基于电极阵列的手外肌sEMG检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人手是最神秘、最复杂的生物运动系统之一,其复杂的生理机能和神经结构是认识神经肌肉系统调控多指协同动作和力量共同执行一系列的行为任务机理的一个巨大的挑战。人手的力量动作依赖前臂肌肉的收缩完成,因此sEMG信号可用于评价手指的生物力学特性。本课题以表面肌电为技术手段研究神经肌肉系统对人手的运动控制策略在康复医学、人体工效学、运动医学、神经生理学和运动机能学领域有重要的学术和应用意义。
     由于传统的两电极记录结构不能检测单个运动单位水平的活动,高密度sEMG信号在基础研究和诊断医学中具有重要价值,但却没得以广泛应用。而限制其应用的部分原因在于sEMG电极系统的加工技术。针对以上问题,本文首先基于柔性电路板加工工艺设计了一种具有较高柔韧性的线性、栅格电极阵列装置。采用的电极载体材料聚酰亚胺(厚50μm)具有较高的机械柔性和易裁切性,表面镀金(厚度2μm)的电极具有较低的阻抗,特制的聚酯双面胶带用于可重复使用的电极阵列装置的固定。电学性能测试表明该电极系统具有较低的阻抗和良好的重复性;稳定的基线、良好的sEMG信号、较低的噪声水平保证了此低成本电极系统的实际可用性。
     本文采用JHBM型号的电阻应变式压力传感器将指力信息转换成微伏级的电压信号,然后由仪表放大器AD620和运算放大器OP07构成的两级放大电路转换成毫伏级信号,最后经NI公司USB 6008数据采集卡实现指力数据采集。
     本文利用以上设计的实验装置对多指肌调控手指运动功能的机理进行了初步的探索研究。设计了食指(I)、中指(M)、食指中指(IM)组合三种手指活动模式,其中,单指输出力量由6N、8N、10N、12N四个力量水平组成,组合模式的由8N、12N、16N组成。在任务手指匹配目标力量的过程中,6通道指浅屈肌的sEMG信号利用两维电极阵列被同步采集。根据有效的力量输出段提取相应通道的sEMG信号,对提取的肌电信号进行20-500Hz的带通滤波,然后计算各通道sEMG信号的RMS,Ptotal,Pmax,并构建了Ptotal和Pmax彩色地形图用于指浅屈肌空间激活特性的研究。通过分析,得到以下三点结果:①指浅屈肌激活区域和激活强度随手指输出力量的增加而增加,从8N到12N增加的过程中最高的RMS的位置向桡侧转移;②不同电极位置处RMS对力量变化的灵敏度存在差异;③在相同的力量水平下,FDS的激活模式显著地受手指活动模式的影响,FDS的激活强度和区域要显著的高于本文设计的其他两种手指活动模式。这些初步的实验结果表明,sEMG信号特征值的特性取决于手指力量输出的水平,电极位置和手指活动模式。目前的工作提示手指力量输出水平和手指活动模式影响指浅屈肌运动单位的空间-时域募集特性;sEMG的特征参数,如RMS,Ptotal及Pmax,可用于反映肌肉活动水平,估计手指的活动模式及肌肉的空间激活特性。
The hand is one of the most fascinating and sophisticated biological motor systems,and its complex biomechanical and neural architecture of hand poses challenging questions for understanding the control strategies that underlie the coordination of finger movements and forces required for a wide variety of behavioral tasks. Movements and forces of human hand depend on muscle contractions, thus surface electromyography (sEMG) can be utilized to evaluate fingers’biomechanical characteristics. This paper which study the control strategies of neuromuscular system to finger movement is of great importance in the field of rehabilitation medicine, ergonomics, sport medicine, neurophysiology and kinesiology.
     Because of the inability of the traditional (2 electrode) recording configuration to detect activity at the level of single motor units, and the value of high-density sEMG has been proven in fundamental research and specific diagnostic questions. However, its applications are no broad partly due to limitations of construction principles of conventional electrode array systems. On this basis then, we developed a type of thin, highly flexible, linear and 2-D multi-electrode sEMG grid device, which is manufactured using flexprint techniques. The material (Polyimide, 50μm thick) used as electrode carrier allows this new sensor to own higher mechanical flexibility;electrodes with gold-coated (2μm thick) surface have a lower resistance;And adhesive electrode array is attached to the skin using specially prepared double sided adhesive tape whose was made of acrylic polymer. Test of electrical characteristic shows this electrode device has lower impedance and well repeatability; high baseline stablility, best sEMG signals and a low signal noise level guarantee its practical application.
     Strain gauges modelled JHBM convert fingertip force signals into microvolt-level voltage signals, these voltage signals were amplified by means of the two-stage amplifiers which consist of instrumentation amplifier AD620 and operational amplifier OP07, and then complete analog-digital conversion of the fingertip force information using a data acquisition card USB6008 of NI company.
     This paper conduct the preliminary exploration for control mechanism that multi-digit muscle regulate finger’s motor function utilizing designed devices. The experimental task consist of the four force levels (6N, 8N, 10N, 12N) of separate index finger (I) and middle finger (M), as well as the three force levels (8N, 12N, 16N) of the combination of index finger and middle finger (IM). Five healthy volunteers were required to produce a certain force to match the target force for 5s, and 6-channel sEMG was recorded using a two-deminsion electrode array over FDS simultaneously. sEMG of each channel was extracted based on the effective force segment, and these sEMG were band-pass filtered with frequency range of 20-500Hz respectively, then RMS, Ptotal and Pmax of sEMG for each channel was calculated and colorful topographical maps were constructed for the study of spatial activity. Our experimental results reveal three findings: (1) the spatial distribution region and activation intensity increase with the finger’s force production, and the position of highest RMS was shifted towards radial while finger’s force production changed; (2) the sensitivity of sEMG, defined as the slope of RMS v.s. force strength, differed from the electrode locations; (3) the activation patterns of FDS are markedly affected by the finger’s active patterns under the same force level,and FDS’s activation intensity and region of index finger is observably larger than other patterns designed in our study. These preliminary experimental results indicate that the characteristic distribution of sEMG depends on the finger’s force production level, electrode location and finger’s active pattern. The current work suggests that spatial-temporal recruitment of FDS’s motor units is affected by force production levels and finger’s active pattern, and sEMG’s characteristic parameters such as RMS,Ptotal as well as Pmax can be used as key parameters to reflect muscle activation level and describe finger’s actions and spatial activity of multi-digit muscles.
引文
[1] Hou W. S., X. Y. Wu, et al.. Characterization of Finger Isometric Force Production with Maximum Power of Surface Electromyography [J]. Biomedical Engineering-Applications Basis Communications, 2009, 21(3): 193-199.
    [2]柏树令,应大君.系统解剖学[M].北京:人民卫生出版社, 2002.
    [3]丁海曙,容观澳,王广志.人体运动信息检测与处理[M].北京:宇航出版社, 1992: 94-123.
    [4] Schieber M. H., J. Gardinier, et al.. Tension distribution to the five digits of the hand by neuromuscular compartments in the macaque flexor digitorum profundus [J]. Journal of Neuroscience, 2001, 21(6): 2150-2158.
    [5] Segal R. L., Wolf S. L., M. J. DeCamp, et al.. Anatomical partitioning of three multiarticular human muscles [J]. Acta Anat, 1991, 142: 261-266.
    [6] Serlin D. M. and M. H. Schieber. Morphologic regions of the multitendoned extrinsic finger muscles in the monkey forearm [J]. Acta Anat, 1993, 146: 255-266.
    [7] Keen D. A. and A. J. Fuglevand. Distribution of motor unit force in human extensor digitorum assessed by spike-triggered averaging and intraneural microstimulation [J]. Journal of Neurophysiology. 2004, 91(6): 2515-2523.
    [8] Butler T. J., Kilbreath S. L., R. B. Gorman, et al. Selective recruitment of single motor units in human flexor digitorum superficialis muscle during flexion of individual fingers [J]. Journal of Physiology. 2005, 567(1): 301-309.
    [9] Reilly K. T. and M. H. Schieber. Incomplete functional subdivision of the human multitendoned finger muscle flexor digitorum profundus: an electromyographic study [J]. Journal of Physiology. 2003, 90(4): 2560-2570.
    [10] Fleckenstein J. L., D. Watumull, et al.. Finger-specific flexor recruitment in humans: depiction by exercise-enhanced MRI [J]. J Appl Physiol, 1992, 72(5): 1974-7.
    [11]罗炯,金季春.表面肌电的处理方法及在体育科研中应用前景[J].福建体育科技, 2005, 24(2): 31-34.
    [12] Troiano A., Naddeo F., Sosso E., et al. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale [J]. Gait and Posture, 2008, 28 (2): 179-186.
    [13] Zatsiorsky V. M., Li Z. M., M. L. Latash. Coordinated force production in multi-finger tasks: finger interaction and neural network modeling [J]. Biol. Cybern., 1998, 79: 139-150.
    [14] Zatsiorsky V. M., Z. M. Li, et al.. Enslaving effects in multi-finger force production [J]. Exp.Brain Res., 2000, 131(2): 187-95.
    [15] Kilbreath S. L., R. B. Gorman, et al.. Distribution of the forces produced by motor unit activity in the human flexor digitorum profundus [J]. Journal of Physiology-London, 2002, 543(1): 289-296.
    [16] Merletti R., D. Farina, et al.. The linear electrode array: a useful tool with many applications [J]. J. Electromyogr. Kinesiol., 2003, 13(1): 37-47.
    [17] Masuda T., Miyano H., T. Sadoyama. The distribution of myoneural junctions in the biceps brachii investigated by surface electromyography [J]. Electroenceph. Clin. Neurophysiol., 1983, 56(6): 597-603.
    [18] Masuda T., Miyano H., T. Sadoyama. The position of innervation zones in the biceps brachii investigated by surface electromyography [J]. IEEE Trans. Biomed. Eng., 1985, 32: 36-42.
    [19] Li W. Q. and K. Sakamoto.The influence of location of electrod on muscle fiber conduction velocity and EMG power spectrum during voluntary isometric contraction measured with surface array electrodes [J]. Journal of Physiological Anthropology, 1996, 15(1): 25-32.
    [20] Beck T. W., T. J. Housh, et al.. The effects of electrode placement and innervation zone location on the electromyographic amplitude and mean power frequency versus isometric torque relationships for the vastus lateralis muscle [J]. Journal of Electromyography and Kinesiology, 2008, 18(2): 317-328.
    [21] Farina D., Merletti R., Enoka R. M.. The extraction of neural strategies from the surface EMG [J]. J. Appl. Physiol., 2004, 96: 1486-95.
    [22] Farina D. , Muhammad W., E. Fortunato, et al.. Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays [J]. Med. Biol. Eng. Comput., 2001, 39: 225-236.
    [23] Farina D., Madeleine P., et al.. surface electromyogram recordings for assessment of activity and fatigue in the human upper trapezius muscle [J]. Eur. J. Appl. Physiol., 2002, 86: 469-478.
    [24] Lapatki B. G., J. P.Van Dijk, et al.. A thin, flexible multi-electrode grid for high-density surface EMG [J]. J. Appl. Physiol., 2004, 96: 327-336.
    [25] Blok J. H., J. P. van Dijk, et al.. A high-density multichannel surface electromyography system for the characterization of single motor units [J]. Review of Scientific Instruments, 2002, 73(4): 1887-1897.
    [26] Staudenmann D., Kingma I., Daffertshofer A., et al. Improving EMG-based muscle force estimation by using a high-density EMG grid and principal component analysis [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(4): 712 -719.
    [27] Garcia G. A., Okuno R., Akazawa K. A.. Decomposition algorithm for surface electrode-arrayelectromyogram [J]. IEEE Engineering in Medicine and Biology Magazine, 2005, 24(4): 63 -72.
    [28] Hogrel J. Y.. Use of surface EMG for studying motor unit recruitment during isometric linear force ramp [J]. Journal of Electromyography and Kinesiology, 2003, 13(5): 417-423.
    [29] Kaplanis, P. A., C. S. Pattichis, et al.. Surface EMG analysis on normal subjects based on isometric voluntary contraction [J]. Journal of Electromyography and Kinesiology, 2009, 19(1): 157-171.
    [30] van Vugt J. P. P. and J. G. van Dijk. A convenient method to reduce crosstalk in surface EMG [J]. Clinical Neurophysiology, 2001, 112(4): 583-592.
    [31] Kleine B. U., J. H. Blok, et al.. Magnetic stimulation-induced modulations of motor unit firings extracted from multi-channel surface EMG [J]. Muscle & Nerve, 2000, 23(7): 1005-1015.
    [32] Lee J., A. Adam, et al.. A simulation study for a surface EMG sensor that detects distinguishable motor unit action potentials [J]. Journal of Neuroscience Methods, 2008, 168(1): 54-63.
    [33] Grassme R., D. F. Stegeman, et al.. Selective spatial information from surface EMG after temporal filtering: the application to interference EMG using cross-covariance analysis [J]. Clinical Neurophysiology, 2003, 114(12): 2338-2346.
    [34] Merletti R., A. Holobar et al.. Analysis of motor units with high-density surface electromyography [J]. Journal of Electromyography and Kinesiology, 2008, 18(6): 879-890.
    [35] Drost G., J. H. Blok, et al.. Propagation disturbance of motor unit action potentials during transient paresis in generalized myotonia-A high-density surface EMG study [J]. Brain, 2001, 124: 352-360.
    [36] Staudenmann D., I. Kingma, et al.. Heterogeneity of muscle activation in relation to force direction: A multi-channel surface electromyography study on the triceps surae muscle [J]. Journal of Electromyography and Kinesiology, 2009, 19(5): 882-895.
    [37]王健,刘加海.肌肉疲劳的表面肌电信号特征研究与展望[J].中国体育科技, 2003, 39(2): 4-7.
    [38]龙胜春,翁剑枫.肌电信号的检测与分析方法[J].国外医学生物医学工程分册, 1998, 21(2): 78-83.
    [39]李卓.表面肌电的信号分析及应用[J].中国医学理论与实践, 2006, 16(2): 153-155.
    [40] Troiano A., F. Naddeo, et al.. Assessment of force and fatigue in isometric contractions of the upper trapezius muscle by surface EMG signal and perceived exertion scale [J]. Gait and Posture, 2008, 28(2): 179-186.
    [41]皮喜田,陈峰,彭承琳.利用表面肌电信号评价肌肉疲劳的方法[J].生物医学工程学杂志,2006, 23(1): 225-229.
    [42] Hagberg M., Ericsson B. E.. Myoelectric power spectrum dependence on muscular contraction level of elbow flexors [J]. Eur. J. Physiol., 1982, 48: 147-56.
    [43] Moritani T., Muro M.. Motor unit activity and surface electromyogram power spectrum during increasing force of contraction [J]. Eur. J. Appl. Physiol., 1987, 56: 260-265.
    [44] Muro M., Nagata A., Murakami K., Moritani T.. sEMG power spectral analysis of neuromuscular disorders during isometric and isotonic contraction [J]. Am. J. Phys. Med. 1982, 61(5): 244-54.
    [45] Gerdle B., Eriksson N. E., Brundin L.. The behaviour of mean power frequency of the surface electromyogram in biceps brachii with increasing force and during fatigue with special regard to the electrode distance [J]. Electroen. Clin. Neuro., 1990, 30: 483-9.
    [46] Rainoldi A., Galardi G., et al.. Repeatability of surface EMG variables during voluntary isometric contraction of the biceps brachii muscle [J]. J. Electromyogr. Kines., 1999, 9: 105-19.
    [47] Farina D., Fosci M., Merletti R.. Motor unit recruitment strategies investigated by surface EMG variables [J]. J. Appl. Physiol., 2002, 92: 235-47.
    [48] Krivickas L. S., Taylor A., et al.. Is spectral analysis of surface electromyographic signal a clinically useful tool for evaluation of skeletal muscle fatigue? [J]. J. Clin. Neurophysiol., 1998, 15(2): 138-45.
    [49] Mesin L., C. Cescon, et al.. A bi-dimensional index for the selective assessment of myoelectric manifestations of peripheral and central muscle fatigue [J]. J. Electromyogr. Kinesiol., 2009, 19(5): 851-63.
    [50] Sparto P. J., M. Parnianpour, et al.. Wavelet and short-time Fourier transform analysis of electromyography for detection of back muscle fatigue [J]. IEEE Trans. Rehabil. Eng., 2000, 8(3): 433-6.
    [51]何琳.用于指力协同配合模式研究的实验装置设计[D].重庆,重庆大学, 2008.
    [52]卢祖能,曾庆杏,李承宴,等.实用肌电图学[M].北京:人民卫生出版社, 2000.
    [53]杨年峰.人体运动协调规律及其参数化描述[D].北京,清华大学, 2001.
    [54]李东亮,张朝.基础神经生物学[M].北京:人民军医出版社, 2006.
    [55] Mesin L., R. Merletti, et al.. Surface EMG: the issue of electrode location [J]. J. Electromyogr. Kinesiol., 2009, 19(5): 719-26.
    [56]张小栋.肌电信号检测与处理技术研究[J].中国生物医学工程进展-2007中国生物医学工程联合学术年会论文集(上册), 2007.
    [57] Farina D. and R. Merletti. A novel approach for precise simulation of the EMG signal detectedby surface electrodes [J]. IEEE Trans. Biomed. Eng., 2001, 48(6): 637-46.
    [58] Roberto M., A. Holobar, et al.. Two dimensional high density surface EMG (HD-EMG) technology and applications [J].
    [59] Kleine B. U., Schumann N. P., et al.. Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue [J]. Clinical Neurophysiology, 2000, 111(4): 686-693.
    [60] Farina D., F. Leclerc, et al.. The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration [J]. J. Electromyogr. Kinesiol., 2008, 18: 16-25.
    [61] Holobar A., Zazula D.. Correlation based decomposition of surface EMG at low contraction forces [J]. Med. Biol. Comput., 2004, 42: 487-495.
    [62] Schieber M. H.. Muscular production of individuated finger movements: the roles of extrinsic finger muscles [J]. The Journal of Neuroscience, 1995, 75(1): 284-297.
    [63] Danion F., S. Li, et al.. Relations between surface EMG of extrinsic flexors and individual finger forces support the notion of muscle compartments [J]. European Journal of Applied Physiology, 2002, 88(12): 185-188.
    [64] Tenore F., A. Ramos, et al.. Towards the control of individual fingers of a prosthetic hand using surface EMG signals [J]. 2007 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, 2007, 1(16): 6146-6149.
    [65] Castellini C. and P. van der Smagt. Surface EMG in advanced hand prosthetics [J]. Biological. Cybernetics., 2002, 100(1): 35-47.
    [66] Merletti R., A. Botter, et al.. Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art [J]. Clinical Biomechanics, 2009, 24(2): 122-134.
    [67] Huigen E., A. Peper, et al.. Investigation into the origin of the noise of surface electrodes [J]. Medical and Biological Engineering and Computing, 2002, 40(3): 332-338.
    [68] Hermens H. J., B. Freriks, et al.. Development of recommendations for SEMG sensors and sensor placement procedures [J]. J. Electromyogr. Kinesiol., 2000, 10(5): 361-74.
    [69] Bhullar H. K., G. H. Loudon, et al.. Selective noninvasive electrode to study myoelectric signals [J]. Med. Biol. Eng. Comput., 1990, 28(6): 581-6.
    [70] Masuda T. and Sadoyama T.. Distribution of innervation zones in the human biceps brachii [J]. J. Electromyogr. Kinesiol., 1, 1991, 1: 107-115.
    [71] Blok J. H., Stegeman D. F., et al.. Simulation of surface EMG signals for a multilayer volume conductor with triangular model of the muscle tissue [J]. IEEE Transactions on Biomedical Engineering, 2006, 53 (11): 2177-2184.
    [72] Franks W., Schenker I., et al.. Impedance characterization and modeling of electrodes for biomedical applications [J]. IEEE Trans. Biomed. Eng., 2005, 52: 1295-1302.
    [73] Gondran C., E. Siebert, et al.. Noise of surface bio-potential electrodes based on NASICON ceramic and Ag-AgCl [J]. Med. Biol. Eng. Comput., 1996, 34(6): 460-466.
    [74]郑万松,董秀珍,尤富生,等.单个电极接触不良对腹部电阻抗断层成像的影响[J].第四军医大学学报. 2006, 27 (2): 176-178.
    [75]王桂莲.心电图电极[J].数理医药学杂志. 2007, 20 (4): 176–178.
    [76]胡晓,王志中,任小梅.小波变换和非线性分析在表面肌电信号中的应用及进展[J].北京生物医学工程, 2006, 25(1): 105-108.
    [77]加玉涛,罗志增。肌电信号特征提取方法综述[J].电子器件,2007, 30(1): 326-330.
    [78]秦川,王志中,王刚等.利用AR模型参数分析损伤神经的针电极肌电信号[J].生物医学工程学杂志, 2004, 21(4): 636-639.
    [79] Kallenberg L. A. C. and H. J. Hermens. Behaviour of a surface EMG based measure for motor control: Motor unit action potential rate in relation to force and muscle fatigue [J]. Journal of Electromyography and Kinesiology, 2008, 18(5): 780-788.
    [80] Gerdle B., K. Henriksson-Larsen, et al.. Dependence of the mean power frequency of the electromyogram on muscle force and fibre type [J]. Acta. Physiol. Scand., 1991, 142(4): 457-65.
    [81] Hagberg C., Hagberg M.. Surface EMG amplitude and frequency dependence on exerted force for the upper trapezius muscle: a comparison between right and left sides [J]. Eur. J. Appl. Physiol. Occup. Physiol. 1989, 58(6): 641-5.
    [82] Kumar S., Narayan Y.. Torque and EMG in isometric graded flexion rotation and extension-rotation [J]. Ergonomics, 2001, 44(8): 795-813.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700