亚低温治疗与颅脑创伤后β-淀粉样蛋白动态变化规律的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:正常人脑组织中β淀粉样蛋白(amyloidβpeptide,Aβ含量甚少,但在创伤后其含量可能会大幅度增高,本实验通过对创伤后脑脊液中β淀粉样蛋白的浓度变化,分析亚低温在临床治疗中的作用及和预后的关系,并通过建立常温和亚低温大鼠TBI模型,进一步确证亚低温治疗重型颅脑创伤与常规治疗相比是否具有一定的优势,进一步揭示亚低温的脑保护作用机制,为临床亚低温的应用提供理论依据。
     方法:本课题分为二部份,第一部分:根据一定的标准,选取2009年10月~2010年8月入住武警医学院附属医院亚低温及神经外科重症监护病房(NICU)住院治疗的sTBI (GCS≤8分)患者共60例,随机分为亚低温组和对照组(常规治疗组),其中亚低温治疗组和对照组各30例,分别于术后第1、3、5、7天留取脑脊液,采用双抗体夹心酶联免疫吸附试验(ELISA)法测定脑脊液中Aβ蛋白含量,并监测期间ICP值及半年后GOS评分,第二部分试验选取健康雄性SD大鼠12只,随机分成正常组、对照组、颅脑创伤+常温组和颅脑创伤+低温治疗组,各组动物均为3只。制作大鼠液压冲击模型。低温组动物创伤后立即应用冰浴降温,维持脑温大约(32±2)℃,常温组只进行打击,不行低温,假手术组只行麻醉及开颅,不给予打击及低温干预,创伤后6小时断头取脑,运用免疫荧光及PCR检测脑组织Aβ含量。
     结果:第一部分结果示:创伤后脑脊液中Aβ蛋白于术后第3天变化明显,而且Aβ升高明显的患者,其ICP值较高,GOS评分较低,预后较差,第二部分试验结果示:正常组及对照组Aβ含量无明显改变,创伤+常温组可见Aβ明显升高,颅脑创伤+低温组脑组织中Aβ明显较正常组升高明显,但升高幅度较创伤+常温组低。
     结论:在常规治疗的同时,采用亚低温治疗可抑制重型颅脑创伤患者的Aβ的表达及ICP水平并提高患者预后,Aβ作为一种新生物标记物,其动态变化与颅脑创伤损伤程度有一定相关性,Aβ含量变化作为患者预后一项评定指标。
Objective:There is very few A(3 in normal brain tissue, but its content may be greatly increased after TBI, this study is to detect concentration changes of Aβin cerebrospinal fluid at different times after TBI, Evaluate the rlationship between the function of mild hypothermia in clinical treatment and prognosis, estabish stable normothermia and mild hypothermia rat fluid percusstion brain injury models, compared with conventional treatment, further confirmed mild hypothermia has advantages, and reveal the mechanism for brain protection in clinical, provides the theory basis for the further research.
     Methods:The study includes two parts.Part one:sixty sTBI patients were random selected, All 60 patients who were hospitaled in the department of neurosurgery of the Affiliated Hospital of Chinese People's Armed Police Force from October 2009 to August 2010 with sTBI(GCS<8 points),which were randomly assigned into two groups,30 patients with mild hypothermia treatment (HT group), and 30 cases with routine treatment(NT group). Mild hypothermia was induced within 24 hours after TBI,and maintain the rectal temperature(RT) in (32-35)℃,The Aβconcentration level of CSF was measured by ELISA method at 1,3,5 and 7 day after TBI.Meantime, the intracranial pressure(ICP) were also measured and the prognosis was evaluated by Glasgow Outcome Scale after six months. The second part were selected 12 healthy, free diet feeding conditions SD rats. The adult male Sprague Dawley rats were randomly assigned to normal group(n=3), sham injury group(n= 3), TBI-mild hypothermia group (n=3) and TBI-normothermia group, The rats of TBI-mild hypothermia group received hypothermia intervention with ice-water bathing after TBI was induced though the lateral fluid percussion device. The brain temperature was adjusted to (32±2)℃and maintained for 6 h. The TBI-normothermia group underwent all surgical and anesthetic procedures except the hypothermia implement. The sham injury group underwent all surgical and anesthetic procedures except the TBI and hypothermia implement,the histopathological evaluation was performed with immune fluorescence staining and RT-PCR in three rats of every group at six hours post-TBI.
     Results:The first parts sugested:Compared with mild hypothermia group,the Aβin cerebrospinal fluid is significantly increased after 3 days post-trauma, the ICP value is lower, GOS score higher with good prognosis, the second part showed:normal group and sham group have no changes in Ap,however TBI-NT group showed significantly higher than HT group.
     Conclusion:TBI may induce some significant alternation of Aβ,while conventional treatment,take mild hypothermia in the patients with sTBI can lower ICP levels and improve the prognosis of patients, mild hypothermia could inhibit expressive change of Aβ,as a new biomarker, there is relationship between the dynamic changes and degree of TBI.
引文
[1].Kraus MF, Susmaras T, Caughlin BP, et al. White matter integrity and cognition in chronic traumatic brain injury:a diffusion tensor imaging study. Brain. 2007;130(10):2508-2519.
    [2].H. Devos, A.E. Akinwuntan, A. Nieuwboer, et al. A systematic review of brain injury epidemiology in Europe. Acta Neurochir.2006;148:255-268.
    [3].周良辅,胡锦.颅脑创伤临床流行病学调查的重要性.中华神经外科杂志.2008;24(2):85-87..
    [4].Hansson GK. Inflammation, Atherosclerosis, and Coronary Artery Disease. New Engl J Med.2005;352:1685-1695.
    [5].Muller K, Townend W, Biasca N, et al. S100B Serum Level Predicts Computed Tomography Findings After Minor Head Injury. J Neurotrauma.2007;62 (6): 1452-1456.
    [6]. Korfias S, Stranjalis G, Mendelow AD, et al. Serum S-100B protein as a biochemical marker of brain injury:a review of current concepts. Curr Med Chem. 2006; 13(30):3719-3731.
    [7].Takano J,Tomioka M,Tsubuki S, et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains:evidence from calpastatin mutant mice. J Biol Chem.2005;280(16):16175-16184.
    [8].Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death and Differentiation 2006;13:385-392.
    [9].Levin G, Evin O, et al.Activity of flurbiprofen and chemically related anti-inflammatory drugs in models of Alzheimer's disease. Brain Res Brain Res Rev. 2005;48(2):400-408.
    [10]M.P.Mattson,Cellular actions of (3-amyloid precursor protein and its soluble and fibfillogenic derivatives,Physiol. Rev,1997,77:1081-1132
    [11]Shibata M,Yamada S,Kumar SR et al,Clearance of Alzheimer's amyloid Aβ1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier,J Clin Invest,2000,106:1489-1499.
    [12]DeMattos RB, bales KR,Cummins DJ, et al, Brain to plasma (3-amyloid efflux: a measure of brain amyloid burden in a mouse model of Alzheimer's disease, Science ,2002,295:2264-2267.
    [13]Deane R,Yan SD,Submamaryan RK,et al,RAGE mediates amyloid-β peptide transport across the blood-brain barrier and accumulation in brain, Nature Med,2003, 9:907-913
    [14]Zlokovic BV,Yamada S, Holtzman D, et al, Clearance of β amyloid-peptide from brain:transport or metabolism,Nature Med,2000,6:718-719.
    [15]Zlokovic BV, Martel CL, Matsubara E, et al, Glycoprotein 330/megalin:probable role in receptor-mediated transport of apolipoprotein J alone and in a complex with Alzheimer's disease β-amyloid at the blood-brain and blood-cerebrospinal fluid barriers, Proc Natl Acad Sci USA,1996,93:4229-4234.
    [16]Martel CL,Mackic JB, Matsubara E, Isoform specific effects of apolipoprotein E2,E3 and E4 on cerebral capillary sequestration and blood-brain barrier transport of circulating Alzheimer's β-amyloid, J Neurochem,1997,69:1975-2004.
    [17]Silverberg GD, Mayo M, Saul L,et al, Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology:a hypothesis, Lancet Neurol,2003,2:506-511.
    [18]DeMattos RB, Bales KR,Paul SM, et al, Potential role of endogenous and exogenous Aβbinging molecules in Aβ clearance and metabolism. In:Saido TC ed. Aβ Metabolism in Alzheimer's Disease. Georgetown,TX:Landes Bioscience, 2003:123-139.
    [19].XingHe C, Devin F, JingQue T, et al. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol.2004;165:357-371.
    [20]. McName B, Barra S,Miano M, et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase. J Neurol Transm.2004; 111:523-536.
    [21].Kaj Blennow,Bengt Nellgard,G Franz, et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology.2003;60: 1457-1461.
    [22]Jiang JY, Lyeth BG, Kapasi MZ, et al.Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat[J].Acta Neuropathol(Berl),1992,84(5):495-500.
    [23].Berislav V.Zloko Vic.Neurovascular machenisms of Alzheime's neuro degeneration TRENDS in Neurosciences,2005,28(4):202-208.
    [24]Daiju Tsuchiya, Yoshihisa Kitamura, Kazuyuki Takata, et al. Clearance of β-amyloid in microglial culture modle international Congress Series,2004,1260: 271-274.
    [25]Mia E-L.Blomqvist, Kata Chalmers, Niels mldreasen, et al. Scquence variants of IDE are associated with the extent of β-amyloid deposition in the Alzheimers disease brain. Neurobiology of ageing,2005,26(6):795-802
    [26]Y.Du, R.Dodel,H.Hampel,et al Reduced levels of amyloid β-peptide antibody in Alzheimer disease. Neurology 2001:57;801-809.
    [27]Lanralyn A, Mclntyre, Dean A, et al.Prolonged therapeutic hypothermia after traumatic brain injury in adults:a systemic review [J]. JAMA,2003,289(22): 2992-2998.
    [1]Iversen LL, Mortishire-Smith RJ, Pollack SJ, et al, The toxicity in vitro of beta-amyloid protein.[Review], Biochem J,1995,311:1-16
    [2]Selkoe DJ. Alzheimer's disease:genes, proteins, and therapy. [Review], Physiol Rev,2001,81:741-66
    [3]Zhang Y, Cynthia G, Andren LB, et al, Selective and protracted apoptusis in human primary neurons microinjection with active Caspase-3,-6,-7 and -8. J Ncurosci, 2000,20:8384—8389.
    [4]Nishimura IA, Mocchetti I. Brain-derived neurotrophic factor is neuroprotective against human immunedeficiency virus-1 envelope proteins[J].Ann N Y Aced Sci, 2005,1053(2):247-257.
    [5]Rohn TT, Head E, Nesse WH, et al. Activation of Caspase-8 in the Alzheimer's disease brain Neurobiol Dis,2001,8:1006-1016
    [6]Chung CW, Song YH, Kim IK, et al. Proapoptotic effects of tau cleavage product generated by Caspase-3. Neurobio Dis,2001,8:162-172.
    [7]Morishima YS, Gotoh Y, Zieg J, et al. β-amyloid induces neuronal apoptosis via a mechanismthat involves the N-terminal kinase pathway and the induction of Fas ligand.Brain Res,2002.931:117-125.
    [8]高曲文,陈俊抛,田时雨等,β淀粉样蛋白诱导脑内神经元凋亡的研究,中风与神经病杂志,2000,17(2):32-35.
    [9]韩燕,陈俊抛,高曲文等,L-dopa诱导PC12细胞凋亡及Bcl-2、Bax表达的改变,中国神经免疫学和与神经病杂志,2001,8(2):88-91.
    [10]Webster S, Bonnell B, Rogers J, etal. Changer-base binding of complement component Clq to the Alzheimer amyloid beta-peptide.Am J Pathol,1997,150: 1531-1536.
    [11]Weldon D T,O Hare E, Mantyh P W, et al,Delayed behavioral effects following in the hippocampal injection of aggregated Aβ, Brain research J,1999,815:1-10
    [12]刘辉,陈俊抛,田时雨等.Aβ1-40海马注射对大鼠脑内一氧化氮合酶.中华神经科杂志,2001,34:92-94.
    [13]Ueda K, Shinohara S, Yagmi T, et al. β-Amyloid protein potentiates calcium influx through L-type voltage-senstive calcium channels:A possible involvement of free radicals J. Neurochem,1997,68:265-271.
    [14]Hu K, Van Eldik, Lin J,et al Glial-derives proteins active cultured astrocytes and enhance beta amyloid-induced glial activation. Brain Res,1999,842:46-54.
    [15]Ferrer I, Krupinski J, Goutan E, et al.Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral atartery occlusion in the rat[J]. Acta Neuropatho,2001,101 (4):229-238.
    [16]K.Ueda, T,Yagami K.Asakura, et al. Gas6 rescues cortical neurons from amyloid β Protein-induced apoposis.Neuropharmacology 2005,48(2):291-300.
    [17]田映红,姚志彬,周丽华等.β淀粉样蛋白和载脂蛋白E4升高神经元胞内游离钙.中国药理学通报,2001,7:57-61.
    [18]Hardy JA,Higgins GA, et al.Alzheimers Disease:The amyloid cascade hypothesis Science,1992,256:184-185.
    [19]Kawahara M, Arispe N, Kuroda Y, et al.Alzheimer's disease amyloid beta-protein forms Zn2+ -sensitive, cation. selective channels across excised membrane patches from hypothalamic neurons. Biophysic J,1997,73:67-72.
    [20]Butterfield DA, Yatin SM,Varedarajan S, et al. Amyloid beta-peptide-associated free radical oxidative stress, neurotoxicity, and Alzheimer's disease. Methods Enzymol,1999,309:7466-7478.
    [21]Lvoell MA, Ehmann WL, Butler SM, et al.Elevated thiobarbituric acidreactive substance and antioxidant enzyme activity in the brain in Alzheimer disease[J].J Neurology,1995;45:1594-1601.
    [22]Soomets U, Mahlapuu R, Tehranian. et al. Regulation of GTPase and adenylate cycle activity by amyloid beta-peptide and its fragments in rat brain tissue. Brain Res,1999,850:179-186.
    [23]Hall ED, Ostvenn JA, Duun E. et al. Increased amyloid protein precursor and apolipo protein E immunoreactivity in the selectively vulnerable hippocampus following transient forebrain ischomia in gerbils. Exp Ncnu' oL 1995,35:17-27.
    [24]Crawford F, Suo Z, Fang C, et al. Superoxide free radical and intracellular calcium mediate Aβ 1-42 induced endothelial toxicity of beta-amyloid peptides. Brain research,1997,762:1-2.
    [25]Thomas T'Mclendon C, Sutton ET,et al. Cerebrovaseular endothelial dysfunction mediated by (3-amyloid. Neuro Report,1997,8:1387-1390.
    [26]Van WE, Davis S J, Saporito SM. et al. β-Amyloid protein induces the cerebrovaseular cellular pathology of Alzheimer's disease and related disorders. Ann NY Acad Sci,1996,777:297-300.
    [27]Khalil Z,Chert H,Helmo R, et al. Mechanisms underlying the vascular activity of β-amyloid protein fiagment at the level of skin micro vasculature. Brain Res,1996, 736:206-209.
    [28]Sutton ET,Hellermann G L, Thomas T, et al. p-amyloid-induced endothelial necrosis and inhibition of oxide production. Exp Cell Res,1997,230:368-372.
    [29]Wu J, Anwyl, Rowan MJ. et al, β-amyloid selectively augments NMDA receptor-mediated synaptic transmission in rat hippocampus. NeuroReport,1995, 24:9-12.
    [30]Arias C, Arrieta L, Tapia et al.β-amyloid per,tide fragment 25-35 potentiates the calcium dependent release of excitatory amino acids from depolarized hippocampal slices. J NeuroseiRes,1995,41:561-572.
    [31]Takahashi RH, Almeida CG,Keamey PF, et al. Oligomerization of Alzheimer's β-amyloid within processes and synapses of cultured neurons and brain,J Neurosci, 2004,24:3592-3599
    [32]Masliah E,Abraham C,Johnson W,et al. Synaptic alterations in the cortex of APP Iransgenic mice, J Neuropathol Exp Neurol,1993,52:307-315.
    [33]Mucke L, Masliah E, Yu GQ, et al. High-level neuronal expression of Aβ1-42 in wild-type human amyloid protein precursor transgenic mice:synaptotoxicity without plaque formation. J Neurosci,2000,20:4050-4058.
    [34]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics, Science,2002,297:353-356.
    [35]Selkoe DJ. Alzheimer's disease is a synaptic failure,Science,2002,298:789-791.
    [36]Hsiao K, Chapman P, Nilsen S, et al. Correlative memory deficits, Aβ elevation, and amyloid plaques in tramgenic mice,Science,1996,274:99-102.
    [37]Oiannakopoulos P, Herrmann FR, Bussiere T, et al.Tangle and neuron numbers, but not amyloid load,predict cognitive status in Alzheimer's disease, Neurology, 2003,60:1495-1500.
    [38]Guillozet A, Weintraub S, Mash DC, et al. Neurofibrillary tangles, amyloid,and memory in aging and mild cognitive impairment, Arch Neurol,2003,60:729-736
    [39]Hsia AY,Masliah E, McConlogue L, et al. Plaque-independent disruption of neural circuits in Alzheimer's disease monse models, Proc Natl Acad Sci USA,1999,96:3228-3233.
    [40]Larson J, Lynch G, Games D, et al,Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PD APP mice, Brain Res 1999,840:23-35.
    [41]Xia MQ, Qin S,Q Wild, et al. Immtmohistochemical study of CCR3 and CCR5 and their ligands in control and AD brains, Am J Pathol,1998,153:31-37.
    [42]Neuhaus J, Fedoroff S. Development of microglia in mouse neopallial cell cultures, Glia,1994,11:11-17.
    [43]Hickey,WF, Kimura H, et al. Perivasculal microglial cells of the CNS ale bone malrow-derived and present antigen in vivo,1988, Science,239:290-292
    [44]Eglitis, MA, Mezey E, et al. Hematopoietic cells differentiate into both mieroglia and maeroglia in the brains of adult mice, Proc Natl Acad Sci USA,1997,94: 4080-4085.
    [45]Mezey E, Chandross KJ, Harta G,et al. Turning blood intO brain:cells bearing neuronal antigens generated in vivo from bone marrow,Science,2000,290:1779-1782.
    [46]Fiala,M, Zhang L,Gan X, et al β-Amyloid induces chemokine secretion and monocyte migration across a human blood-brain barrier model. Mol Med,1998,4: 480-489.
    [47]Gifi R,Shen Y,Stins M, et al. β-Amyloid induced migration of monocytes across human brain endothelial cells involves RAGE and PECAM-Ⅰ. Am J Physiol Cell Physiol,2000,279:1772-1781.
    [48]Wanli Wei, Xiantao Wang, Jolln W Kusiak, et al.Signaling Events in β-Amyloid peptide-induced Neuronal Death and Insulin-like Growth Factor Ⅰ Protection.J. Brain Chem,2002,277(20):17649-17656.
    [49]Selznick LA, Holtzman DM, Han BH, et al. In situ immunodetection of neuronal Caspase-3 aivation in Alzheimer disease. J, Neuropathol Exp Neurol,1999, 58:1020-1026.
    [50]Masumura M, Ham R Nishimura I, et al, Caspase-3 activation and inflammatory responses in rat hippocampus incultured with a recombinant adenovirus expressing the Alzheimer amyloid precursor protein.Brain Res Mol Brain Res,2000,80: 219-227.
    [51]Gong Y. Alzheimer's disease-affected brain:presence of oligomeric Aβ ligands (ADDLs)suggests amolecular basis for reversible memory loss, Proc. Natl, Acad. Sci.U.S.A,2003,100:10417-10422
    [52]Glabe C, Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer' s disease,J. Mol. Neurosci,2001,17:137-145.
    [53]Oddo S, et al,Triple-transgenic model of Alzheimer's disease with plaques and tangles:intracellular Abeta and synaptic dysfunction,Neuro,2003,39:409-421.
    [54]Lustbader JW,et al, AD directly links Aβ to mitochondrial toxicity in Alzheimer' s disease, Science,2004,304:448-452.
    [55]K Amar,G Wilcock, et al,Vascular dementia,BMJ,1996,3 12:227-231
    [56]A Hinge. Vagnucci J win Li, Alzheimer's disease and angiogenesis, Lancet, 2003,361:605-608
    [57]D.Paris,T Town,T Mori,et al,Soluble beta-amyloid peptides mediate vasoactivity via activation of a pro-inflammatory pathway,Neurobiol. Aging,2000,21:183-197
    [58]S.Cantara,S.Donnini, L.Morbidelli et al, Physiological levels of amyloid peptides stimulate the angiogenic response through FGF-2, FASEB J.2004,18:1943-1945
    [59]T. Suhara,J. Magrane, K. Rosen,et al, Virally-encoded A42is toxic to endothelial cells through all akt-dependent mechanism, Neurobiol.Aging,2003,24:437-451
    [60]C.Huang, K.Jacobson, et al. Schaller,MAP kinases and cell migration,J.Cell Sci,2004,117:4619-4628
    [61]D Schlaepfer,S k Hanks,et al,ZHunter,et at,Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase, Nature,1994,372: 786-791
    [62]Q Pintucci,D. Moscatelli, ESaponara,et al, Lack of ERK activation and cell migration in FGF-2 deficient endothelial cells, FASEB J.2002,16:598-600
    [63]B Kagan,Y Hirakura,R Azimov,et al, The channel hypothesis of Alzheimer's disease,current status, peptides,2002,23:1311-1315.
    [64]Hall N,Hensley K,Harris M, et al. Methionine-35 of Aβ(1-42):Importence for oxidative stress in Alzheimer disease. J Biol chem,2006.383:521-536.
    [65]Nihashi, Stuart A,francesca,et al.,Hypoxia-inducible factor 1a(HIF-1a)mediated Hypoxia increases BACE1 expression and β-amyloid generation. Biological 2007;15(4):282-290.
    [66]刑昂,王乃东,谭兰等.大鼠前脑不全缺血再灌注后海马区β-淀粉样蛋白的表达.中华神经科杂志,2002,35:29-32
    [67]Bennetts A, Tenniswood M.Chen T et al. Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment. Neuroreport,1998.9:161-166.
    [68]Nihashi T, Inao S, kajita,et al. Expression and distribution of beta amyloid precursor protein and beta amyloid peptide in reactive aslrocytes after transient middle cerebral artery occlusion. Acta Neurochir,2001,143:287-295
    [69]Zlokovic BV. Neurovaseular mechanisms of Alzheimer's neuredegeneration Trends Neurosei.2005,28:202-208.
    [70]Takata K Kitarnura Y, Umeki M, et al. Possible involvement of small oligomers of amyloid-beta peptides in Bax/Bcl-2 sensitive microglial activation. J Pharmacol Sci,2003.91:330-333.
    [71]Blomqvist ME, Chalmers IL Andreasen N, et al Sequence variants of IDE are associated withthe extent ofbeta-amyloid deposition in the Alzheimer's disease brain. Neurobiol Aging 2005,26:795-802.
    [72]Ferrer I, Krupinski J, Goutan E. Brain-derived neurotrophic factor reduces cortical cell death by ischemia after middle cerebral atartery occlusion in the rat[J]. Acta Neuropatho,2001,101 (4):229-238.
    [73]Priller,C, et al. Synapse formation and function is modulated by the amyloid precursorprotein. J Neurosei,2006.26(27):7212-21.
    [74]Diller KR, Zhu L. Hypothermia Therapy for Brain Injury. Annu. Rev. Biomed. Eng.2009; 11:135-162.
    [75].McName B, Barra S,Miano M, et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase. J Neural Transm.2004; 111:523-536.
    [76].Kaj Blennow,Bengt Nellgard,G Franz, et al. Amyloid beta 1-42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology.2003;60: 1457-1461.
    [77]Jiang JY, Lyeth BG, Kapasi MZ, et al.Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat[J].Acta Neuropathol(Berl),1992,84(5):495-500.
    [78].Berislav V, Zloko, Vic. et al.Neurovascular machenisms of Alzheime's neuro degeneration TRENDS in Neurosciences,2005,28(4):202-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700