro. Brain Res, 1991, 553:261-274.
    46. Strata F. Intrinsic oscillations in CA3 hippocampal pyramids: physiological relevance theta rhythm generation. Hippocampus, 1998, 8: 666-679.
    47. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature, 1993,364:723-725.
    48. Holscher C, Anwyl R, Rowan MJ. Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can Be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci, 1997, 17: 6470-6477.
    49. Hasselmo ME, Bodelon C, Wyble BP. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput, 2002, 14:793-817.
    50. MacVicar BA, Tse FW. Local neuronal circuitry underlying cholinergic rhythmical slow activity in CA3 area of rat hippocampal slices. J Physiol, 1989, 417: 197-212.
    51. Tsubokawa H, Ross WN. Muscarinic modulation of spike backpropagation in the apical dendrites of hippocampal CA1 pyramidal neurons. J Neurosci, 1997, 17: 5782-5791.
    52. Magee JC, Johnston D. Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science, 1995, 268: 301-304.
    53. Kamondi A, Acsady L, Wang X J, Buzsaki G. Theta in somata and dendrites of hippocampal pyramidal cells in vivo: activity dependentphase-precession of action potentials. Hippocampus, 1998, 8:244-261.
    54. Harris K, Hirase H, Leinekugel X, Henze DA, Buzsaki G. Temporal interaction between single spikes and complex spike bursts in hippocampal pyramidal cells. Neuron, 2001, 32:141-149.
    55. O'Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 1993, 3:317-330.
    56. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 1996, 6: 149-173.
    57. Jensen O, Lisman JE. Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J Neurophysiol, 2000, 83: 2602-2609.
    58. Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal "place fields". Neuron, 2001, 31:631-638.
    59. Givens BS, Olton DS. Cholinergic and GABAergic modulation of medial septal area: effect on working memory. Behav Neurosci, 1990, 104: 849-855.
    60. Mizumori SJY, Leutgeb S. Excitotoxic septal lesions result in spatial memory deficits and altered flexibility of hippocampal single-unit representations. J Neurosci, 1999, 19: 6661-6672.
    61. Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex, 1997, 7: 374-385.
    62. Krause CM, (?) L, Koivisto M, Saarela C, Haggqvist A, Laine M, Hamalainen H. The effects of memory load on event-related EEGdesynchronization and synchronization. Clin Neurophysiol, 2000, 111: 2071-2078.
    63. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A, 1998, 95: 7092-7096.
    64. Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 1999, 399: 781-784.
    65. Hutcheon B, Yarom Y. Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci, 2000, 23: 216-222.
    66. Pull E, Gimbarzevsky B, Miura RM. Quantification of membrane properties of trigeminal root ganglion neurons in guinea pigs. J Neurophysiol, 1986, 55: 995-1016.
    67. Hu H, Vervaeke K, Storm JF. Two forms of electrical resonance at theta frequencies, generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol, 2002, 545: 783-805.
    68. Hutcheon B, Miura RM, Puil E. Subthreshold membrane resonance in neocortical neurons. J Neurophysiol, 1996, 76: 683-697.
    69. Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O. Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents. J Physiol, 2000, 529: 205-213.
    70. Gutfreund Y, yarom Y, Segev I. Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J Physiol, 1995, 483: 621-640.
    71. Dossi RC, Nunez A, Steriade M. Electrophysiology of a slow (0.5-4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol, 1992, 447:215-234.
    72. Destexhe A, Bal T, McCormick DA, Sejnowski TJ. Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol, 1996, 76: 2049-2070.
    73. Haas JS, White JA. Frequency selectivity of layer II stellate cells in the medial entorhinal cortex.J Neurophysiol, 2002, 88: 2422-2429.
    74. Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons. Proc Natl Acad Sci U S A, 1998, 95: 5323-5328.
    75. Izhikevich EM, Desai NS, Walcott EC, Hoppensteadt FC. Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci, 2003, 26: 161-167.
    76. Amaral DG, Witter MP. The three-dimensional organisation of the hippocampal formation; a review of anatomical data. Neuroscience, 1989, 31: 571-591.
    77. Amaral DG, Witter ME Hippocampal formation. In: Paxinos, G. (Ed.), The Rat Nervous System, second ed. Academic Press, New York, 1995.
    78. Witter MP, Groenewegen H J, Lopes da Silva FH, Lohman AHM. Functional organisation of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog.Neurobiol, 1989, 33:161-253.
    79. Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman A. Anatomic organisation and physiology of the limbic cortex. Physiol Rev, 1990, 70: 453-511.
    80. Taube JS. Electrophysiological properties of neurons in the rat subiculumin vitro. Exp. Brain Res, 1993, 96: 304-318.
    81. Swanson LW, Kohler C, Bjorklund A. The limbic region. I. The septohippocampal system. In: Bjorklund, A., Hokfelt, T., Swanson, L.W. (Eds.), Handbook of Chemical Neuroanatomy, Integrated Systems of the CNS, vol. 5. Elsevier, Amsterdam, 1987, pp: 125-227.
    82. Amaral DG, Dolorous C, Alvarez-Roy E Organisation of CA1 projections to the subiculum: a PHA-L analysis in the rat. Hippocampus, 1991, 1: 415-436.
    83. Kohler C. Intrinsic projections of the retrohippocampal region in the rat brain. The subicular complex. J Comp Neurol, 1985, 236: 504-522.
    84. Swanson LW, Cowan WM. An autoradiographic study of the organisation of efferent connections of hippocampal formation in the rat. J Comp Neurol, 1977, 172: 49-84.
    85. Witter MP, Groenewegen HJ. The subiculum: cytoarchitectonically a simple structure, but hodologically complex. In:Storm-Mathisen, J., Zimmer, J., Otterson, O.E (Eds.), Understanding The Brain Through the Hippocampus. Progress in Brain Research. Elsevier, Amsterdam, 1990, pp: 47-58.
    86. Finch DM, Wong EE, Derian EL, Babb TL. Neurophysiology of limbic system pathways in the rat: projections from the subicular complex and hippocampus to the entorhinal cortex. Brain Res, 1986, 397:201-216.
    87. Amaral DG, Insist R, Cowan, Wimp. The commissural connections of the monkey: hippocampal formation. J Comp Neurol, 1984, 224: 307-336.
    88. Tamamaki N, Nojyo Y. Preservation of topography in the connections between the subiculum, field CA1 and the entorhinal cortex in rats. J Comp Neurol, 1995, 353: 379-390.
    89. Steward O, Scoville SA. Cells of origin of entorhinal afferents to the hippocampus and fascia dentata of the rat. J Comp Neurol, 1976, 169: 347-370.
    90. Witter MP, Groenewegen HJ. Laminar origin and septotemporal distribution of entorhinal and perirhinal projections to the hippocampus in the cat. J Comp Neurol, 1984, 224: 371-385.
    91. Witter MP, Amaral DG. Entorhinal cortex of the monkey. Projections to the dentate gyrus, hippocampus and subicular complex. J Comp Neurol, 1991, 307: 437-459.
    92. Witter MP, Naber PA, van Haeften T, Machielsen WC, Rombouts SA, Barkhof F, Scheltens P, Lopes da Silva FH. Cortico-hippocampal communication by way of parallel parahippocampal-subicular pathways. Hippocampus, 2000, 10: 398-410.
    93. Kosel KC, Van Hoesen GW, Rosene DL. A direct projection from the perirhinal cortex (area 35) to the subiculum in the rat. Brain Res, 1983, 269: 347-351.
    94. Witter MP, Ostendorf RH, Groenewegen HJ. Heterogeneity in the dorsal subiculum of the rat. Distinct neuronal zones project to different cortical and subcortical targets. Eur J Neurosci, 1990, 2: 718-725.
    95. Kohler C. Subicular projections to the hypothalamus and brainstem: some novel aspects revealed in the rat by the anterograde PHA-L tracing method. Prog. Brain Res, 1990, 83: 59-69.
    96. Canteras NS, Swanson LW. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHA-L anterograde tract-tracing study in the rat. J Comp Neurol, 1992, 324: 180-194.
    97. Namura S, Takada M, Kikuchi H, Mizuno N. Topographical organisationof subicular neurons projecting to subcortical regions. Brain Res Bull, 1994: 35: 221-231.
    98. Aylward RL, Totterdell S. Neurons in the ventral subiculum, amygdala and entorhinal cortex which project to the nucleus accumbens: their input from somatostatin-immunoreactive boutons. J Chem Neuroanat, 1993, 6: 31-42.
    99. Stewart M, Wong RKS. Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro. J Neurophysiol, 1993, 70: 232-245.
    100.Behr J, Empson D, Schmitz T, Heinemann U. Electrophysiological properties of rat subicular neurons in vitro. Neurosci Lett, 1996, 220: 41-44.
    101.Greene JRT, Mason A. Neuronal diversity in the subiculum: Correlation with the effects of somatostain on intrinsic properties and on GABA-mediated IPSPs in vitro. J Neurophysiol, 1996, 76: 1657-1666.
    102.Mattia D, Kawasaki H, Avoli M. Repetitive firing and oscillatory activity of pyramidal-like bursting neurons in the rat subiculum. Exp Brain Res, 1997, 114: 505-517.
    103.Mason A. Electrophysiology and burst-firing of rat subicular pyramidal neurons in vitro: a comparison with CA1. Brain Res, 1993, 600: 174-178.
    104.Stewart M. Antidromic and orthodromic responses by subicular neurons in rat brain slices. Brain Res, 1997, 769: 71-85.
    105.Boeijinga PH, Boddeke HWGM. Activation of 5-HTlb receptors suppresses low but not high frequency synaptic transmission in the rat subicular complex in vitro. Brain Res, 1996, 721: 59-65.
    106.Methot M, Tancredi V, Avoli M. Long-term potentiation and long-term depression in the rat subiculum in vitro. Soc Neurosci (Abstr), 1997, 47:20.
    107.Commins S, Gigg J, Anderson M, O'Mara SM. Interactions between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. Neuroreport, 1998, 9: 4109-4113.
    108.Barnes CA, McNaughton B, Mizumori SJ, Leonard BW, Lin LH. Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res, 1990, 83: 287-300.
    109.Sharp PE, Green C. Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat. J Neurosci, 1994, 14:2339-2356.
    110.Sharp PE. Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: comparison with hippocampal place cells. Behav Brain Res, 1997, 85:71-92.
    111.O'Mara SM, Commins S, Anderson M. Synaptic plasticity in the hippocampal area CA1-subiculum projection: implications for theories of memory. Hippocampus, 2000, 10: 447-456.
    112.Sharp PE. Comparison of the timing of hippocampal and subicular spatial signals: implications for path integration. Hippocampus, 1999, 9: 158-172.
    113.Schenk F, Morris RGM. Dissociation between components of spatial memory in rats after recovery from the effects of retrohippocampal lesions. Exp Brain Res, 1985, 58:11-28.
    114.Davies DC, Wilmott AC, Mann DM. Senile plaques are concentrated in the subicular region of the hippocampal formation in Alzheimer's disease. Neurosci Lett, 1988, 94: 228-233.
    115.Hyman BT, Van Horsen GW, Damasio AR, Barnes CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science, 1984, 225:1168-1170.
    116.Cohen I, Navarro V, Clemenceau S, Baulac M, Miles R. On the origin of interictal activity in human temporal lobe epilepsy in vitro. Science, 2002, 298: 1418-1421.
    117.Lampl I, Yarom Y. Subthreshold oscillations and resonant behavior: two manifestations of the same mechanism. Neuroscience, 1997, 78: 325-341.
    118.Wu N, Hsiao CF, Chandler SH. Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. J Neurosci, 2001, 21: 3729-3739.
    119.Leung LS, Yu HW. Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol, 1998, 79: 1592-1596.
    120.Finch DM, Babb TL. Neurophysiology of the caudally directed hippocampal efferent system in the rat: projections to the subicular complex. Brain Res, 1980, 197: 11-26.
    121.Finch DM, Babb TL. Demonstration of caudally directed hippocampal efferents in the rat by intracellular injection of horseradish peroxidase. Brain Res, 1981, 214: 405-410.
    122.Naber PA, Witter MP. Subicular efferents are organized mostly as parallel projections: a double-labeling, retrograde-tracing study in the rat. J Comp Neurol, 1998, 393: 284-297.
    123.Ishizuka N. Laminar organization of the pyramidal cell layer of the subiculum in the rat. J Comp Neurol, 2001, 435: 89-110.
    124.Gabrieli JD, Brewer JB, Desmond JE, Glover GH. Separate neural basesof two fundamental memory processes in the human medial temporal lobe. Science, 1997, 276: 264-266.
    125.Oswald C J, Good M. The effects of combined lesions of the subicular complex and the entorhinal cortex on two forms of spatial navigation in the water maze. Behav Neurosci, 2000, 114:211-217.
    126.Vann SD, Brown MW, Aggleton JP. Fos expression in the rostral thalamic nuclei and associated cortical regions in response to different spatial memory tests. Neuroscience, 2000, 101: 983-991.
    127.Deadwyler SA, Hampson RE. Differential but complementary mnemonic functions of the hippocampus and subiculum. Neuron, 2004, 42: 465-476.
    128.Hyman BT, Van Horsen GW, Damasio AR, Barnes CL. Alzheimer's disease: cell-specific pathology isolates the hippocampal formation. Science, 1984, 225:1168-1170.
    129.Davies DC, Wilmott AC, Mann DM. Senile plaques are concentrated in the subicular region of the hippocampal formation in Alzheimer's disease. Neurosci Lett, 1988, 94: 228-233.
    130.Van Hoesen GW, Hyman BT. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer's disease. Prog Brain Res, 1990, 83: 445-457.
    131.Wellmer J, Su H, Beck H, Yaari Y. Long-lasting modification of intrinsic discharge properties in subicular neurons following status epilepticus. Eur J Neurosci, 2002, 16: 259-266.
    132.Mattia D, Kawasaki H, Avoli M. In vitro electrophysiology of rat subicular bursting neurons. Hippocampus, 1997, 7: 48-57.
    133.Staff NP, Jung HY, Thiagarajan T, Yao M, Spruston N. Resting and activeproperties of pyramidal neurons in subiculum and CA1 of rat hippocampus. J Neurophysiol, 2000, 84: 2398-2408.
    134.Roberts L, Greene JR. Hyperpolarization-activated current (Ih): a characterization of subicular neurons in brain slices from socially and individually housed rats. Brain Res, 2005, 1040:1-13.
    135.Menendez de la Prida L, Suarez F, Pozo MA. Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro. Hippocampus, 2003, 13: 728-744.
    136.Pape HC, Driesang RB. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex. J Neurophysiol, 1998, 79: 217-226.
    137.Greene JR, Totterdell S. Morphology and distribution of electrophysiologically defined classes of pyramidal and nonpyramidal neurons in rat ventral subiculum in vitro. J Comp Neurol, 1997, 380: 395-408.
    138.Harris E, Witter MP, Weinstein G, Stewart M. Intrinsic connectivity of the rat subiculum: I. Dendritic morphology and patterns of axonal arborization by pyramidal neurons. J Comp Neurol, 2001, 435: 490-505.
    139.Sciancalepore M, Constanti A. Inward-rectifying membrane currents activated by hyperpolarization in immature rat olfactory cortex neurones in vitro. Brain Res, 1998, 14: 133-142.
    140.Harris NC, Constanti A. Mechanism of block by ZD7288 of the hyperpolarization-activated inward rectifying current in guinea pig substantia nigra neurons in vitro. J Neurophysiol, 1995, 74: 2366-2378.
    141.Womble MD, Moises HC. Hyperpolarization-activated currents in neurons of the rat basolateral amygdala. J Neurophysiol, 1993, 70:2056-2065.
    142.Sutor B, Hablitz JJ. Influence of barium on rectification in rat neocortical neurons. Neurosci Lett, 1993, 157: 62-66.
    143.Buzsaki G, Draguhn A. Neuronal Oscillations in Cortical Networks. Science, 2004, 304: 1926-1929.
    144.Magee JC. Dendritic hyperpolarization-activated currents modify the integrative properties of hippocampal CA1 pyramidal neurons. J Neurosci, 1998, 18: 7613-7624.
    145.Gasparini S, DiFrancesco D. Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons. Pflugers Arch, 1997, 435: 99-106.
    146.Pape HC. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol, 1996, 58: 299-327.
    147.Dickson CT, Magistretti J, Shalinsky MH, Fransen E, Hasselmo ME, Alonso A. Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J Neurophysiol, 2000, 83: 2562-2579.
    148.Cobb SR, Larkman PM, Bulters DO, Oliver L, Gill CH, Davies CH. Activation of Ih is necessary for patterning of mGluR and mAChR induced network activity in the hippocampal CA3 region. Neuropharmacology, 2003, 44: 293-303.
    149.Surges R, Freiman TM, Feuerstein TJ. Input resistance is voltage dependent due to activation of Ih channels in rat CA1 pyramidal cells. J Neurosci Res, 2004, 76: 475-480.
    150.Pedarzani P, Storm JF. Protein kinase A-independent modulation of ion channels in the brain by cyclic AME Proc Natl Acad Sci U S A, 1995, 92:11716-11720.
    151.Borst A, Theunissen FE. Information theory and neural coding. Nat Neurosci, 1999, 2: 947-957.
    152.Izhikevich EM. Resonate-and-fire neurons. Neural Netw, 2001, 14: 883-894.
    153.Chrobak JJ, Buzsaki G. Operational dynamics in the hippocampal-entorhinal axis.Neurosci Biobehav Rev, 1998, 22:303-310.
    154.Mainen ZF, Sejnowski TJ. Reliability of spike timing in neocortical neurons.Science, 1995,268:1503-1506.
    155.Fletcher GH, Chiappinelli VA. An inward rectifier is present in presynaptic nerve terminals in the chick ciliary ganglion. Brain Res, 1992, 575:103-112.
    156.Beaumont V, Zucker RS. Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels.Nat Neurosci, 2000, 3: 133-141.
    157.Southan AP, Morris NP, Stephens GJ, Robertson B. Hyperpolarization-activated currents in presynaptic terminals of mouse cerebellar basket cells.J Physiol, 2000, 526 Pt 1: 91-97.
    158.Mellor J, Nicoll RA, Schmitz D. Mediation of hippocampal mossy fiber long-term potentiation by presynaptic Ih channels. Science, 2002, 295: 143-147.
    159.Chevaleyre V, Castillo PE. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc Natl Acad Sci U S A, 2002, 99: 9538-9543.
    160.Stuart G; Spruston N. Determinants of voltage attenuation in neocortical pyramidal neuron dendrites.J Neurosci, 1998, 18:3501-3510.
    161.Magee JC. Dendritic 1h normalizes temporal summation in hippocampal CA1 neurons.Nat Neurosci, 1999, 2:508-514.
    162.Markram H, Wang Y, Tsodyks M. Differential signaling via the same axon of neocortical pyramidal neurons.Proc Natl Acad Sci U S A, 1998, 95: 5323-5328.
    163.Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol, 2003, 65: 453-480.
    164.Maccaferri G, McBain CJ. The hyperpolarization-activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens-alveus interneurones. J Physiol, 1996, 4974:119-130.
    165.Poolos NP, Migliore M, Johnston D. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites. Nat Neurosci, 2002, 5:767-774.
    166.Williams SR, Christensen SR, Stuart G J, Hausser M. Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. J Physiol, 2002, 539:469-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700