驱油聚合物的降解与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,由于在三次采油中聚合物驱技术的油藏温度高以及矿化度高等特点,驱油剂要达到理想的效果,必须具有很好的增粘能力和很强的耐温、抗盐及抗剪切能力。而在这一技术中,驱油聚合物溶液的粘度及长期稳定性是衡量聚合物驱油效果的重要指标之一,也是影响聚合物驱油效率的关键因素。
     本论文模拟研究驱油聚合物在不同油藏条件下的降解规律的影响因素,通过化学方法来研究驱油聚合物在海上三次采油过程中的热降解、化学降解和剪切降解规律,为改善驱油聚合物在不同油藏条件下的溶液性能提供理论依据,从而达到粘度改善的效果和稳定性。
     本论文的工作是基于上述研究背景以及发展趋势展开的,主要研究具有驱油聚合物的评价、粘度改善剂的合成、表征以及其实际应用性能等。主要工作和实验结果分为以下几方面:
     (1)结合目标油田的实际油藏状况,在实验室条件下模拟聚合物溶液的配注,研究在不同油藏下的热降解、化学降解、剪切降解对驱油聚合物(SNF和AP-P4)溶液粘度和稳定性的影响,并通过测试水解度、降解过程中的结构变化、热分析、降解前后的粘度变化和分子量变化、聚集体的流体力学半径等化学分析手段进行了表征。结果表明,三种降解方式都对驱油聚合物(SNF和AP-P4)体系起到了降粘作用,剪切降解的降粘作用最快。红外和热重分析表明在降解过程中驱油聚合物AP-P4和SNF的结构基本不发生变化。
     (2)合成了甘脲和四羟甲基甘脲两种物质,该类物质可以作为粘度稳定剂,并通过HNMR、粘度、动态光散射和粘弹性等方法进了表征。甘脲和四羟甲基甘脲可以作为驱油聚合物AP-P4的粘度稳定剂,结果显示可以明显提高体系的粘度,其中甘脲的增粘效果要好于四羟甲基甘脲;甘脲也可以作为驱油聚合物SNF的粘度稳定剂,结果显示可以较好地提高体系的粘度。
     (3)采用阳离子开环聚合法合成了一种新型的高分子表面活性剂(PQ),并使用三氟化硼乙醚作为阳离子开环的催化剂,高分子表面活性剂PQ的化学结构、表面活性和聚集性质通过核磁共振、静态光散射、动态光散射、表面张力、电导率和荧光测量等手段来表征。另外,该新型表面活剂可以作为粘度稳定剂,可与驱油聚合物(SNF)进行复配,稳定性结果表明,混合体系可以大大提高耐盐性和热稳定性,并具有较高的实际应用价值。
At present, most of the oil layers are of high temperature and high salinity in EOR. In view of this, polymers used in oil field must have effective thickening properties, temperature tolerance, brine tolerance and resistance to shear force in order to achieve the ideal effect. In polymer flooding technology, the viscosity and long-term stability of polymer fluids are not only one of important index but also the key factor of polymer flooding effectiveness. A lot of literature research and practice tests show that the viscosity of polymer fluids has a direct impact on performance of polymer flooding agent solution.
     In the laboratory condition, we simulated the influencing factor in the different oil reservoir to study the degradation rules of flooding polymers. By chemical methods we studied the rules of thermal degradation, chemical degradation and shear degradation, in order to provide the theory basis for the improving the solution properties of flooding polymers under different oil deposit condition and achieve the improvement of viscosity and stability. Based on the above considerations, the purpose of this dissertation is focused on evaluation of flooding polymers, synthesis and characterization of viscosity stabilizer and their practical applications. The main work and experimental results are as follows:
     (1) Combined with the actual reservoir conditions of target oilfield, in the laboratory condition, the effects on viscosity and stabilization for flooding polymer (SNF and AP-P4) were studied under thermal degradation, chemical degradation, shear degradation in the different oil deposit, and were characterized by measuring the chemical structure, hydrolysis degree, thermal analysis, viscosity changes and molecular weight change, dynamic light scattering and so on. It is found that these three kinds of degradation methods can all decrease the viscosity of flooding polymers (SNF and AP-P4), in which shear degradation is most obvious for the reduction of viscosity. The results from IR and TGA show that the chemical structures for SNF and AP-P4 don't basically change during the degradation.
     (2) Glycoluril and tetramethylol acetylenediurea were synthesized and can be used as viscosity stabilizer. The chemical structure and stability of glycoluril and tetramethylol acetylenediurea were studied by 1HNMR, dynamic laser light scattering, viscosity and viscoelasticity and so on. Glycoluril and tetramethylol acetylenediurea can be used as viscosity stabilizers for AP-P4. The results showed that glycoluril and tetramethylol acetylenediurea can obviously increase the viscosity of the system for AP-P4, in which glycoluril is better than tetramethylol acetylenediurea. Glycoluril can be used as viscosity stabilizer for SNF and can better increase the viscosity of the system for SNF.
     (3) The polymeric surfactant with quaternary ammonium salt (PQ) was synthesized by cationic ring open polymerization using boron trifluoride diethyletherate as cationic catalyst. The chemical structure and aggregation behavior of polymeric surfactant PQ were studied by 1HNMR, surface tension, static light scattering, dynamic laser light scattering, electrical conductivity and fluorescence measurement. In addition, PQ can be used as viscosity stabilizer, and the viscosity stability results from between flooding polymer (SNF) and PQ also suggest that the mixed system can greatly improve salt resistance and thermal stability and has the high practical application performance.
引文
[1]胡博仲,刘恒,李林著.聚合物驱采油工程[M].北京:石油工业出版社,2004.
    [2]王启民,冀宝发.大庆油田三次采油技术的实践与认识[J].大庆石油地质与开发,2001,20(2):1-8.
    [3]葛广章,王勇进等.聚合物驱及相关化学驱进展[J].油田化学,2001,24(1):9-11.
    [4]杨普华,杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1988:5-20.
    [5]叶仲斌等编.提高采收率原理[M].北京:石油工业出版社,2000.
    [6]唐孝芬.海上油田深部调剖改善水驱技术与机理研究[D].中国地质大学博士学位论文,2006.
    [7]Han X Q, Wang W Y, Xu Y. The Viscoelastic Behavior of HPAM Solution in Porous Media and it's Effection Displacement Efficiency. SPE 30013. Society of Petroleum Engineers, Inc.1995.
    [8]罗平亚,面向二十一世纪的聚合物类油田化学剂.西南石油学院校庆四十周年学术论文报告会,四川南充,1998.
    [9]Slider H C. Worldwide Practical Petroleum Reservoir Engineering Methods. Pennwell Publishing Company,1983.
    [10]Yang C Z, Han D K. Present status of EOR in the Chinese petroleum industry and its future[J]. J. Petro. Sci. Eng.,1991,6:17554
    [11]韩显卿.提高采收率原理[M].北京:石油工业出版社,1990.
    [12]王德民,程杰成,杨清彦.粘弹性聚合物溶液能够提高岩心的微观驱油效率[J].石油学报,2000,21(5):45-51.
    [13]夏惠芬,王德民,刘中春,杨清彦.粘弹性聚合物溶液提高微观驱油效率的机理研究[J].石油学报,2001,22(4):60-65.
    [14]李兆爱.驱油聚合物水溶液黏度稳定性研究[D].中国石油大学硕士学位论文,2008.
    [15]王方,吴艳峰,王书明.驱油聚合物溶液粘度稳定性研究[J].精细石油化工 进展,2009,10(2):7-14.
    [16]武明鸣,赵修太,邱广敏等.驱油聚合物水溶液黏度稳定剂的研究[J].石油钻采工艺,2005,27(3):38-40.
    [17]孙德君,匡洞庭.驱油用超高分子量聚丙烯酰胺的合成[J].精细石油化工,2001,(5):13-15.
    [18]王健,陈学忠.耐温抗盐疏水缔合聚合物弱凝胶调驱剂的研制[J].油田化学,2002,19(4):355-357.
    [19]何勤功,油田开发高分子材料[M].北京:石油工业出版社,1990.
    [20]Stahl GA, Schulz DB,师树义,岳倩山,李方宁等译,采油用水溶性聚合物[M].北京:石油工业出版社,1994:121-129.
    [21]Stahl G A, Schulz D N. Water-soluble polymers for petroleum recovery[M]. New York:Plenum Publishing Corporation,1988.
    [22]McCormick C L, Elliott D L. Potentiometric and turbidimetric studies of water-soluble copolymers of acrylamide:comparison of carboxylated and sulfonated copolymers[J]. Macromolecules,1986,19 (3):542-547.
    [23]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998,78-131.
    [24]李卫东,郭雄华,陈跃章等.孤东油田黄原胶驱先导试验-粘度变化及影响因素[J].石油钻采工艺,1998,20(5):75-78.
    [25]孙景民,王喜臣,张成玉等.黄原胶在大港枣园油田的应用[J].石油勘探与开发,2000,27(5):90-92.
    [26]杨普华,杨承志.化学驱提高石油采收率[M].北京:石油工业出版社,1988.
    [27]赵福麟.采油用剂[M].山东东营:华东石油学院出版社,1997.
    [28]康万利,董喜贵.三次采油化学原理[M].北京:化学工业出版社,1997.
    [29]Akiyoshi K, Kang EC, Kurumada S, et al. Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides). Macromolecules,2000,33 (9):3244-3249.
    [30]韩明.交联聚合物应用于油田开发的机理研究与性能评价[J].油气地质与 采收率,1995,2(2):1-7.
    [31]张丽萍.疏水缔合水溶性聚合物的研究进展[J].油气田地面工程,2007,26(6):10-11.
    [32]Evani S, Rose G D. Water soluble hydrophobe association polymers[M]. Polymer Material Science Engineering,1987:57,477-481.
    [33]刘丁曾,王启民,李伯虎.大庆多层砂岩油田开发[M].北京:石油工业出版社,1996.
    [34]Mary P, Bendejacq D D. Interactions between Sulfobetaine-Based Polyzwitterions and Polyelectrolytes[J]. Journal of Physical Chemistry B-Condensed Phase,2008,112 (8):2299-2310.
    [35]臧庆达,李卓美.两性高分子的溶液性质[J].功能高分子学报,1994,7(1):90-102.
    [36]Yan M, Ge J, Dong W, et al. Preparation and characterization of a temperature-sensitive sulfobetaine polymer-trypsin conjugate [J]. Biochemical Engineering Journal,2006,30(1):48-54.
    [37]Armentrout R S, McCormick C L. Electrolyte responsive cyclocopolymers with sulfobetaine units exhibiting polyelectrolyte or polyampholyte behavior in aqueous media[J]. Macromolecules,2000,33 (2):419-424.
    [38]张黎明.具有反聚电解质溶液行为的两性聚合物[J].高分子通报,1998,(4):80-85.
    [39]程杰成,罗健辉,李振乾.梳形抗盐聚合物的应用与研究进展[J].精细与专用化学品,2004,12(6):10-12.
    [40]程杰成,沈兴海,袁士义等.新型梳形抗盐聚合物的流变性[J].高分子材料科学与工程,2004,20(4):119-121.
    [41]李振泉.梳形抗盐聚合物在聚合物驱油中的应用[J].化学研究与应用,2004,16(3):433-434.
    [42]祝仰文,罗平亚,李振泉.线型及星型聚合物溶液特征研究[J].油田化学,2011,28(1):62-65.
    [43]韩利娟.油气开采用疏水缔合聚合物的研究[D].西南石油大学博士学位论 文,2004.
    [44]Bekturov E A, Bimendina L A. Interpolymer complexes[M]. Speciality Polymers Springer Berlin/Heidelberg,1981,41,99-147.
    [45]Shiao W K, Feng C C. Studies of Miscibility Behavior and Hydrogen Bonding in Blends of Poly(vinylphenol) and Poly(vinylpyrrolidone) [J].Macromolecules, 2001,34(15):5224-5228.
    [46]Dan Y, Wang Q, Homogeneous complex solution formed through interactions of polyacrylamide-co-acrylic acidpolyacrylamide-co-dimethyldiallylammonium chloride complex with Mn+ hydration metal ions in aqueous media[J]. Polymer International,2001,50 (10):1109-1114.
    [47]Staikos G, Viscometric study of the coil-globule transition of poly (N-isopropylacrylamide) in solutions of surfactant[J]. Macromolecular rapid communications,1995,16 (12):913-917.
    [48]Flory P J. Principles of Polymer Chemistry[M]. Cornell University Press, Ithaca, New York,1953:Chapter XIV.
    [49]钱人元.无规与有序高分子凝聚态的基本物理问题研究[M].湖南科学技术出版社,2000.
    [50]叶仲斌.提高采收率原理[M].第2版.北京:石油工业出版社,2007:64-67.
    [51]孙红英,陈红祥,李金波等.聚丙烯酰胺溶液粘度的影响因素[J].精细石油化工进展,2005,6(9):1-3.
    [52]付美龙,周克厚,赵林.污水配制聚合物溶液的粘度稳定性研究[J].油气采收率技术,2000,7(2):6-8.
    [53]Yahaya G O, Ahdab A A, Ali S A, et al.Solution behavior of hydrophobically associating water-soluble block copolymer of acylamide and N-benzylacrylamide[J].Polymer,2001,42(8):3363-3372.
    [54]Sorbie K S. Polymer-Improved Oil Recovery[M]. CRC Press. Boca Raton, FL, 1991,42-43.
    [55]Tanford C. Physical Chemistry of Macromolecules[M]. New York,1961.
    [56]冯玉军.疏水缔合水溶性聚合物溶液结构及其与溶液流变性关系的研究[D]. 西南石油学院博士学位论文,1999.
    [57]任鲲,姜桂元,林梅钦等.NaCl对疏水缔合聚合物溶液性质的影响研究[J].功能高分子学报,2005,18(2):321-324.
    [58]Schwartz T, Francois J. Macromol. Chem.,1981,182:2757.
    [59]方道斌,郭睿威,周少刚等.水解聚丙烯酰胺盐水溶液表观粘度的数学模拟(Ⅰ)通用Mark-Houwink-Sakurada方程式[J].化工学报,1996,47(6):645.
    [60]方道斌,郭睿威,侯永兴等.水解聚丙烯酰胺盐水溶液表观粘度的数学模拟(Ⅳ)存在二价金属离子时的通用MHS关系式[J].化工学报,1998,49(1):11.
    [61]Peng S, Wu C. Light scattering study of the formation and structure of partially hydrolyzed poly(acrylamide)/Calcium(II)complexes[J]. Macromolecules,1999, 32 (3):585-589.
    [62]Francois J, Truong N D, Medjahdi G. Aqueous solutions of acrylamide-acrylic acid copolymers:stability in the presence of alkalinoearth cations[J]. Polymer, 1997,38 (25):6115-6127.
    [63]Ward J S, Martin F D. Prediction of viscosity for partially hydrolyzed polyacrylamide solutions in the presence if Calcium and Magnesium ions[J]. Soc. Petro. Eng. J,1981,20(8):623-632.
    [64]孙红英,陈红祥,李金波等.聚丙烯酰胺溶液粘度的影响因素[J].精细石油化工进展,2005,6(9):1-3.
    [65]范汉香,黄峰,董泽华等.铁离子对HPAM溶液粘度的影响[J].四川化工与腐蚀控制,1999,2(3):13-14.
    [66]文凤余,程若江.聚合物水溶液黏度不稳定因素分析与治理[J].胜利油田职工大学学报,2006,16:47-49.
    [67]姜维东.氧对聚合物溶液性质影响及作用机理[D].大庆石油学院硕士学位论文,2006.
    [68]付美龙,周克厚,赵林.聚合物驱溶液中溶解氧对聚合物稳定性的影响[J].西南石油学院学报,1999,21(1):71-73.
    [69]姜维东,仲强,卢祥国.化学添加剂对聚合物中氧的影响及作用机理[J].油气地质与采收率,2005,12(5):50-52.
    [70]付美龙,赵林,陈智宇等.碱/聚合物复合驱溶液中聚丙烯酰胺的稳定性[J].武汉化工学院学报,2000,22(3):22-24.
    [71]孔柏岭.污水聚丙烯酰胺溶液高温稳定性研究[J].石油勘探与开发,2001,28(1):66-70.
    [72]张学佳,纪巍,康志军.聚丙烯酰胺降解的研究进展[J].油气田环境保护,2008,12(2):41-44.
    [73]刘德新,赵修太,邱广敏.驱油用聚丙烯酰胺降解研究进展[J].高分子材料科学与工程,2008,24(9):27-31.
    [74]詹亚力,郭绍辉,闰光绪.部分水解聚丙烯酰胺降解研究进展[J].高分子通报,2004(4):72-73.
    [75]Silva M E. Preparation and thermal study of polymers derived from acrylamide[J]. Polymer Degradation and Stability,2000,67 (3):491-495.
    [76]朱麟勇,常志英,李妙贞等.部分水解聚丙烯酰胺在水溶液中的氧化降解Ⅰ温度的影响[J].高分子材料科学与工程,2000,16(1):113-116.
    [77]Smith E A, Prues S L, Oehme F W. Environmental Degradation of Polyacrylamides[J]. Ecotoxicology and Environmental Safety,1997,37(1): 76—91.
    [78]邵振波,周吉生.部分水解聚丙烯酰胺驱油过程中机械降解研究—分子量、粘度及相关参数的变化[J].油田化学,2005,22(1):72-73.
    [79]宋永亭,蒋焱,鞠玉芹.三次采油污水生化处理研究[J].西南民族大学学报(自然科学版),2003,29(6):46-48.
    [80]何牛仔,郑伟林,潘赳奔.新型聚合物溶液粘度稳定剂研究[J].精细石油化工进展,2003,4(7):38-40.
    [81]汪庐山,段庆华,张小卫.有机铬交联聚合物驱油剂的研制及矿场应用[J].油田化学,2000,17(1):58-61.
    [82]付美龙,周克厚,赵林等.污水配制聚合物溶液的粘度稳定性研究[J].油气采收率技术,2000,7(2):6-8.
    [83]赵福麟.采油用剂[M].东营:石油大学出版社,1997:211-212.
    [84]王正平,杨淑华.新型除氧剂研究[J].应用科技,2001,28(3):37-38.
    [85]Worthington. Panl F. Scale effects on the application of saturation height functions to reservior petrofacies units. SPE 73173,2001:135-147.
    [86]马广彦,徐振峰.有机络合剂在油气田除垢技术中的应用[J].油田化学,1997,14(2):180-186.
    [87]严瑞瑄.水处理剂应用手册[M].北京:化学工业出版社,2000.
    [88]Paola Albonico, Lockhart T P. Divalent ion-resistant polymer gels for high temperature applications:syneresis inhibiting additives. SPE 25220,1993: 651-665
    [89]Mu Bozhong. The migration and growth behavior of bacteria in porous media[J]. Petroleum Science,2001,4 (4):50-53.
    [90]王升坤,蒋杏昆.几种新型油田污水杀菌剂[J].油田化学,1998,15(3):289-292.
    [91]梁泽生.油田杀菌剂的研制和开发[J].精细与专用化学品,2000,8(21):3-4.
    [1]方道斌,郭睿威,哈润华等.丙烯酰胺聚合物[M].北京:化学工业出版,2006.
    [2]Yang C Z, Han D K. Present status of EOR in the Chinese petroleum industry and its future[J]. J. Petro. Sci. Eng.,1991,6:17554.
    [3]G. O. Yahaya, A. A. Ahdab, S. A. Ali, et al. Solution behavior of hydrophobically associating water-soluble block copolymer of acylamide and N-benzylacrylamide[J]. Polymer,2001,42:3363-3372.
    [4]宋万超.高含水期油田开发技术和方法[M].北京:地质出版社,2003
    [5]Ward. J. S, Martin F. D. Prediction of viscosity for partially hydrolyzed polyacrylamide solutions in the presence if Calcium and Magnesium ions[J]. Soc. Petro. Eng. J,1981, (8):623.
    [6]Wang Daxi. Chemical adsorption and stabilization energy of imidazolines and Fe atom[J]. Petroleum Science,2001,4 (3):22-25.
    [7]孔柏岭.污水聚丙烯酰胺溶液高温稳定性研究[J].石油勘探与开发,2001,28(1):66-71.
    [8]罗开富,叶林,黄荣华.AM/MEDMDA阳离子型疏水缔合水溶性聚合物溶液性能的研究[J].高分子材料科学与工程,1999,15(1):145-148.
    [9]胡秋平,任鲲,高金森等.疏水缔合聚丙烯酰胺溶液的稳定性研究.应用化工,2004,33(4):32-34
    [10]Shashkina Y A, Zaroslov Y D, Smirnov V A. Hydrophobic aggregation in aqueous solutions of hydrophobi- cally modified polyacrylamide in the vicinity of overlap concentration[J]. Polymer,2003,44(28):2289-2293.
    [11]11. Jimemenez-Regalado E, Selb J, Candau F. Viscoelastic behavior of semidilute solutions of Multisticker- polymer chains[J]. Macromolecules,1999, 32(25):8580-8588.
    [12]唐善法,罗平亚.疏水缔合水溶性聚合物的研究进展[J].现代化工,2002,22(3):10-13.
    [13]赖南君,叶仲斌,周扬帆等.新型疏水缔合聚合物溶液性质及提高采收率研究[J].油气地质与采收率,2005,12(2):63-65.
    [14]Turro N J, Yekta A, Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles[J]. Journal of the American chemical society,1978,100 (18):5951-5952.
    [15]Kalyanasundaram K, Thomas J K, Solvent-dependent fluorescence of pyrene-3-carboxaldehyde and its applications in the estimation of polarity at micelle-water interfaces. The Journal of Physical Chemistry,1977,81 (23): 2176-2180.
    [16]Huang X, Tan Y, Wang Y, et al. Synthesis, characterization, and properties of copolymer of acrylamide and complex pseudorotaxane monomer consisting of cucurbit [6] uril with butyl ammonium methacrylate[J]. Journal of Polymer Science, Part A, Polymer Chemistry,2008,46 (18):5999-6008.
    [17]Niu A, Liaw D J, Sang H C, Wu C, Light-scattering study of a zwitterionic polycarboxybetaine in aqueous solution[J]. Macromolecules,2000,33 (9): 3492-3494.
    [1]赵福麟.油田化学[M].东营:石油大学出版社,2006.
    [2]孔柏岭.污水聚丙烯酰胺溶液高温稳定性研究[J].石油勘探与开发,2001,28(1):66-68.
    [3]Hirasaki G J, Miller C A, Raney O G, Poindexter M K, Nguyen D T, Hera J. Separation of Produced Emulsions from Surfactant Enhanced Oil Recovery Processes[J]. Energy & Fuels,2011,25:555-561.
    [4]Deng M L, Cao M W, Wang Y L. Coacervation of Cationic Gemini Surfactant with Weakly Charged Anionic Polyacrylamide[J]. Journal of Physical Chemistry B,2009,113 (28):9436-9440.
    [5]朱麟勇,常志英,马昌期.部分水解聚丙烯酰胺在水溶液中的氧化降解高温稳定作用[J].高分子材料科学与工程,2002,18(2):92-94.
    [6]王方,吴艳峰,王书明.驱油聚合物溶液粘度稳定性研究[J].2009,10(2):7-10.
    [7]Bock J. Enhanced Oil Recovery with Hydrophobically Associating Polymers Containing Sulfonale Functionality[P]. US 47102319,1987.
    [1]韩显卿.提高采收率原理[M].北京:石油工业出版社,1993.
    [2]胡国林等.聚合物溶液增粘稳粘技术的探讨[J].试采技术,2001,22(2):36-38.
    [3]陈哲,王琪.分子复合法制备新型聚合物驱油剂CMC/P(AM-DMDAAC) [J].高等学校化学学报,2001,22(9):1597-1600.
    [4]Ryles R G. Chemieal Stability Limits of Water-Soluble Polymers Used in oil Reeovery Proeesses. SPE Reservoir Engineering,1988,23-34.
    [5]林芸,方道斌.聚丙烯酰胺水溶液粘度依时性及其稳定剂[J].分析化学,1995,23(9):1073-1076.
    [6]胡秋,任鲲,高金森等.疏水缔合聚丙烯酰胺溶液的稳定性研究[J].应用化工,2004,33(4):32-34.
    [1]Para G, Hamerska-Dudra A, Wilk KA, Warszynski P. Surface activity of cationic surfactants, influence of molecular structure[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,365 (1-3):215-221.
    [2]Lukac M, Pisarcik M, Lacko I, Devinsky F. Surface-active properties of nitrogen heterocyclic and dialkylamino derivates of hexadecylphosphocholine and cetyltrimethylammonium bromide[J]. J Colloid Interface Sci.,2010,347 (2): 233-240.
    [3]Ao M Q, Xu G Y, Pang J Y. Comparison of Aggregation Behaviors between Ionic Liquid-Type Imidazolium Gemini Surfactant C-12-4-C(12)im Br-2 and Its Monomer C(12)mim Br on Silicon Wafer[J]. Langmuir,2009,25 (17): 9721-9727.
    [4]Para G, Jarek E, Warszynski P. The Hofmeister series effect in adsorption of cationic surfactants--theoretical description and experimental resultsfJ]. Advances in Colloid and Interface Science,2006,122 (1-3):39-55.
    [5]Rosen M J. Characteristic Features of Surfactants. Surfactants and Interfacial Phenomena[M]. John Wiley & Sons,2004, pp 20-40.
    [6]Yoshimura T, Yoshida H, Ohno A, Esumi K. Physicochemical properties of quaternary ammonium bromide-type trimeric surfactants [J]. J Colloid Interface Sci,2003,267(1):167-172.
    [7]Bell PC, Bergsma M, Dolbnya IP, Bras W, Stuart MCA, Rowan AE, Feiters MC, Engberts JBFN. Transfection Mediated by Gemini Surfactants:□ Engineered Escape from the Endosomal Compartment[J]. Journal of the American Chemical Society,2003,125 (6):1551-1558.
    [8]Babadagli T. Selection of proper enhanced oil recovery fluid for efficient matrix recovery in fractured oil reservoirs[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2003,223 (1-3):157-175.
    [9]Zana R. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution:a review[J]. Advances in Colloid and Interface Science,2002, 97 (1-3):205-253.
    [10]Kim S S, Zhang W, Pinnavaia T J. Ultrastable Mesostructured Silica Vesicles[J]. Science,1998,282 (5392):1302.
    [11]Deen G R, Gan L H. New piperazine-based polymerizable monoquaternary cationic surfactants:Synthesis, polymerization, and swelling characteristics of gels[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47 (8): 2059-2072.
    [12]Hayamizu K, Tsuzuki S, Seki S, Ohno Y, Miyashiro H, Kobayashi Y. Quaternary Ammonium Room-Temperature Ionic Liquid Including an Oxygen Atom in Side Chain/Lithium Salt Binary Electrolytes:Ionic Conductivity and 1H,7Li, and 19F NMR Studies on Diffusion Coefficients and Local Motions [J]. The Journal of Physical Chemistry B,2008,112 (4):1189-1197.
    [13]Dopierala K, Prochaska K. The effect of molecular structure on the surface properties of selected quaternary ammonium salts [J]. J Colloid Interface Sci, 2008,321 (1):220-226.
    [14]Chlebicki J, Wegrzynska J, Wilk K A. Surface-active, micellar, and antielectrostatic properties of bis-ammonium salts[J]. J Colloid Interface Sci, 2008,323 (2):372-378.
    [15]Ao M Q, Xu G Y, Zhu Y Y, Bai Y[J]. Synthesis and properties of ionic liquid-type Gemini imidazolium surfactants. J Colloid Interface Sci,2008,326 (2):490-495.
    [16]Muzzalupo R, Infante MR, Perez L, Pinazo A, Marques EF, Antonelli ML, Strinati C, La Mesa C. Interactions between Gemini Surfactants and Polymers: Thermodynamic Studies[J]. Langmuir,2007,23 (11):5963-5970.
    [17]Jendric M, Filipovic-Vincekovic N, Vincekovic M, Bujan M, Primozik I. Phase behavior of bis(quaternary ammonium bromide)/sodium cholate/H2O system [J]. J Dispersion Sci Technol,2005,26 (1):39-51.
    [18]Yoshimura T, Nagata Y, Esumi K. Interactions of quaternary ammonium salt-type gemini surfactants with sodium poly(styrene sulfonate) [J]. J Colloid Interface Sci,2004,275 (2):618-622.
    [19]Kumar A, Alami E, Holmberg K, Seredyuk V, Menger FM. Branched zwitterionic gernini surfactants micellization and interaction with ionic surfactants[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2003,228 (1-3):197-207.
    [20]Sikiric M, Primozic I, Filipovic-Vincekovic N. Adsorption and Association in Aqueous Solutions of Dissymmetric Gemini Surfactant[J]. J Colloid Interface Sci,2002,250(1):221-229.
    [21]Li Z Y, Chau Y. Synthesis of Linear Polyether Polyol Derivatives As New Materials for Bioconjugation[J]. Bioconjugate Chemistry,2009,20 (4):780-789.
    [22]Mortensen K. PEO-related block copolymer surfactants [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2001,183:277-292.
    [23]Mochizuki A, Senshu K, Seita Y, Fukuoka T, Yamashita S, Koshizaki N. Polyether-segmented nylon hemodialysis membrane. VI. Effect of polyether segment on morphology and surface structure of membrane[J]. J Appl Polym Sci,1998,69(8):1645-1659.
    [24]Hirasaki G J, Miller C A, Raney O G, Poindexter M K, Nguyen D T, Hera J. Separation of Produced Emulsions from Surfactant Enhanced Oil Recovery Processes[J]. Energy & Fuels,2011,25:555-561.
    [25]Deng M L, Cao M W, Wang Y L. Coacervation of Cationic Gemini Surfactant with Weakly Charged Anionic Polyacrylamide[J]. Journal of Physical Chemistry B,2009,113 (28):9436-9440.
    [26]Zhang H X, Xu G Y, Wu D, Wang S W. Aggregation of cetyltrimethylammonium bromide with hydrolyzed polyacrylamide at the paraffin oil/water interface:Interfacial rheological behavior study [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects,2008,317 (1-3):289-296.
    [27]Khan M Y, Samanta A, Ojha K, Mandal A. Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties [J]. Asia-Pacific Journal of Chemical Engineering,2008,3 (5):579-585.
    [28]Luo L, Wang D X, Zhang L, Zhao S, Yu J Y. Interactions between hydrophobically modified associating polyacrylamide and cationic surfactant at the water-octane interface:Interfacial dilational viscoelasticity[J]. J Dispersion Sci Technol,2007,28 (2):263-269.
    [29]Yuan SL, Cai ZT, Xu GY, Jiang YS Mesoscopic simulation study on the interaction between polymer and C12NBr or C(9)phNBr in aqueous solution[J]. Colloid and Polymer Science,2003,281 (11):1069-1075.
    [30]Huang J B, Zhu Y, Zhu B Y, Li R K, Fu H I. Spontaneous vesicle formation in aqueous mixtures of cationic surfactants and partially hydrolyzed polyacrylamide[J]. J Colloid Interface Sci,2001,236 (2):201-207.
    [31]Brackman J C, Engberts J. Influence of polymers on the micellization of cetyltrimethylammonium salts[J]. Langmuir,1991,7 (10):2097-2102.
    [32]Turro N J, Baretz B H, Kuo P L. Photoluminescence probes for the investigation of interactions between sodium dodecylsulfate and water-soluble polymers [J]. Macromolecules,1984,17 (7):1321-1324.
    [33]Shirahama K, Tsujii K, Takagi T. Free-boundary Electrophoresis of Sodium Dodecyl Sulfate-Protein Polypeptide Complexes with Special Reference to SDS-Polyacrylamide Gel Electrophoresis[J]. Journal of Biochemistry,1974,75 (2):309-319.
    [34]Muller G, Fenyo J C, Selegny E. High molecular weight hydrolyzed polyacrylamides. III. Effect of temperature on chemical stability[J]. J Appl Polym Sci,1980,25 (4):627-633.
    [35]Del Rio E, Galia M, Cadiz V, Lligadas G, Ronda JC. Polymerization of epoxidized vegetable oil derivatives:Ionic-coordinative polymerization of methylepoxyoleate. Journal of Polymer Science Part A: Polymer Chemistry, 2010,48(22):4995-5008.
    [36]Rahm M, Westlund R, Eldsater C, Malmstrom E. Tri-block copolymers of polyethylene glycol and hyperbranched poly-3-ethyl-3-(hydroxymethyl)oxetane through cationic ring opening polymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47 (22):6191-6200.
    [37]Endo T. Handbook of Ring-Opening Polymerization[M]. Wiley-VCH Verlag GmbH & Co.,2009, pp 56,141-142.
    [38]Magnusson H, Malmstrom E, Hult A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane[J]. Macromolecular Rapid Communications, 1999,20(8):453-457.
    [39]Wang T T, Iou Q L. The solvent effect and the structural effect of halides on the quaternization Et3N+RX-->Et3RNX[J]. Chemical Engineering Journal,2002, 87 (2):197-206.
    [40]Li X, Mya K Y, Ni X P, He C B, Leong K W, Li J. Dynamic and static light scattering studies on self-aggregation behavior of biodegradable amphiphilic poly(ethylene oxide)-poly (R)-3-hydroxybutyrate -poly(ethylene oxide) triblock copolymers in aqueous solution[J]. Journal of Physical Chemistry B,2006,110 (12):5920-5926.
    [41]Gracia CA, Gomez-Barreiro S, Gonzalez-Perez A, Nimo J, RodrIguez J R. Static and dynamic light-scattering studies on micellar solutions of alkyldimethylbenzylammonium chlorides[J]. J Colloid Interface Sci,2004,276 (2):408-413.
    [42]Zimm B H. The Scattering of Light and the Radial Distribution Function of High Polymer Solutions[J]. The Journal of Chemical Physics,1948,16 (12):1093-1099.
    [43]Zana R, In M, Levy H, Duportail G Alkanediyl-a,co-bis(dimethylalkylammonium bromide). 7. Fluorescence Probing Studies of Micelle Micropolarity and Microviscosity[J]. Langmuir, 1997,13(21):5552-5557.
    [44]Weissenborn PK, Pugh RJ. Surface Tension of Aqueous Solutions of Electrolytes:Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence[J]. J Colloid Interface Sci,1996,184 (2):550-563.
    [45]Turro NJ, Yekta A. Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles[J]. Journal of the American Chemical Society,1978,100 (18):5951-5952.
    [46]Koyanagi M. Effect of dispersion forces of solventsⅡ. On the O-O band of the near ultraviolet absorption spectrum of benzene in fluid solutions[J]. Journal of Molecular Spectroscopy,1968,25 (3):273-290.
    [47]Ao M Q, Huang P P, Xu G Y, Yang X D, Wang Y J. Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length[J]. Colloid and Polymer Science,2009,287 (4):395-402.
    [48]Zana R. Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization[J]. Langmuir,1996,12 (5):1208-1211.
    [49]Nusselder J H, Engberts J B. Toward a better understanding of the driving force for micelle formation and micellar growth[J]. J Colloid Interface Sci,1992,148 (2):353-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700