多孔丝素膜材料中血管新生模式机制的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝素材料由于具有良好的生物学性能,近年来在生物医学材料的研究领域受到了研究人员的关注。在生物材料修复组织过程中,为了使得生物支架材料形成适合新的组织及细胞生长的环境,就要求生物材料能够快速有效地血管化。因此生物材料的血管化问题又是生物材料修复组织过程中的关键问题。但是在生物医学材料领域,生物材料在体外或植入体内后的血管化问题并没有完全得到解决,目前仍然是组织工程和生物材料应用中的一个瓶颈问题。血管新生作为实现血管化过程的重要环节,包括出芽式血管新生和套叠式血管新生为主的各种方式,迄今已在不同的生理和病理条件下发现了这些血管新生方式,但是关于血管新生模式的机制问题并没有完全得到阐明。毛细血管新生方式的机制问题是血管新生的前沿课题,相关研究工作近二十年以来备受关注。生物材料中的血管新生模式问题,过去的研究报告较少。基于这样的现状,本课题研究以探索多孔丝素蛋白材料中血管新生模式的机制为目标,对机体生长过程及多孔丝素材料修复肌肉组织两种情况下血管新生的进程进行调查和研究。
     本文采用HE染色和免疫组化实验方法观察与分析比较机体生长过程及多孔丝素材料修复肌肉组织两种情况下的血管新生过程,并对新生血管进行数量化分析,同时结合透射电镜技术分析毛细血管的新生方式,并通过半定量计分法计算机体生长过程及多孔丝素材料修复肌肉组织各阶段中缺氧诱导因子(HIF-1α)和内皮细胞生长因子(VEGF)的表达程度。研究结果显示,在大鼠肌肉生长过程中的初期既有出芽新生也有套叠新生,但出芽的现象较少;随着大鼠年龄的增长,中后期肌肉组织中的毛细血管主要以套叠新生为主。同时发现在生长过程的初期,HIF-1α及VEGF表达均比较强烈,而中后期HIF-1α及VEGF表达明显减弱。通过丝素材料植入创伤肌肉组织中的实验发现,在植入材料的早期即13天以前材料周边主要以出芽方式进行血管新生来满足材料中组织细胞的供氧需求;而后期即13天以后则主要以套叠式血管新生来重塑与调整已有血管网。并且在植入股肌肉的早期,多孔丝素材料内HIF-1α及VEGF强烈表达,随着时间的推移,中后期时HIF-1α及VEGF表达渐渐变弱。由此推测HIF-1α及VEGF的表达与血管新生方式之间有密切的联系,当HIF-1α及VEGF在血管新生过程中的表达程度由强变弱时,标志着血管新生从初期的出芽为主逐渐转变为以套叠为主。
     此外,结合文献报道及实验结果,从血管新生过程中的缺氧程度差异、生长因子的表达以及内皮细胞对血管内皮生长因子的响应以及新生血管的构建等几个环节出发,根据组织中新生血管生长前期与后期的差异以及出芽新生与套叠新生的差异,对大鼠肌肉组织生长过程及多孔丝素材料中血管新生模式的发生机制作出了分析及探索,并对材料植入大鼠腿部肌肉后的血管新生过程以及新生血管网络构建模式进行了思考与讨论。
     通过对多孔丝素材料中血管新生模式及其机制的研究,为阐明材料中血管化的进程及其生物学机制提供基础的工作,同时也为适应性更宽泛的医用生物材料的开发提供理论依据及实验基础。
Because of excellent biological properties, silk materials receive much attention fromresearchers in the research area of biomedical materials in recent years. During the processof biomaterials repairing tissues, in order to make biomaterials scaffold form acircumstance that is suitable for tissue regeneration and cell survival, it requires rapid andeffective neovascularization of biomaterials after implantation, thus neovascularization ofbiomaterials is also the key subject of study on the biomaterials repairing tissues. However,in the field of biomedical materials, the problem about neovascularization of biomaterialsin vitro or in vivo is not fully settled, which is still a bottleneck problem of tissueengineering and biomaterial application. As an important step of realizing theneovascularization process, angiogenesis includes various modes that are predominantlysprouting angiogenesis and intussusceptive angiogenesis, and so far these kinds of modeshave been found under different physiological and pathological conditions, but problemson the mechanism of angiogenesis mode have not been completely clarified. The researchon the capillary angiogenesis mode is the front topic of angiogenesis, and related researchwork has received much concern from researchers in the last twenty years. With regard tothe angiogenesis mode in biomaterials, the past research reports are few. Based on thepresent situation, this paper aims at exploring the mechanism of angiogenesis modes inporous silk fibroin materials, and the angiogenesis courses under these two conditions ofbody growth process and porous silk fibroin materials repairing muscle were respectivelyinvestigated and studied.
     In this paper, the angiogenesis processes under these two conditions of both bodygrowth process and porous silk fibroin materials repairing muscle were observed andanalyzed by methods of HE staining and immunohistochemical assay. In addition, thequantity of the newly formed capillaries in the material was analyzed. Meanwhile, theangiogenesis mode was analyzed by TEM technology. Moreover, the expression degrees ofhypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) inthe each stage of body growth process and porous silk fibroin materials repairing musclewere calculated by semi-quantitive scoring method. The results showed that both sprouting and intussusception occurred at the early stage of tissue growth, but less sproutingphenomena were found; and with the increase of the age of the SD rat, intussusception isthe main angiogenesis mode at the middle and late stage of tissue growth. Correspondingly,there were strong expressions of both HIF-1α and VEGF at the early stage of growthprocess, while the expressions of both HIF-1α and VEGF weakened markedly at themiddle and late stage. On the other hand, according to the experiment that silk fibroinmaterials were implanted into the wound muscle of SD rats, it was found that capillarieswere mainly newly formed by sprouting before day13to supply oxygen for the cells,while by intussusception after day13to remodel and adjust the existing vascular network.Accordingly, at the early stage of implantation, there were strong expressions of bothHIF-1α and VEGF in the materials, while at the middle or latter stage of implantation, theexpressions of HIF-1α and VEGF gradually weakened. Therefore, it was speculated thatthere are close relations between the expressions of HIF-1α, VEGF and angiogenesismodes in materials. That is, when the expression levels of HIF-1α and VEGF during theangiogenesis process change from strong to weak, the main mode of capillariesangiogenesis also turn from sprouting to intussusception.
     In additon, by combining the literature reports and experimental results, this paperstretched from several aspects such as differences of hypoxia degree, growth factorexpression and endothelial cells in response to VEGF, and in accordance with thedifferences between the former stage and the late stage of the growth of newly formedcapillaries as well as the differences between sprouting angiogenesis and intussusceptiveangiogenesis, the mechanism of the angiogenesis modes was analyzed and explored underthe conditions of body growth process and porous silk fibroin materials repairing tissue,moreover, the angiogenesis process and capillary network construction mode in thematerials were thought and discussed after the implantation.
     This paper provided the basis for clarifying the neovascularization process andbiological mechanism of the materials as well as the theoretical basis and experimentalfoundation for the exploitation of biomedical materials with wider adaptability throughstudying on the angiogenesis mode and its mechanism in the porous silk fibroin materials.
引文
[1]袁凯.丝素蛋白在组织工程中的应用和降解性能研究[J]. J Med Res,2011,40,10:153-155.
    [2] Cassell. O.C.S, Hofer. S. O. P, Morrison. W. A, et al.Vascularisation of tissueengineered grafts: the regulation of angiogenesis in reconstructive surgery and indisease states [J]. British Journal of Plastic Surgery,2002,55:603-610.
    [3]李苹,刘利萍,吴泽志,等.丝素在生物医学领域中的应用[J].重庆大学学报,2002,25(7):75-78.
    [4]侯春春,张胡静,李胜春,等.蚕丝蛋白生物医学材料的研究现状[J].丝绸,2010,7:18-22.
    [5]吴徵宇.丝素蛋白作为生物医用材料的研究[J].材料导报,2000,14(9):62-63.
    [6]张幼珠,吴徵宇,田保中,等.抗菌药物丝素膜的研制及应用[J].蚕丝科学,1999,25(4):242-245.
    [7]张幼珠,吴徵宇,田保中,等.药物丝素膜的性能及在烧伤感染创面上的应用[J].纺织学报,2001,22(3):172-174.
    [8] Sofia S, Mccarthy M B, Gronowicz G, et a1. Functionalized Silk-based Biomaterialsfor Bone Formation[J]. Journal of Biomedical Materials Research Part A,2000,54:139-148.
    [9] Chen J, Altman G H, Karageorgiou V, et a1. Human Bone Marrow Stromal Cell andLigament Fibroblast Responses on RGD-modified Silk Fibers[J]. Journal ofBiomedical Materials Research Part A,2003,67A:559-570.
    [10]张锋. BMP-2在体内外三维多孔丝素蛋白支架上的释放研究[J].外国丝绸,2007,22(3):7-9.
    [11]王维慈,金毕,欧阳晨曦.高分子人工血管材料大鼠肌肉内的急性期反应[J].生物工程学报,2010,26(1):79-84.
    [12] Yang Y M, Din G F, Wu J, et a1. Development and Evaluation of Silk Fibroin-basedNerve Grafts Used for Peripheral Nerve Regeneration[J]. Biomaterials,2007,28:5526-5535.
    [13] Meinel L, Karageorgiou V, Hofmann S, et a1. Engineering Bone-like Tissue in VitroUsing Human Bone Marrow Stem Cells and Silk Scaffolds [J]. Biomed Mater Res A,2004,71:25-34.
    [14] Lawrence B D, Marchant J K, Pindrus M A, et al. Silk Film Biomaterials for CorneaTissue Engineering [J]. Biomaterials,2009,30:299-1308.
    [15]李明忠,缪俊娜,柴玲华.丝素/聚氨酯共混膜的性能[J].丝绸,2002,7:9-11.
    [16]卢神州,李明忠,刘洋,等.聚乙二醇缩水甘油醚对丝素蛋白膜的改性[J].高分子材料科学与工程,2003,19(1):105-107.
    [17] Gregory H. Altman, Frank Diaz, Caroline Jakuba, et al, Silk-based biomaterials[J].Biomaterials,2003,24:401-416.
    [18] Ilaria DP, Giuliano F, Jasminka M, et a1. De novo engineering of reticular connectivetissue in vitvo by silk fibroin nonwoven materials[J]. Biomaterials,2005,26:1987-1999.
    [19] Ronald EU, Michael W, Kirsten P, et a1. Growth of human cells on aNon-woven silk fibroin net: A potential for use in tissue engineering[J].Biomaterials,2004,25:1069-1075.
    [20] Haranrl, Antlek, ColletiealL, et a1. In vitro degradation of silk fibroin[J]. Biomaterials,2005,26(17):3385-3393.
    [21] Minoura N, Tsukada M, Nagura M. Physicochemical properties of silk fibroinmembrane as a biomaterial[J]. Biomaterials,1990,11(6):430-434.
    [22] Taddei P, Arai L. In vitro study of the proteolytic degradation of antheraea pernyi silkfibroin[J]. Biomacromolecules,2006,7(1):259-267.
    [23] Kojthung A, Meesilpa P, Sudatis B, et a1. Efects of gamma radiation onbiodegradation of bombyx mori silk fibroin[J]. International biodeterioration&Biodegradation,2008,62:487-490.
    [24]黄训亭,邵正中,陈新.天然蚕丝与丝素蛋白多孔膜的生物降解性研究[J].化学学报,2007,65(22):2592-2596.
    [25] Sachlos. E, Reis. N, Ainsley. C, et al. Novel collagen scaffolds with predefinedinternal morphology made by solid freeform fabrication[J]. Biomaterials,2003,24(8):1487-1497.
    [26] Eser Elcin. A, Murat Elcin. Y. Localized Angiogenesis Induced by Human VascularEndothelial Growth Factor-Activated PLGA Sponge[J]. Tissue Engineering,2006,12(4):959-968.
    [27] Anat Perets, Yaacov Baruch, Felix Weisbuch, et a1.Enhancing the vascularization ofthree-dimensional porous alginate scaffolds by incorporating controlled release basicfibroblast growth factor microspheres[J]. Journal of Biomedical Materials ResearchPart A,2003,65A (4):489-497.
    [28] Murphy WL, Simmons CA, Kaigler D. Bone regeneration via a mineral substrate andinduced angiogenesis[J]. Dent Res,2004,83:204-2l0.
    [29] Pieper JS, Hafmans T, van Wachem PB, et a1. Loading of collagen-heparan sulfatematrices with bFGF promotes angiogenesis and tissue generation in rats [J]. BiomedMater Res A,2002,62:185-194.
    [30] Moon. James J, West. Jennifer L. Vascularization of Engineered Tissues: Approachesto Promote Angiogenesis in Biomaterials[J]. Current Topics in Medicinal Chemistry,2008,8:300-310.
    [31]伍冬平.多孔丝素蛋白材料中血管新生模式的研究[D].苏州大学硕士学位论文,2009.
    [32] Daniel Druecke, Stefan Langer, Evert Lamme, et al. Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: Long-term investigations usingintravital fluorescent microscopy [J]. Biomed Mater Res A,2003,68(1):10-18.
    [33] Bai Lun, Xu Jianmei, Sun Qilong, et al. On the growth model of the capillaries inthe porous silk fibroin films [J]. Mater Sci: Materials in Medicine,2007,18(10):1917-1921.
    [34]白峰,王臻,李爱民,等.两种不同三维结构β-TCP材料体内血管化的比较研究[J].中国矫形外科杂志,2007,15(6):451-454.
    [35] Hutmacher. D.W. Scaffold design and fabrication technologies for engineeringtissues-state of the art and future perspectives[J]. J. Biomater. Sci. Polym. Ed,2001,12:107-124.
    [36] Clark ER, Clark EL. Microscopic observations on the growth of blood capillaries inthe living mammal [J]. Am J Anat,1939,64:251-299.
    [37] Antoine R. Ramjaun, Kairbaan Hodivala-Dilke. The role of cell adhesion pathways inangiogenesis[J]. The International Journal of Biochemistry&Cell Biology,2009,41(3):521-530.
    [38] Joseph B, Kearney, Nicholas C, et al. The VEGF receptor (VEGFR-1) is a positivemodulator of vascular sprout formation and branching morphogenesis [J]. Blood,2004,103(12):4527-4535.
    [39] Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9triggers theangiogenic switch during carcinogenesis[J]. Nat Cell Biol,2000,2(10):737-744.
    [40] Auguste P, Gursel DB, Lemiere S, et al. Inhibition of fibroblast growthfactor/fibroblast growth factor receptor [J]. Cancer Res,2001,61(4):1717-1726.
    [41] Holger Gerhardt, Matthew Golding, Fruttiger, et al. VEGF guides angiogenicsprouting utilizing endothelial tip cell filopodia[J]. The Journal of Cell Biology,2003,161(6):1163-1177.
    [42] Qiangsong Tonga, Liduan Zhengb, Bo Lia. Hypoxia-induced mitogenic factorenhances angiogenesis by promoting proliferation and migration of endothelial cells[J]. Experimental Cell Research,2006,312:3559-3569.
    [43] Yannick Blum, Heinz-Georg Belting, Elin Ellertsdottir, et al. Complex cellrearrangements during intersegmental vessel sprouting and vessel fusion in thezebrafish embryo[J]. Developmental Biology,2008,316:312-322.
    [44] Makoto Kamei, W. Brian Saunders, Kayla J. Bayless, et al. Endothelial tubesassemble from intracellular vacuoles in vivo [J]. Nature,2006,442:453-456.
    [45] Short RHD. Alveolar epithelium in relation to growth of the lung[J]. Phil. Trans. Roy.Soc. Lond. B,1950,235:35-87.
    [46] Caduff JH, Fischer LC, Burri PH. Scanning electron microscope study of thedeveloping microvasculature in the postnatal rat lung[J]. Anat Rec,1986,216:154-164.
    [47] Burri PH, Tarek MR. A novel mechanism of capillary growth in the rat pulmonarymicrocirculation [J]. Anat Rec,1990,228:35-45.
    [48] Patan S, Haenni B, Burri PH. Evidence for intussusceptive capillary growth in thechicken chorio-allantoic membrane (CAM)[J]. Anat Embryol (Berl),1993,187:121-130.
    [49] Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvasculargrowth in the chicken chorio-allantoic membrane (CAM): I. Pillar formation byfolding of the capillary wall [J]. Microvasc Res,1996,51:80-98.
    [50] Patan S, Haenni B, Burri PH. Implementation of intussusceptive microvasculargrowth in the chicken chorio-allantoic membrane (CAM): II. Pillar formation bycapillary fusion [J]. Microvasc Res,1997,53:33-52.
    [51] Djonov. V, Makanya. A.N. New insights into intussusceptive angiogenesis[J].Mechanisms of Angiogenesis,2005, part1:17-33.
    [52] Hellstrom M, Kalen M, Lindahl P, et al. Role of PDGF-B and PDGFR-beta inrecruitment of vascular smooth muscle cells and pericytes during embryonic bloodvessel formation in the mouse[J]. Development,1999,126:3047-3055.
    [53] Folkman J, D’Amore PA. Blood vessel formation: what is its molecular basis [J]. Cell,1996,87:1153-1155.
    [54] Shyy YJ, Hsieh HJ, Usami S, et al. Fluid shear stress induces a biphasic response ofhuman monocyte chemotactic protein1gene expression in vascular endothelium[J].Proc Natl Acad Sci USA,1994,91:4678-4682.
    [55] Crivellato E, Nico B, Vacca A, et al. Ecombinant human erythropoietin induces Iintussusceptive microvascular growth in vivo[J]. Eukemia,2004,18:331-336.
    [56] Gale NW, Baluk P, Pan L, et al. Ephrin-B2selectively marks arterial vessels andneovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells[J]. Dev Biol,2001,230:151-160.
    [57] Shin D, Garcia-Cardena G, Hayashi S, et al. Expression of ephrinB2identifies a stablegenetic difference between arterial and venous vascular smooth muscle as well asendothelial cells, and marks subsets of microvessels at sites of adult revascularization[J]. Dev Biol,2001,230:139-150.
    [58] Fisher. A B, Chien. S, Barakat. AI, et al. Endothelial cellular response to altered shearstress [J]. Am J Physiol Lung Cell Mol Physiol,2001,281:529-533.
    [59] Dominik Szczerba, Ga′bor Sze′kely. Computational model of flow tissueinteractions in intussusceptive angiogenesis[J]. Journal of Theoretical Biology,2005,234:87-97.
    [60] Kurz H, Burri PH, Djonov VG. Angiogenesis and vascular remodeling byintussusception: from form to function [J]. News Physiol Sci,2003,18:65-70.
    [61] Benjamin LE, Hemo I, Keshet E. A plasticity window for blood vessel remodelling isdefined by pericyte coverage of the preformed endothelial network and is regulated byPDGF-B and VEGF [J]. Development,1998,125:1591-1598.
    [62] Hellstrom M, Kalen M, Lindahl P, et al. Role of PDGF-B and PDGFR-beta inrecruitment of vascular smooth muscle cells and pericytes during embryonic bloodvessel formation in the mouse[J]. Development,1999,126:3047-3055.
    [63] Ohlsson R, Falck P, Hellstrom M, et al. PDGFB regulates the development of thelabyrinthine layer of the mouse fetal placenta [J]. Dev Biol,1999,212:124-136.
    [64] Suri C, Jones P.F, Patan S, et al. Requisite role of Angiopoietin-1, a ligand for theTie2receptor, during embryonicangiogenesis [J]. Cell,1996,87:1171-1180.
    [65] Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in micetransgenically overexpressing Angiopoietin-1[J]. Science,1999,286:2511-2514.
    [66] Djonov VG, Kurz H, Burri PH. Optimality in the developing vascular system:branching remodeling by means of intussusception as an efficient adaptationmechanism [J]. Dev Dyn,2002,224:391-402.
    [67] Egginton S. Invited review: activity-induced angiogenesis [J]. Pflugers Arch,2009,457:963-977.
    [68] Ralf H. Adams, Kari Alitalo. Molecular regulation of angiogenesis andlymphangiogenesis[J]. Nature Publishing Group,2007,8:464-477.
    [69] Peter H Burri, Ruslan Hlushchuk, Valentin Djonov. Intussusceptive Angiogenesis: ItsEmergence, Its Characteristics, and Its Significance [J]. Developmental Dynamics,2004,31:474-488.
    [70] Patan S, Alvarez MJ, Schittny JC, et al. Intussusceptive microvascular growth: acommon alternative to capillary sprouting [J]. Arch Histol Cytol,1992,55:65-75.
    [71] Macchiarelli G, Jiang J-Y, Stefania A. Morphological Patterns of Angiogenesis inOvarian Follicle Capillary Networks. A Scanning Electron Microscopy Study ofCorrosion Cast [J]. Microscopy research and technique,2006,69:459-468.
    [72] Schlatter P, Konig MF, Karlsson LM, et al. Quantitative Study of IntussusceptiveCapillary Growth in the Chorioallantoic Membrane (CAM) of the Chicken Embryo[J].Microvascular Research,1997,54:65-73.
    [73] Makanya NA, Stauffer D, Ribatt D, et al. Microvascular Growth, Development, andRemodeling in the Embryonic Avian Kidney: The Interplay Between Sprouting andIntussusceptive Angiogenic Mechanisms[J]. Microscopy Research and Technique,2005,66:275-288.
    [74] Joanne E Bluff, Mark WJ Ferguson, Sharon O Kane, and Grenham Ireland. Bonemarrow derived endothelial progenitor cells do not contribute significantly to newvessels during incisional wound healing [J]. Experimental Hematology,2007,35:500-506.
    [75] Machteld J, van Amerongen, Grietje Molema, et al. Neovascularization and vascularmarkers in a foreign body reaction to subcutaneously implanted degradablebiomaterial in mice [J]. Angiogenesis,2002,5:173-180.
    [76] Kilian O, Wenisch S, Karnati S. Observations on the microvasculature of bone defectsfilled with biodegradable nanoparticulate hydroxyapatite [J]. Biomaterials,2008,29:3429-3437.
    [77] Bai Lun, Wu Dongping, et al. On Modes of angiogenesis and the Mechanism inPorous Silk Fibroin Films[J]. J Mater Sci: Mater Med,2011,22:927-933.
    [78]谢敏.创伤愈合中血管新生的模式研究[D].苏州大学硕士学位论文,2009.
    [79] Ribatti D, Nico B, Floris C, et al.Microvascular density,vascular endothelial growthfactor immunoreactivity in tumor cells,vessel diameter and intussusceptivemicrovascular growth in primary melanoma[J]. Oncol Rep,2005,14(1):81-84.
    [80] Zhou A-L, Egginton S, Brown MD, et al. Capillary Growth in Overloaded,Hypertrophic Adult Rat Skeletal Muscle: An Ultrastructural Study[J]. The anatomicalrecord,1998,252:49-63.
    [81] Fay M.Hansen-Smith, Olga Hudlicks, Stuart Egginton. In vivo angiogenesis in adultrat skeletal muscle: early changes in capillary network architecture and ultrastructure[J]. Cell Tissue Res,1996,286:123-136.
    [1] Nikolic L J. Angiogenesis [J]. Srp Arc Celok Lek,1996,124(5-6):147.
    [2]王川,张祥福,杨发端,等. nm23基因产物/NDPK在大肠癌中的表达及其临床意义[J].中华病理学杂志,1995,24(6):356-358.
    [3]田牛.微循环学[M].北京:原子能出版社,2004:12.
    [4] Burri PH, Hlushchuk R, Djonov V. Intussusceptive Angiogenesis: Its Emergence, ItsCharacteristics, and Its Significance [J]. Developmental Dynamics,2004,231:474-488.
    [5]郑澜.低氧运动促进肌组织血管生成的机制[D].上海:上海体育学院,2004:1-7.
    [6] Blum Y, Belting HG, Ellertsdottir E, et al Complex cell rearrangements duringintersegmental vessel sprouting and vessel fusion in the zebrafish embryo [J].Developmental Biology,2008,316:312-322.
    [7]高钰琪,罗德成.缺氧[A].见:赵克森,金丽娟.病理生理学[M].北京:人民军医出版社,1999:65.
    [8] Risau W. Mechanisms of angiogenesis [J]. Nature,1997,386(6626):671-674.
    [9] Adair T H,Gay W J,Montani J P. Growth reguIation of the vascuIar system:evidencefor a metaboIic hypothesis [J]. Am J PhysioI,1990,259(3Pt2):R393-R404.
    [10] Gaber T, Dziurla R, Tripmaeher R, et al. hypoxia inducible factor (HIF) inrheumatology: low O2! See what HIF can do![J]. Ann Rheum Dis,2005,64,971-980.
    [11] Distter K. Hypoxia and angiogonesis in rhetunatic diseases [J].Z Rheuma-tol,2003,62(Suppl2):43-45.
    [12] Bouis D, Kusumanto Y, Meijer C,et al. A review on pro-and anti-angiogenic factorsas targets of clinical intervention[J]. Pharmacol Res,2006,53,89-103.
    [13] Neufeid G, Cohen T,Gengrinovich S, et al.Vascuiar endotheiiai growth factor(VEGF)and its receptors[J]. FASEB J, l999,l3(l):9-22.
    [14] Ogunshola O O, Stewart W B, Mihalcik V, et a1. Neuronal VEGF expressioncorrelates with angiogenesis in postnatal developing rat brain[J]. Development BrainResearch,2000,119(1):139-153.
    [15] Gerber H P, Hillan K J, Ryan A,et a1.VEGF is required for growth and survival inneonatal mice[J]. Development,1999,126(6):1149-1159.
    [16] Hoehn B D, Harik S I, Hudetz A G, et a1. VEGF mRNA expressed in microvesselsofneonatal and adult rat cerebral codex[J]. Molecular Brain Research,2002,101:1-2.
    [17] Lando D, Peet DJ, Whelan DA, et a1. Asparagine hvdroxrlation of the HIFtransativation domain a hypoxic switch [J]. Science,2002,295:858-86l.
    [1] Xiying L, Xueguang Z. Progress in immunological properties and cellularcompatibility of silk fibroin research [J]. Inter.J.Bio.Eng,2006,29(5):296-299.
    [2]田莉,闵思佳,朱良均.丝素蛋白在软组织相容性材料方面的研究进展[J].蚕业科学,2005,31(2):187-190.
    [3] Bai Lun, Wu Dongping, Xu Jianmei, et al. On Modes of angiogenesis and theMechanism in Porous Silk Fibroin Films[J]. J Mater Sci: Mater Med,2011,22:927-933.
    [4] Bai Lun, Xu Jianmei, Liu Huifeng, et al. Emerging Models of Angiogenesis Patternsand Response Effect of Endothelial Cells[J]. Journal of Fiber Bioengineering andInformatics,2009,3(2):150-157.
    [5] Bai Lun, Xu Jianmei, Sun Qilong, et al.On the growth model of the capillaries in theporous silk fibroin films[J]. J Mater Sci: Mater Med,2007,18:1917-1921.
    [6] Bai Lun, Xu Jianmei, Sun Qilong, et al. Density of capillaries in the porous silkfibroin films[J]. Front. Mater. Sci. China,2007,1(3):237-242.
    [7] Li Mingzhong, Lu Shenzhou, Wu Zhengyu, et al. Study on Porous Silk FibroinMaterials.I. Fine Structure of Freeze Dried Silk Fibroin[J]. Journal of AppliedPolymer Science,2001,79:2185-2191.
    [8] Li Mingzhong, Wu Zhengyu, Zhang Changsheng, et al. Study on Porous Silk FibroinMaterials.II. Preparation and Characteristics of Spongy Porous Silk FibroinMaterials[J]. Journal of Applied Polymer Science,2001,79:2192-2199.
    [9] Weider N, Semple JP, Welch WR, et al. Tumor angiogenesis andmetastasis-correlation in invasive breast carcinoma[J]. N Engl J med,1991,324:1-8.
    [10] Antoine R. Ramjaun, Kairbaan Hodivala-Dilke. The role of cell adhesion pathways inangiogenesis[J].The International Journal of Biochemistry&Cell Biology,2009,41(3):521-530.
    [11] Djonov V, Baum O, Burri PH.Vascular remodeling by intussusceptive angiogenesis[J]. Cell Tissue Res,2003,314:107-117.
    [12]王川,张祥福,杨发端,等. nm23基因产物/NDPK在大肠癌中的表达及其临床意义[J].中华病理学杂志,1995,24(6):356-358.
    [13]关国平.多孔丝素蛋白膜材料的血管化及其组织再生性能的研究[D].苏州大学博士论文,2009.
    [14] Fang L, Xianhui Z, Linxi C.The research progress of mechanism in angiogenesis [J].Chinese Journal of Cardiovascular Review,2007,5(11):861-863.
    [15] Ji. James W, Tsoukias. Nikolaos M, Goldman Daniel, et al. A computational model ofoxygen transport in skeletal muscle for sprouting and splitting modes ofangiogenesis[J]. Journal of Theoretical Biology,2005,11:1-15.
    [1] Lee W S, Jain M K, Arkonac B M, et al. Thy-1, a novel marker for angiogenesisupregulated by inflammatory cytokines[J]. Circ Res,1998,82:845-851.
    [2] Werner risau. Mechanisms of angiogenesis [J]. Nature,1997,386:671-674.
    [3] Canceddaa R, Giannonic P, Mastrogiacomo M. A tissue engineering approach to bonerepair in large animal models and in clinical practice [J]. Biomaterials,2007,28:4240-4250.
    [4] Marti H J, Bernaudin M, Bellail A, et al. Hypoxia-induced vascular endothelialgrowth factor expression precedes neovascularization after cerebral ischemia[J]. Am JPathol,2000,156(3):965-976.
    [5]刘辉凤.毛细血管新生方式与缺氧速度的关系[D].苏州大学硕士学位论文,2009.
    [6] Williams. James L, Weichert Alexander, Zakrzewicz Andreas, et al. Differential geneand protein expression in abluminal sprouting and intraluminal splitting forms ofangiogenesis [J]. Clinical Science,2006,110:587-595.
    [7] Bates DO, Hillman NJ, Williams B, et al. Regulation of microvascular permeability byvascular endothelial growth factors [J]. J Anat,2002,200:581-597.
    [8] Carmeliet P, Ferreira V, Breier G, et al. Abnormal blood vessel development and lethalltyin embryos lacking a single VEGF allele [J].Nature,1996,380:435-439.
    [9] Gerber HP, Hillan KJ, Ryan AM, et al. VEGF is required for growth and survival inneonatal mice [J]. Development,1999,126:1149-1159.
    [10] Bates. David O, Pritchard Jones. Rowan O. The Role of Vascular EndothelialGrowth Factor in Wound Healing [J]. International Journal of Lower ExtremityWounds,2003,2(2):107-120.
    [11] Bruce I. Terman, Konstantin V. Stoletov. VEGF and Tumor Angiogenesis [J]. EinsteinQuart. J. Biol. and Med,2001,18:59-66.
    [12]王彦敏.血管生成因子VEGF的研究进展[J].河北医药,2010,32(11):1456-1458.
    [13] Holger Gerhardt, Matthew Golding, Marcus Fruttiger. VEGF guides angiogenicsprouting utilizing endothelial tip cell filopodia [J]. The Journal of Cell Biology,2003,161(6):1163-1177.
    [14] Asahara T, Tsurumi Y, Takeshita S, et al. Naked cDNA encoding secreted proteins forintra-arterial and intramuscular gene transfer [J]. Semin Interv cardiol,1996,1(3):225.
    [15] Djonov VG, Galli AB, Burri PH. Intussusceptive arborization contributes to vasculartree formation in the chick chorio-allantoic membrane [J]. Anat Embryol (Berl),2000,202:347-357.
    [16] Ribatti D, Urbinati C, Nico B, et al. Endogenous basic fibroblast growth factor isimplicated in the vascularizationof the chick embryo chorioallantoic membrane[J].DevBiol,1995,170:39-49.
    [17] Yoshiji H, Harris SR, Thorgeirsson UP. Vascular endothelial growth factor is essentialfor initial but not continued in vivo growth of human breast carcinoma cells[J].Cancer Res,1997,57:3924-3928.
    [18] Batshelor TT, Sorensen AG, Di TE, et al. AZD2171, a pan-VEGF receptor tyrosinekinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastomapatients [J]. Cancer Cell,2007,11:83-95.
    [19] Hillen F, GriffIoen AW. Tumour vascularization: sprouting angiogenesis and beyond[J]. Cancer Metastasis Rev,2007,26:489-502.
    [20] Hlushchuk R, Baum O, Gruber G, et al. The synergistic action of a VEGF-receptortyrosine-kinase inhibitor and a sensitizing PDGF-receptor blocker depends upon thestage of vascular maturation [J]. Microcirculation,2007,14:813-825.
    [21] Hlushchuk R, Riesterer O, Baum O, et al. Tumor recovery by angiogenic switch fromsprouting to intussusceptive angiogenesis after treatment with PTK787/ZK222584orionizing radiation[J]. Am J Pathol,2008,173:1173-1185.
    [22] Makanya AN, Hlushchuk R, Djonov VG. Intussusceptive angiogenesis and its role invascular morphogenesis, patterning, and remodeling[J]. Angiogenesis,2009,12:113-123.
    [23] Alessi P, Leali D, Camozzi M, et al. Anti-FGF2approaches as a strategy tocompensate resistance to anti-VEGF therapy: long-pentraxin3as a novelantiangiogenic FGF2-antagonist [J]. Eur Cytokine Netw,2009,20:225-234.
    [24] Cao R, Brakenhielm E, Wahlestedt C, et al. Leptin induces vascular permeability andsynergistically stimulates angiogenesiswith FGF-2andVEGF[J]. Proc Natl Acad SciUSA,2001,98:6390-6395.
    [25] Ribatti D, Nico B, Morbidelli L, et al. Cell-mediated delivery of fibroblast growthfactor-2and vascular endothelial growth factor onto the chick chorioallantoicmembrane: endothelial fenestration and angiogenesis [J]. J Vasc Res,2001,38:389-397.
    [26] Hagedorn M, Balke M, Schmidt A, et al.VEGF coordinates interaction of pericytesand endothelial cells during vasculogenesis and experimental angiogenesis [J]. DevDyn,2004,230:23-33.
    [27] Tomanek RJ, Sandra A, Zheng W, et al. Vascular endothelial growth factor and basicfibroblast growth factor differentially modulate early postnatal coronary angiogenesis[J].Circ Res,2001,88:1135-1141.
    [28] Bai Lun, Wu Dongping, Xu Jianmei, et al. On Modes of angiogenesis and theMechanism in Porous Silk Fibroin Films[J]. J Mater Sci: Mater Med,2011,22:927-933.
    [29] Clark RAF, Quinn JH, Winn HJ, et al. Fibronectin is produced by blood vessels inresponse to injury [J]. J Exp Med,1982,156(2):646-651.
    [30] Davis ED. Affinity of integrins for damaged extracellular matrix: αvβ3binds todenatured collagen typeⅠthrough RGD sites [J]. Biochem Biophys Res Comm,1992,182(3):1025-1031.
    [31]王正国,付小兵,周元国.分子创伤学[M].福建:福建科学技术出版社,2004:513-514.
    [32] Takakura N, Watanabe T, Suenobu S, et al. A role for hematopoietic stem cells inpromoting angiogenesis [J]. International Journal of Hematology,2001,74:266-271.
    [33] Gerhardt. H, Golding. M, Fruttiger. M, et al. VEGF guides angiogenic sproutingutilizing endothelial tip cell filopodia[J]. The Journal of Cell Biology,2003,161:1163-1177.
    [34] Schoefl GI. Electron microscopic observations on the regeneration of blood vesselsafter injury [J]. Ann NY Acad Sci,1964,116:789-802.
    [35] Van Den Brenk. H.A.S. Studies in restorative growth processes in mammalian woundhealing [J]. Br J surgery,1956,43(181):525-550.
    [36] Burri Peter H, Hlushchuk Ruslan, Djonov Valentin. Intussusceptive Angiogenesis: ItsEmergence, Its Characteristics, and Its Significance [J]. Developmental Dynamics,2004,31:474-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700