微型数字伺服阀电—机械转换器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要工作是将正交正弦波细分驱动和连续跟踪控制算法相结合,着眼于提高系统的频响特性,设计适合微小数字伺服阀的步进电机驱动器的研究。
     微小流体控制系统由于其输出功率体积比大、重量轻、频率响应和精度高等特点,应用场合越来越多。电液伺服控制系统的性能好坏,一方面取决于伺服阀结构的本身,更重要的是取决于它的电-机械转换器性能的好坏。本文根据目前电-机械转换器的种类和特点,首次把步进电机正弦波细分驱动和连续跟踪控制算法相结合,设计了步进电机驱动器,运用到微型电液伺服控制系统中。实验证明,该方法有效的提高了系统的频响能力。本论文的主要工作如下:
     第一章综合国内外的有关文献,本章首先介绍了阀用电-机械转换元件,包括传统式和新型的电-机械转换元件。接着介绍了目前微小数字阀的控制方法。在此基础之上,提出了课题的选题意义及创新点与主要研究内容,并简要介绍了产品的应用前景。主要研究内容为:阀的结构设计、正弦波驱动与连续跟踪控制算法、步进电机驱动器的设计与实现、实验结果分析。
     第二章为测试驱动器的性能,设计了直动式数字电液微小伺服阀。在简化为理想零开口滑阀的前提下,计算了阀的各项系数。分析了阀芯的位置、移动速度和角度的关系,并对该关系的非线性进行了分析。另外,计算了运动部件的转动惯量和液动力。计算表明,由阀和电机组成的系统中,转动惯量95.2%集中在电机的转子上;而由液动力产生的折算到电机轴上的力矩只占电机输出力矩的0.32%。这说明,所设计的电—机械转换接口系统是否工作在带载荷状态,对系统的频响特性的影响可以忽略。这为后面实验里直接用阀心的运行状态,而不是阀的流量输出,作为评价系统频响特性的好坏提供了理论依据。
     第三章介绍了步进电机的特点、分类、工作原理及其控制方法。着重介绍了步进电机的正弦波细分驱动和连续跟踪控制算法,建立了连续跟踪算法下步进电机的模型。仿真结果表明,连续跟踪算法有效的提高了阀芯的频响能力。
     第四章主要介绍了基于正弦波细分驱动和连续跟踪控制算法的步进电机驱动器的设计和实现。包括系统硬件的具体设计、软件的实现和整体功能,详细地介绍了系统的硬件电路和软件的具体实现方案。
     第五章介绍了实验的原理、实验装置,并对获得的实验结果进行了分析和讨论。实验证明,采用步进电机正弦波细分驱动和连续跟踪算法,有效提高了系统的频响特性。
     第六章全文总结和后续展望。
This thesis focuses mainly on the design of a kind of stepping motor driver which imbedded with sinusoid wave subdivision together with a smooth tracking control algorithm.
     Due to its large power output versus volume, light-weight, high-frequency response and high-accuracy, microvalve is applied in more and more fields. The performance of servo control system in a electro-hydraulic system depends not only on the servo valve structure of itself, but also, in some cases even more heavily , on the performance of the electrical to mechanical converter applied as well.
     According to the characteristics of the microvalve designed, A method of sinusoid wave subdivision microstep driver together with a smooth tracking control algorithm is applied in this electric-hydraulic servo control system. Experiments have been done and the results demonstrated that the characteristics of frequency response of the controller is improved significantly.
     The main tasks of this thesis are as follows:
     Chapter 1: some traditional electrical to mechanical converters that used in valve, both at domestic and abroad, are introduced at first. Then the innovation points and main research contents of this project are proposed, and the application prospect is introduced briefly as well. The main research contents are as follow: the structural designs of microvalve; sinusoid wave subdivided drive and smooth tracking control algorithm; designing a stepping motor driver, both hardware and software; experiments and result analysis.
     Chapter 2: A structure of direct digital electro-hydraulic servo microvalve is developed, and a simplified model is established as well. The coefficients of the microvalve developed are calculated. The relationships such as the position of spool versus rotation angle, the speed of spool versus rotation angle and ect., are analyzed respectively. The nonlinearities of the relationships proposed above are also analyzed as well. In addition, the moment of inertia and dynamic hydraulic force are calculated. The results show that, in this motor-valve system, more than 95% inertia toque is caused by stepper motor rotor itself; and also, Bernoulli force is much smaller than that output by motor. Therefore, the influence to the motor-valve system frequency characteristic can be neglected. This lays a theoretical foundation for the experiment that the dynamic motor can be used to evaluate the performance of the microvalve.
     Chapter 3: The characteristics, classification, operation principles and control methods of stepping motor are discussed. Sinusoid wave subdivided drive and smooth tracking control method are mainly introduced. A model of stepping motor according to this control method is established. The simulation results show that this control method is effective to improve the frequency response characteristics of the microvalve which has been designed.
     Chapter 4: The design and realization of stepping motor driver imbeded with smooth tracking control algorithm is introduced. The system function is introduced at first, then followed the design of hardware and software. Hardware circuit and software are discussed in detail.
     Chapter 5: The scheme of experiment and experimental equipments used are introduced. The experimental results are further analyzed and discussed. Although the experiment results in some cases are not as good as those got in the simulation, still, experiment results agree with the simulation results. This proves that the sinusoid wave subdivided drive together with smooth tracking control algorithm is effective to improve the performance of the system.
     In Chapter 6: the summarization of this dissertation and the prospect of this project.
引文
[1]王传礼,哀桂峰.阀用电一机械转换器的应用研究.安徽理工大学学报.2005.12第25卷第4期:41-44
    [2]李其朋,丁凡.电液伺服阀技术研究现状及发展趋势.工程机械.2003.6:28-33
    [3]罗玉元,张国贤.微泵驱动方式比较研究.液压与气动2003.9
    [4]骆涵秀.机电控制.杭州:浙江大学出版社,1994.
    [5]Li.s., Ruan,J., Burton,R., and Ukrainetz,p.,2002,"Application of Stage Control in Material Testing Machine(MTS),"Proceeding of 2nd Chinese International Conference on Instrumentation,Jinan,China, pp.526-529.
    [6]Shinichi YOKOTA MICRO ACTUATORS USING FUNCTIONAL FLUID,Proceedings of the fourth international symposium on fluid power transmission and control(ISFP 2003)
    [7]范瑞丽,叶雄英,周兆英等.微小型高压力流体电磁控制阀.微纳电子技术.2003年第7/8期
    [8]Jung-Ho PARK, Kazuhiro YOSHIDA, Shinichi YOKOTA DEVELOPMENT OF MICROMACHINS USING IMPROVED RESONANTLY-DRIVEN PIEZOELECTRIC MICROPUMPS, Proceedings of the fourth international symposium on fluid power transmission and control(ISFP 2003)
    [9]李世伦,骆涵秀.PWM型数控电液比例微小流量阀组.1996
    [10]阮健.电液(气)直接数字控制技术.杭州:浙江大学出版社.1999.6
    [11]Merritt H E.Hydraulic Control Systems[M]. John Wiley & Sons,1967
    [12]Noritsugu T.PWM Mode Electro-pneumatic Servo System for Position Control,Trans.Soc.Instrum &Control Eng, 1984,20:754-764
    [13]李运华,陈惠民,王焕德.脉宽调制(PWM)型电液控制系统的设计理论研究.机床与液压.1991.3:19-24
    [14]Ruan J, Xu YM, Yu C Y.Technique of Pressure Regulation with a Capillary Dampertube[M].Proceedings of Intermational Conference on Fluid Power Control and Robotics,1990:324-329
    [15]TakashiK. Stepper Motors and their Microprocessor controls. UK:Oxford University Press. 1994:P 49-58
    [16]哈尔滨工业大学,成都电机厂.步进电动机.科学出版社.1979:128 237-269
    [17]B.C.Kuo编著.步进电动机及其控制系统.王宗培,孔昌平,李楚武等译.哈尔滨工业大学出版社.1984:178 154218 25428
    [18]M. Jenkins. Hybrid Stepper Motors. IEEE Colloquium on Permanent Magnet Machines. 1988:7/1-7/2
    [19]M.K. Jenkins, D. Howe, T.S. Birch. An Improved Design Procedure for Hybrid Stepper Motors. IEEE Transactions on Magnetic. 1990, 26(5):25352537
    [20]A. Tozune, M. Sakamoto. Characteristics of Permanent-Magnet Type 3-phase Stepping Motor. Industry Applications Conference Record of the IEEE Thirtieth IAS Annual Meeting. 1995, 1(8-12):748755
    [21]J.D. Wale, C. Pollock. Hybrid Stepping Motors and Drives. Power Engineering Journal. 2001, 15(1):5-12
    [22]D. Jones. Selecting Step Motors vs. Servo Motors. Electrical Electronics Insulation Conference. 1995:355372
    [23]蔡耀成.步进电动机国内外近期发展展望.微特电机.2000.5:28-30
    [24]王宗培,孙宝奎.论步进电动机产品的格局(统一步进电动机相数和齿数的研究).电工技术学报.1999,14(4):5-9
    [25]王鸿钮.步进电机控制技术入门.同济大学出版社.1990:1-12
    [26]K.R. Rajagopal, N. Kannan, B.P. Singh. An Optimized Module-type Hybrid Stepper Motor for Spacecraft Solar Aray Drive. International Conference on Power Electronics and Drive System. Proceedings. 1997, 1:462468
    [27]K. Mizutami, S. Hayashi, N. Matsui. Modeling and Control of Hyrid Stepping Motors. Conference Record of Industry Applications Society Annual Meeting.1993, 1:289294
    [28]童怀,磁阻电机动态特性的非线性分析与计算机仿真.科学出版社.2000:135-177
    [29]T.C. Chin, D.P. Mital, M.A. Jabbar. A Stepper Motor Controller. International Conference on Control. 1988:500 505
    [30]孙鹤旭.交流步进传动系统.北京:机械工业出版社,1996.12
    [31]J.D.Wate, C.A. Pollock. Low-cost Sensorless Technique for Low Torque Estimation in a Hybrid Stepping Motor. IEEE Transactions on Industrial Electronics.1999, 46(4):833841
    [31]李玉琳.液压元件与系统设计.北京:北京航空航天大学出版社,1991
    [33]俞浙清,胡美君,阮健.微电液数字伺服阀的驱动与控制ISIST’2006
    [34]陈理壁.步进电机及其应用.上海:上海科学技术出版社,1985
    [35]王宗培,孔昌平.步进电机及其控制系统.哈尔滨:哈尔滨工业大学出版社,1984
    [36]徐殿国,王宗培.伺服驱动系统发展概况.微电机.1990,(3):16-22
    [37]王泮海.二相混合式步进电动机伺服系统研究.哈尔滨工业大学博士论文2004.9
    [38]R. lrmes. Industrial Applications of Stepper Control Systems. TEE Colloquium on Stepper Motors and Their Control. 1994:5/15/3
    [39]E. Jaime, Vadell and E.Chiang. Luciano. Stepping Motor Driving by Controlled-Energy Discharge. IEEE Transactions on Industrial Electronics,199946(1):5260
    [40].Vadell, I. Lira, J. Dixon. CED: a New Method for High Speed Stepping Motor Driving. APEC'97 Conference Proceedings, Twelfth Annual, 1:539--545
    [41]孙宝奎.混合式步进/同步电动机动态仿真的研究.哈尔滨工业大学博士学位论文.1998
    [42]王晓明.电动机的单片机控制.北京:北京航空航天大学出版社2002.5
    [43]姜淑忠,赵继敏,王庆文.正弦波电流驱动的三相混合式步进电动机的可变细分运行.电工技术杂志.1998,5:8-10
    [44]张志利.步进电机超高分辨率细分控制函数发生器的设计与实现.微特电机.2001,1:10-13
    [45]张志利.导弹自动定向系统中步进电机高精度细分方法和零漂抑制研究.中国电机工程学报.2001,21(8):9498
    [46]周尊源,S.M.欧文斯.正弦波细分步进电机微步驱动器.微特电机.1997.5:29-30
    [47]李旺,崔淑梅,程树康,庄大庆.步进电机微步驱动中绕组电流波形的研究.微特电机.2000,1:3-5
    [48]李刚,林凌.与8051兼容的高性能、高速单片机.北京:北京航空航天大学出版社2002.5
    [49]章宏甲,黄谊.液压传动.北京:机械工业出版社.2002.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700