基于遗传算法的多目标智能辐射屏蔽方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射屏蔽系统设计是核工程设计的重要组成部分,其设计方案直接关系到核装置及人员的辐射安全,并极大的影响装置总体性能及工程造价等,甚至会制约最终目标的实现。对于现代先进核装置的辐射屏蔽设计,如:商用核电站、复杂核设施、大型加速器及靶站等,尤其对于舰船用核动力反应堆、空间反应堆,除要求规定区域的辐射剂量率满足设计目标值、工程造价可接受外,还要严格的控制重量指标和尺寸指标,使得设计过程非常复杂、耗时。此外,屏蔽设计方案的选取还受屏蔽设计人员的知识背景、设计经验的影响。因此复杂核装置的辐射屏蔽优化问题,实际上是多维、多目标优化问题。针对核辐射屏蔽优化问题,国内外还未建立完善、成熟的多目标辐射屏蔽设计优化理论。
     本论文采用将遗传算法与先进屏蔽计算方法有机结合的方案,建立了完整的遗传算法多维、多目标核辐射屏蔽设计优化理论体系。基于上述理论体系并参照软件工程的开发流程研发了多维、多目标辐射屏蔽设计智能优化软件平台,实现了辐射屏蔽设计方案选取过程的自动化,消除了人因出错的影响,并极大的提高了屏蔽设计分析的效率。本文对辐射屏蔽智能优化平台进行了严格测试,并将其应用于中国散裂中子源(CSNS)靶站主体屏蔽与中子孔道屏蔽设计,以及Sefaner号舰船反应堆的二次屏蔽体区域的屏蔽设计中,验证了多目标智能屏蔽设计理论及其软件系统在工程应用中的正确性和可行性。主要研究内容为:
     (1)建立了基于遗传算法的辐射屏蔽多目标优化数学模型。采用混合编码的方式对辐射屏蔽优化过程的各个变量进行表达,使得遗传算法的实现过程中各变量的表达简单,同时采用多种杂交、变异操作方式实现遗传操作过程。引入了目标的适应度函数的自适应权重系数,从而达到了消除子目标函数值域的差别和实现各子目标之间权值系数可调节的目的。给出了各个子目标的求解方法,包括:体积、重量、造价、剂量率等。引入温度限值并将其作为方案评价的标准之一,使得寻优方案的结果更加可行。
     (2)建立了多维快速耦合剂量率计算方法,成功解决了遗传算法随机寻优速度问题。即:在遗传种群迭代过程中,屏蔽计算首先采用快速的一维离散纵标方法或三维点核积分方法获得一个初步优化的种群,在此基础上采用计算速度较慢但精度很高的多维离散纵标法或多维蒙特卡洛方法进行最终优化模型计算,这样既能保证寻优过程对计算速度的要求又能保证寻优结果的精度。
     (3)研究了遗传算子与种群规模等参数的设置范围对多目标核辐射屏蔽设计寻优速度的影响。这些参数最佳设置范围的获得为平台的工程应用提供了经验和借鉴。
     (4)采用美国核管会的压力容器基准实验文档NUREG/CR-6453和NUREG/CR-6115,对优化设计软件平台中的多维计算模块进行了基准验证并设计算例对平台进行了严格的测试。最后,将辐射屏蔽多目标优化理论应用于大型复杂核装置(中国散裂中子源靶站系统、舰船反应堆本体)屏蔽系统工程设计中。
     建立了较完整的基于遗传算法的多维、多目标核辐射屏蔽优化设计方法,开发了基于该方法的智能辐射屏蔽设计软件平台,并验证了多目标智能屏蔽设计理论及其软件系统在工程应用中的正确性和可行性。基于遗传算法的智能屏蔽设计方法将部分取代已有的屏蔽设计方法,从而为核辐射屏蔽设计提供新的途径。
The design of radiation shielding system is an important part of the nuclear engineering design, that is directly related to the radiation safety of nuclear installations and personnel, and has a great impact on the overall performance of the device and project cost, or even restricts the realization of the ultimate goal. Radiation shielding design for the modern state-of-the-art nuclear devices, such as: commercial nuclear power plant, complex nuclear facilities, large-scale accelerator and target station, especially for ship nuclear power reactors, space reactors, not only the radiation dose of specified area to meet the design limit, but also the project cost is acceptable. Even more, indicators of weight and size are stringent controlled which make the design process very complex and time-consuming. In addition, the selection of the shielding design is also affected by the knowledge of shielding designer and his engineering experience. Complex nuclear device radiation shielding design is actually a multi-dimensional, multi-objective optimization problem.The mature mult-objective radiation shielding optimization design theory for complex nuclear device radiation shielding design has not been established at home and abroad.
     In this thesis, a multi-dimensional and multi-target nuclear radiation shielding design optimization theory based on genetic algorithm (GA) has been established by combination of GA and the advanced shielding calculation programs. Based on the theoretical and in the light of the development process of software engineering, the multi-dimensional, multi-target smart radiation shielding design and optimization software platform has been developed to achieve the automatic selection of the radiation shielding design, eliminate the impact of human factors error. Then, intelligent radiation shielding optimization platform was tested strictly and applied to the CSNS target station main shielding and neutron channels shielding design, and also used in the shielding design of the secondary shield area for the Sefaner ship reactor. At last, the correctness and feasibility of the radiation shielding design theory was verified. The main research include:
     (1) Establish a multi-objective radiation shielding optimization design theory model based on GA. In this theory, hybrid coding has been used to express variables of radiation shielding optimization process to make the GA variable expression simple, variety of crossover and mutation model has been used to achieve genetic opearator. In order to eliminate the influence of different sub-objective functions on fitness function, the adaptive weight coefficients has been adopted to make the weight coefficient between the various sub-goals adjustable. The method for solving the various sub-goals are shown, such as:size, weight, cost, and dose rate. As one of the evaluation standards, the temperature limits is used for the optimization search process that ensuring the results of the optimization program realistically.
     (2) The establishment of a multi-dimensional fast speed coupling dose rate calculation method and succeeded in solving the problem of speed matters for GA optimization process. In the early iterations of the genetic population, the one-dimensional discrete ordinate method or3-D point kernel integral method is used for shielding calculations to obtain a preliminary optimization population quickly, then the high precision and time-consuming multi-dimensional discrete ordinates method or MC method is used for the final optimization model calculation, this approach can meet the both requirements of optimization process fast and the accuracy of optimization results.
     (3) The set range of genetic operators and population size parameters for fast radiation shielding design optimization have deen reserched. The setting range of this parameters offers an access to the engineering applications for the platform with provide experience.
     (4) The radiation shielded multi-objective optimization platform has been tested by the design examples, and NUREG/CR-6453pressure vessel experiments and NUREG/CR-6115(BNL-NUREG-52395) benchmarks have been used to test the multi-dimensional calculation module of the platform. At last, the theory was used for the shielding engineering design of large and complex nuclear device, such as:China Spallation Neutron Source target station shielding design and the ship reactor main shielding.
     The theory based on genetic algorithm for multi-dimensional, multi-target nuclear radiation shielding design has been developed and a software platform was developed based on it. The multi-target radiation shielding intelligent design theory and its software system correctness and feasibility of engineering applications has been verifed. Shielding design method based on genetic algorithm may partially replace the existing shielding design methods, thus opening up new avenues for radiation shielding design.
引文
[1]张大发.船用核反应堆运行与管理[M].北京:原子能科学出版社,1997年6月
    [2]刑文训,谢金星.现代优化方法[M].北京:清华大学出版社,2005年9月
    [3]玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004年1月
    [4]Paul W. P., Luiz C. W. A coupled dual reciprocity BEM/genetic algorithm for identification of blood perfusion parameters[J]. International Journal of Numerical Methods for Heat & Fluid Flow,2009, V19(1):25-38
    [5]Hayato M., Morikazu Nakamura. A Paraliel Genetic Algorithm and Its Variance Analysis for A New Multuple Knapsack Problem[C]. The 23rd International Technical Conference in ircurits/Systerms Computers and Communications, Shimonoseki City,2008:157-160
    [6]Greg C. Smith, Shana S.-F.Smith. An enhanced genetic algorithm for automated assembly planning[J]. Robotics and Computer Integrated Manufacturing,2002, V18:355-364
    [7]M. A. Sharbafi, et al. An Innovative Fuzzy Decision Making Based Genetic Algorithm[J]. World Academy of Science:Engineering and Technology,2006, V19:172-175.
    [8]Pouria Ahmadi, Hassan Hajabdollahi, Ibrahim Dincer. Cost and Entropy Generation Minimization of a Cross-Flow Plate Fin Heat Exchanger Using Multi-Objective Genetic Algorithm[J]. Journal of Heat Transfer,2011, Vol. 133:1-9
    [9]Richard K. B., John M., Nicol N. S., et al. Evolving Networks:Using the Genetic Algorithm with Connectionist Learning[R].1990, US:CS90-174
    [10]Garcia, F., et al. Radiation Shielding Study of Advanced Data and Power Management Systems(ADPMS) Housing Using Geant4[J]. IEEE Transactions on Nuclear Science,2008, V 55(1):1609-1613
    [11]M. Cherng, I. Jun, T. Jordan. Optimum shielding in Jovian radiation environment[J]. Nuclear Instruments and Methods in Physics Research Section A, 2007, V580(1):633-636
    [12]S.Baranov, et al. Estimation of Radiation Background, Impact on Detectors[R]. Barcelona:ATLAS,2005
    [13]Tripathi R. K., et al. Deep Space Mission Radiation Shielding Optimization[R]. US:NASA,2001
    [14]Quails G. D., et al. International Space Station Radiation Shielding Model Development[R]. US:NASA,2001
    [15]Brooke M. Anderson, et al. Shuttle Spacesuit (Radiation) Model Development[R]. US:NASA,2001
    [16]Shinn J. L., et al. Effects of Target Fragmentation on Evaluation of LET Spectra From Space Radiation in Low-Earth Orbit (LEO) Environment:Impact on SEU Predictions[J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE,1995, V42(6): 2017-2025
    [17]F. L. Bouquet, E. F. Koprowskit. Radiation Design Considerations for Advanced Jupiter Spacecraft[J]. IEEE Transactions on Nuclear Science,1997, v26(6): 5168-5174
    [18]C. F. Guenther, W.R. Brukwinski. Criteria for establishing nuclear power system radiation levels for a spacecraft[J]. IEEE CH2781-3/89/0000-1251,1989, p:1251-1256
    [19]J. W. Wilson, et al. Improved Spacecraft Materials for Radiation Protection Shield Materials Optimization and Testing[R].US:NASA-2000-msc-ww,2000
    [20]J. w. Wilson, et al. Issues in Deep Space Radiation Protection[J]. Acta Astronautica,2001, V49(3-10):289-312
    [21]B. Lorentz. Optimisation of Shielding for Medical Electron accelerators[R]. IAEA:IAEA-SM-285/14,1986
    [22]ICRP. Cost Benefit Analysis in the Optimisation of Radiation Protection[R]. UK: ICRP Publication No.37,1983.
    [23]Irina Popova, Franz Gallmeier. Shielding solutions at the SNS target/accelerator interface[J], Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2006, V562(2): 940-945
    [24]Yoshihiro Asano, et al. Shielding design aspects of SR beamlines for 3 and 8 GeV class synchrotron radiation facilities[J], Radiation Measurements,2006, V41(2):S194-S199.
    [25]Noriaki Nakao, Nikolai Mokhov, Kazami Yamamoto, et al. MARS14 Monte Carlo simulation for the shielding studies of the J-PARC 3 GeV ring[J]. Radiat Prot Dosimetry,2005, V116:85-88
    [26]S. Sato, H. Iida, M. Yamauchi, T. Nishitani. Shielding design of the ITER NBI duct for nuclear and bremsstrahlung radiation[J]. Radiat Prot Dosimetry,2005, V116:28-31
    [27]Pyka, N M; et al. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II[J]. Appl. Phys. A,2002, V74(1):s277-s279
    [28]Enrico BOTTA, Roberto ORSI et al. Westinghouse AP1000 Internals Heating Rate Distribution Calculation Using a 3D Deterministic Transport Method[J]. Nuclear Engineering and Design,2006, V236, Issues 14-16, Pages 1558-1564
    [29]REMEC I, KAM FBK.H. B. Robinson-2 pressure vessel benchmark[R]. USA: Oak Ridge National Laboratory Managed by Lockheed Martin Energy Research Corp,1997
    [30]M. PESCARINI, et al. ENEA Nuclear Data Centre Neutron Transport Analysis of the VENUS-3 Shielding Benchmark Experiment[R]. Italy:KT-SCG-00013, 2001
    [31]H, Ludewig, et al. Conceptual Design Studies of a Neutron Source at the BNL-HFBR Facility[C].15th Meeting of the International Collaboration on Advanced Neutron Sources, v.l, Tsukuba, Japan,2000, pp.1037-1051
    [32]顾伟民等.对15MV医用直线加速器治疗室屏蔽设计的研讨[J].中国辐射卫生,2005,14(12):137-138
    [33]王洪林,等.医用直线加速器室辐射屏蔽防护的优化设计[J].复旦学报(医学版),2006,33(4):556-558
    [34]吴海成,唐洪庆,史源平.HI-13串列加速器升级工程辐射屏蔽设计[J].国原子能科学研究院年报,2006,p:68-70
    [35]苏有武,李武元,李宗强等.CSR的辐射屏蔽设计(英文)[J].高能物理与核物理,2005,29(11):1100-1103
    [36]陈义学,U. Fischer.大型复杂核系统三维精确屏蔽计算方法与程序系统[C].第三届散裂中子源多学科应用研讨会论文集,2006,p:5-5
    [37]宋文杰.一台300kV电子帘加速器辐照箱屏蔽物理设计[J].核技术,2004,24(3):237-240
    [38]徐加强,等,空间电子辐照下半导体器件的抗辐射屏蔽优化[J].上海大学学报(自然科学版),2003,9(3):259-262
    [39]王朝壮,等.空间质子屏蔽材料优化选择的蒙特卡罗模拟[J].辐射防护,2007,27(2)::79-86
    [40]薛丙森,韩建伟,叶宗海.卫星内部三维屏蔽计算模型[J].航天器环境工程,2005,22(1):46-49
    [41]查元梓,罗文芸,王朝壮,等.飞行器的抗辐射屏蔽方法研究[J].辐射研究与辐射工艺学报,2006,24(4):205-208
    [42]杨寿海,陈义学,陈朝斌,等ENDF/B-Ⅶ.0多群截面库MUSE1.0在压力容器基准实验分析中的初步应用[J].原子能科学技术,2009,43(9):1081-1085
    [43]S.H.Yang, Y.Chen, J.R.Han, et al. Preliminary Three-Dimensional Shielding Calculations for Pressurized Water Reactor Using Discrete Ordinates Method[C], 9th China-Japan Symposium on Materials for Advanced Energy System and Fission & Fusion Engineering, Guilin, China,2007, p:85-85
    [44]ZHANG Bin(张斌),CHEN Yi-Xue(陈义学),ANG Shou-Hai(杨寿海).Preliminary Shielding Analysis for the CSNS Target Station MonolithfJ]中国物理C,2010,34(11):1775-1778
    [45]杨寿海,陈义学,王伟金.三维离散纵标方法在堆内构件释热率计算中的初步应用[J].核动力工程,2012,33(1):25-28
    [46]谢仲生,吴宏春,张少泓编著,谢仲生主编.核反应堆物理分析[M].北京:原子能出版社,2004
    [47]吴宏春,谢仲生,姚栋,等.遗传算法在AC-600堆芯换料优化中的应用研究[J].核科学与工程,2000,20(04):289-296
    [48]Weston M. Stacey. Nuclear Reactor Physics[M]. Canada:John Wiley & Sons, 2001
    [49]James J.Duderstadt, Louis J.Hamilton. Nuclear Reactor Ananlysis[M], Canada: John Wiley & Sons,1976
    [50]杜书华,等.输运问题的计算机模拟[M].长沙:湖南科学技术出版社,1989
    [51]谢仲生,邓力.中子输运数值计算方法[M].西安:西北工业大学出版社,2005
    [52](美)贝尔GI,格拉斯登S.核反应堆理论[M].千里.北京:原子能出版社,1979
    [53]谢仲生.核反应堆物理分析(上、下册)[M].北京:原子能出版社,1994
    [54]胡永明.反应堆物理数值计算方法[M].长沙:国防科技大学出版社,2000
    [55]H. E. Hungerford, Problems in design of fast reactor shields[J]. Trans Amer Nucl Soc,1968, V33(11):702-704
    [56]BERGER M. J. Calculation of energy dissipation by gamma radiation near the interface between two media[J]. Appl. Phys,1957, V28(11):1502-1508
    [57]E.P.Blizard(Ed). Reactor Handbook,2nd cd. Vol III Part B[M]. New York:John Wiley & Sons,1962
    [58]E.S.Troubetzkoy. Minimum Weight Shield Synthesis[R]. US:United Nuclear Corporation, UNC-5017(Pt.A),1962
    [59]H. Goldstein, E.P.Blizard. A Criterion for the Experimental Optimization of Two Component Unit Shields[R]. US:USAEC Report TID-5018,1951
    [60]A.P. Suvorov, R.P. Fedorenko. Selection of Optimum Meltal-water Shielding for Reactor. Problems in the Physics of Reactor Shielding[R]. Washington:Joint Publications Research Service, JPRS-49745,1970
    [61]H. Hurwitz. Note on a Theory of Minimum Weight Shields[R]. New York: Knolls Atomic Power Laboratory, KAPL-1441,1959
    [62]C. Darwin. The Origin of Species[M], London:Watts and Co.1929
    [63]Holland J H. Adaptation in Natural and Artificial Systems[R]. Ann Arbor MI, USA:University of Michigan Press,1975
    [64]I.Rechenberg. Evolutionstrategie:optimierung technisher systeme nach prinzipien der biologischen evolution[M]. Stuttgart:Frommann-Hoolzboog,1973
    [65]Schwefel H. Evolution and Optimum Seeking[M]. New York:Wiley,1995
    [66]Fogel, L., A. Owens, M. Walsh. Artificial Intelligence Through Simulated Evolution[M]. New York:Wiley,1966
    [67]Koza,J. R.. Genetic programming:on the programming of computers by means of natural selection[R]. Cambridge:MIT Press,1992
    [68]W.W.Emmett. ANISN, A One-dimensional Discrete Ordinates Ttransport Code System[R]. US:ORNL-4972,1975
    [69]M.B.Emmett, W.A.Rhoades, R.L.Childs et al. The DORT Section of "A User's Manual for MASH1.0-A Monte Carlo Adjoint Shielding Code System". US: ORNL/TM-11778,1992
    [70]W.A.Rhoades, D.B.Simpson. The TORT Three-dimensinal Discrete Ordinates Neutron/Photon Ttransport Code[R]. US:ORNL/TM-13221,1997
    [71]K.D..Lathrop. DTF-Ⅳ, A Fortran Program for Solving The Multigroup Transport Equation with Anisotropic Scattering[R]. US:USAEC Rept., LA-3373, 1965
    [72]K.D.lathrop. Twotran-II:An Interfaced Exportable Version of the Twotran Code for Two Dimensional Transport[R]. US:USAEC Rept., LA-4848-MS,1973
    [73]K.D.lathrop. Threetran:A Program to Solve The Multigroup Discrete Ordinates Transport Equation in (X,Y,Z) Geometry[R]. US:LA-6333-MS,1976
    [74]Alcouffe R E, Baker R S, Brinkley F W et al. DANTSYS:A Diffusion Accelerated Neutral Particle Transport Code System[R]. US:LA-12969-M,1995
    [75]Todd A.Wareing, D.Kent Parsons, et al. A Reactor Pressure Vessel Dosimetry Calculation Using ATTILA An Unstructured Tetrahedral Mesh Discrete Ordinates Code[R]. New York:Los Alamos National Laboratory, LA-UR-97-2268,1997
    [76]A. M. Voloschenko, A. V. Shwetsov. KASKAD-S-2.5-Two-Dimensional Discrete Ordinates Neutron, Photon and Charged Particle Transport Code[R]. Moscow: Keldysh Institute of Applied Mathematics,2004
    [77]A.M.Voloschenko, V.P.Kryuchkov. KATRIN-2.0-Three-Dimensional Discrete Ordinates Neutron, Photon and Charged Particle Transport Code[R]. Moscow: Keldysh Institute of Applied Mathematics,2004
    [78]Ziver A K, Shahdatullah M S, Eaton M D et al. Finite Element Spherical Harmonics(PN) Solutions of the Three-dimensional Takeda benchmark problems[J]. Annals of Nuclear Energy,2005,32:925-948
    [79]Tatsuo nishimura, Keiko TADA et al. Development of Discrete Ordinates SN Code in Three-dimensional (X,Y,Z) Geometry for Shielding Design[J]. Journal of Nuclear Science and Technology,1980,17(7):539-558
    [80]Briesmeister, J. F.,. MCNP-A general Monte Carlo N-particle transport code. Version 4A[R]. New York:Los Alamos National Laboratory, LA-12625-MS,1993
    [81]J. T. West, T. J. Hoffman, Margaret B. Emmett. MORSE-SGC For The SCALE System[R]. US:Oak Ridge National Laboratory Report, ORNL/TM-2005/39,Vol. Ⅱ, Book 2,2005
    [82]L. M. Petrie, N. F. Landers, D. F. Hollenbach. KENO V.a:AN IMPROVED MONTE CARLO CRITICALITY PROGRAM[R]. Oak Ridge National Laboratory Report ORNL/TM-2005/39, Vol. Ⅱ, Book 2,2005
    [83]Y. Nagaya, K. Okumura, T. Mori and M. Nakagawa, MVP/GMVP II:General Purpose Monte Carlo Codes for Neutron and Photon Transport Calculations based on Continuous Energy and Multigroup Methods [R], JAERI-1348 (2005).
    [84]J.P. Both, H. Derriennic, B. Morillon, J.C. Nimal. A Survey of TRIPOLI-4[C]. Texas:Proceedings of the 8th International Conference on Radiation Shielding, Arlington,1994, pp.373-380
    [85]P. Cowan, G. Dobson, G.A. Wright (Serco) et al. Recent Developments to the Monte Carlo Code MCBEND[C],11th International Conference on Radiation Shielding (ICRS-11) and 14th Topical Meeting on Radiation Protection and Shielding (RPS-2008), Pine Mountain, Georgia, USA (April 2008).
    [86]刘永康,胡永明等.多重网格扩散综合加速的三维离散纵标中子输运程序SN3C[J].核动力工程,2006,27(5):1-4.
    [87]QAD-CGGP:A Combinatorial Geometry Version of QAD-P5A, A Point Kernel Code System for Neutron and Gamma-Ray Shielding Calculations Using the GP Buildup Factor[R], Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-493/QAD-CGGP.
    [88]N.M. Schaeffer, Reactor Shielding for Nuclear Engineering[R], Atomic Energy Commission, USA,1973
    [89]B.T. Price, C.C. Horton and K.T. Spinney, Radiation Shielding[R], Pergamon Press, New York (1957)
    [90]Zadeh,1., Optimality and non-scalar-valued performance criteria[J], IEEE Transactions on Automatic Control, vol.8, no.59,1963.
    [91]GEN M, CHENG R. Genetic algorithms and engineering optimization[M]. New York, USA:John Wiley and Sons Inc.,2000.
    [92]GEN M, CHENG R. Genetic algorithms and engineering design[M]. New York, USA:John Wiley and Sons Inc.,1997.
    [93]杨世铭、陶文铨.传热学.高等教育出版社(第三版)[M],1998年9月.
    [94]信息技术软件生存过程.GB/T 8556-2007.
    [95]Pressman R.S.,郑人杰(译).软件工程实践者的研究方法[M].机械工业出社,2011.5.
    [96]Ivo Kodeli, Hamilton Hunter, Enrico Sartori, Radiation Shielding and Dosimetry Experiments Updates in the SINBAD database[J], Radiation Protection Dosimetry (2005), Vol.116, No.1-4, pp.558-561
    [97]REMEC I, KAM F B K. H. B. Robinson-2 pressure vessel benchmark[R]. USA: Oak Ridge National Laboratory Managed by Lockheed Martin Energy Research Corp,1997.
    [98]MAERKER R E. LEPRICON Analysis of the pressure vessel surveillance dosimetry inserted into H. B. Robinson-2 during cycle 9[J]. USA:Nuclear Science and Engineering,1996:263-289.
    [99]J. F. Carew, et al. NUREG/CR-6115(BNL-NUREG-52395) PWR and BWR Pressure Vessel Fluence Calculation Benchmark Problems and Solutions [R]. USA:Brookhaven National Laboratory,2001.
    [100]M. PESCARINI, et al. ENEA Nuclear Data Centre Neutron Transport Analysis of the VENUS-3 Shielding Benchmark Experiment [R]. KT-SCG-00013, ENEA-Bologna, Italy,2001.
    [101]CHIKARA KONNO. TORT Solutions with FNSUNCL3 for KOBAYASHI'S 3D Benchmarks [J]. Progress in Nuclear Energy, Vol.39, No.2, pp.167-179, 2001
    [102]Kursat B. Bekar a, Yousry Y. Azmy. TORT solutions to the NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space [J]. Annals of Nuclear Energy,11,2008.
    [103]The Members of the Cross Section Evaluation Working Group. Data Formats and Procedures for the Evaluated Nuclear Data File ENDF/B-VI and ENDF/B-VII[R]. New York:National Nuclear Data Center Brookhaven National Laboratory,2006.
    [104]Roberto Orsi. BOT3P-Bologna Transport Analysis Pre-Post-Processors[J], Nuclear Science and Eengineering.2004,146:248-255.
    [105]de Jong KA, An analysis of the behavior of a class of genetic a daptive systems[D]. USA:University of Michigan,1975.
    [106]Grefenstette J J. Optimization of control parameters for genetic algorithms [J]. IEEE Trans on Systems, Man and Cybernetics,1986,16 (1):122 128.
    [107]Holland J H. Adaptation in Nature and Artificial System s (2nd ed.). Cambridge: MIT Press,1992.
    [108]Goldberg D E, Bridges C L, An analysis of a reordering operator on a GA 2hard problem[J]. Biological Cybernetics,1990, (62):397-405.
    [109]Goldberg D E. Genetic Algorithm in Search, Optimization, and Machine L earning[M]. Reading, MA:Addison-Wesley,1989.
    [110]Eiben A E, Hinterding R, Michalewicz Z. Parameter control in evolutionary algorithms[J]. IEEE Trans on Evolutionar y Computation,1999,3 (2):124-141.
    [111]Deb K, Agrawal S. Understanding interactions among genetic algor ithm parameters[A]. In Proceedings of FOGA,'1998, pp:265-286.
    [112]韦杰.中国散裂中子源简介[J].现代物理知识,2007,(6):24-31.
    [113]张杰.中国散裂中子源(CSNS)一多学科应用的大科学平台[J].中国科学院院刊,2006,(5):67-69.
    [114]陈和生,韦杰,奚基伟,等.散裂中子源项目建议书[R].中国科学院高能物理研究所和物理研究所,2007.
    [115]K. Skold, D. L. Price, Updated from Neutron Scattering[R], Academic Press, 1986
    [116]NAKASHIMAH, NAKANEY, MASUKAWAF. Radiation safety design for the J-PARC projeet. Radiat Prot Dosim[J],2005,115(1-4):564-568.
    [117]KleinJC, etal. Structural Aetivation, Energy Deposition and Shieding Calculations Due to Proton Beam Loss in a High Power Proton Linear Accelerator.
    [118]LeeYO, ChoYS, Chang J. Preliminary shielding assessment for the 100Mev Proton linae(KOMAC)[J]. Radiat Prot Dosim,2005,115(1-4):569-572.
    [119]T.M. Miller, R.E. Pevey, R.A. Lillie, et al. Radiation Transport Analysis in Support of the SNS Target Station Neutron Beamline Shutters Title I Design[R], SNS 106100200-TR0048-R00, September 2000.
    [120]T.M. Miller, Two-Dimensional Shielding Analysis of the SNS Target Station Shutters, Shutter Beam Stops, Un-instrumented Neutron Beamlines, and Biological Shielding Monolith[R], Oak Ridge National Laboratory, Spallation Neutron Source Calculation No.106100200-DA0001-R00,2001.
    [121]SNS Second Target Station Working Group, SNS Second Target Station Conceptual Design Study[R], Oak Ridge National Laboratory, September 2008.
    [122]W.Yin, Q.Z.Yu, T.J.Liang, Q.W.Yan, Target station shielding, activation and decay heat analysis for CSNS[C],18th Meeting of the International Collaboration on Advanced Neutron Sources, Guangdong, China, April 25-29,2007.
    [123]王芳卫,梁天骄,殷雯,等.散裂中子源靶站和中子散射谱仪的概念设计[J].核技术,2005,28(8):593-597.
    [124]B. ZHANG, Y.X. CHEN, S.H. YANG, Preliminary shielding analysis for the CSNS target station monolith[J], Chinese Physics C,34(11):1775-1778,2010.
    [125]J.WU, Y. X. CHEN, W. J. WANG. The high-energy multi-group HEST1.0 library based on ENDF/B-Ⅶ.0:development, verification and preliminary application[J], Chinese Physics C,36(3):275-280,2012.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700