B9601-Y2菌株的基因组解析及部分功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物促生根围细菌是一类生活于植物根围土壤,并能促进植物生长的一类细菌,是农业生物防治的重要组成部分。B9601-Y2(以下简称Y2)是实验室从小麦根际土壤中分离并保存的一株解淀粉芽孢杆菌,隶属于植生亚种。离体条件下,Y2对多种植物病原真菌和细菌具有很强的拮抗活性;在大田试验中,能促进多种农作物的生长和增产。为了研究其促生防病机制,本研究对该菌株的全基因组进行了测序和解析,并以基质辅助激光解吸电离飞行时间质谱(matrix-assisted laser desorption/ionization-time of flight-mass spectrometry, MALDI-TOF-MS)证实其分泌抗生素类物质;构建了绿色荧光(green fluorescent protein,GFP)表达载体,研究其在玉米根际土壤及玉米体内定殖动态;通过基因工程方法,恢复了该菌株形成自然感受态的能力。取得了如下研究结果:
     1.Y2的基因组大小为4238624bp, GC含量占45.76%,在NCBI数据库中的登录号为NC_17912.1,它含有4159个CDS,编码区总长度为3704557bp,约占全基因组的87.4%;它共有91个tRNA基因、10个rDNA拷贝、69个串联重复区域、73个转座子和24个插入序列元件。
     2.通过基因组注释,发现Y2具有多种生存策略,能够忍受极端的环境条件。它含有芽孢杆菌DNA损伤修复的保守核心基因,如切除修复系统所需的alkA (MUS_4255)、ung(MUS_4184)、mutM(MUS_3183)等基因成员;错配修复系统mutS (MUS_1860)、mutL(MUS_1861)、XseA (MUS_2727)以及XseB (MUS_2726);非同源末端接合以及同源修复系统所需的关键基因等。Y2含有利用纤维素、半纤维素、果胶以及淀粉类的基因成员,如MUS_2161、P(MUS_4265)、bglS(MUS_4304)、 pelB(MUS_4319)以及amyE (MUS_0286)等,能够降解利用土壤中有限的大分子物质并快速壮大自己种群数量;同时还存有包括脱乙酰几丁质酶csn(MUS_3567)等在内的编码基因降解几丁质。Y2拥有与植物寄主相容全套基因簇和调控元件。
     3.Y2基因组中含有多种抗生素的合成基因簇,MALDI-TOF-MS也证实Y2除了分泌如芬荠素、伊枯草菌素、嗜铁素、溶杆菌素、杆菌烯、大环内酯以及地非西丁在内的一些脂肽类和聚酮类抗生物质外,还能合成羊毛硫抗生素化合物摩萨西丁,拮抗多种植物病原菌,减少植物病害的发生。基因组中还有杀线虫相关的碱性丝氨酸蛋白酶基因及促生长化合物2,3-丁二醇、3-羟基-2-丁酮、生长素(IAA)的合成代谢途径,从而为Y2菌株促生长、防治真菌性病害和根结线虫病害提供了分子依据。
     4.Y2缺失表面活性素的合成基因簇srfA的第二个成员srfAB,导致不能合成表面活性素(surfactin)。srfAB缺失的间接后果导致了与感受态形成相关的必需基因comS丢失,致使Y2不能形成自然感受态。comS的上游调控基因comX也发生了缺失现象。Y2具有编码Ⅰ型限制修复系统的基因簇hsdRMS (MUS_3105~MUS_3103),导致Y2的后续分子操作困难。
     5.以芽孢杆菌表达载体pHT01为载体骨架,构建了不同类型的大肠杆菌-芽孢杆菌GFP表达穿梭载体。通过自然转化,将5种GFP表达载体导入“保姆”菌株枯草芽孢杆菌168和解淀粉芽孢杆菌FZB42,提取质粒并电击转化Y2感受态细胞,成功地获得了3株稳定性好、具GFP标记的Y2菌株,分别命名为Y2-pHAPII、 Y2-pGFP4412以及Y2-P43GFPmut3a。
     6.选用GFP标记菌Y2-P43GFPmut3a为接种材料,初步研究了Y2在玉米根系及根际土壤的定殖动态和内生性。Y2在玉米的根内、根表及根际土壤有良好的定殖,在接近2个月的期间内,菌浇数量分别维持在103~104、106-107以及105~106cfu/g(鲜根或土),种群数量变化不大。Y2也能在玉米的茎、叶组织中定殖,定殖密度为102cfu/g鲜组织。利用激光共聚焦扫描显微镜观察组织压片和切片,证明在接种2天后,Y2就在玉米根毛、根的伸长区和成熟区定殖,接种第5天和第9天,就能在玉米茎和叶组织中找到定殖菌体。组织观察与菌落回收的结果相吻合。
     7.以pHT01为出发载体,构建了诱导表达感受态形成关键因子ComK的载体pHT01-comK并导入Y2感受态细胞。通过诱导表达ComK, Y2的自然感受特性得到了恢复。当以解淀粉芽孢杆菌自然转化生长培养基GCHE培养Y2至OD600达0.5~0.6,加入终浓度为lmM IPTG诱导1h,再将质粒与Y2混合后复苏3h,Y2的转化子可达3.06±0.22×104cfu/μg质粒DNA。在世界上首次将自然转化缺陷型野生解淀粉芽孢杆菌恢复了自然转化能力,为这类菌株的基因操作提供了新的技术策略。
Plant growth-promoting rhizobacteria (PGPR), is one kind of bacteria living in the plant rhizospheric soil and could promote crop growth and control plant diseases. Bacillus amyloliquefaciens B9601-Y2(Y2), belonging to plantarum group, was isolated from rhizospheric soil of wheat and stored in our laboratory. In vitro, Y2has strong antagonistic activity against many common phytopathogenic fungi and bacteria, and could promote a number of crops growth and increase yield in the field. To understand its mechanisms, Y2genome was sequenced and analyzed. Y2's ability to produce antibiotic metabolites and colonize in maize and its rhizospheric soil was confirmed by MALDI-TOF-MS and through GFP-tagged technology, respectively. Y2natural competence was recovered with gene-engineering method. The results obtained in this study were as follows:
     1. The genome size of Y2is4238624bp(base pairs) with accession number NC17912.1in NCBI database. It was predicted that Y2had45.76%GC content and4159CDS with the overall length3704557bp, accounting for87.4%of the whole genome. The number of tRNA gene, rDNA operon, tandem repeated region, transposon and inserted sequence element are91,10,69,73and24, respectively.
     2. Many living strategies were found in Y2through genomic annotation, which indicate that Y2could tolerate harsh environments and survive. Y2has conserved core genes related to the DNA repair system in Bacillus, such as alkA (MUS_4255), ung(MUS_4184),mutM(MUS_3183) and other genes acquired in excision repair system; mutS(MUS_1860), mutL(MUS_1861), XseA(MUS_2727) and XseB (MUS_2726) in mismatch repair system and some essential genes in non-homologous end joining and homologous repair system. Members of gene utilizing polysaccharides such as cellulose, hemicellulose, pectin and starch were discovered in Y2genome, such as MUS_2161, ydhP(MUS_4265), bglS (MUS_4304), pelB (MUS_4319) and amyE (MUS_0286), suggesting that Y2could make use of limit nutrient in the soil without appropriate plant hosts to increase its own population rapidly. Meanwhile, some genes encoding the chitin-degrading enzymes were also found, partially explaining why Y2has so strong antagonism against some pathogenic fungi. Y2owns the synthetic clusters and regulatory genes of biofilm, which shows Y2has a good mutual benefit relationship with plant host.
     3. Many antibiotic biosynthetic clusters were found in Y2genome, whose products were detected by MALDT-TOF-MS. Besides the production of some common lipopeptides fengycin, iturin, bacillibactin, bacilysin and polyketides bacillaene, macrolactin and difficidin, Y2could secrete bacteriocins such as mersacidin to inhibit the growth of phytopathogenic fungi and reduce the occurrence of plant disease. The alkaline serine protease gene and metabolic pathways of some plant growth-promoting volatile compound2,3-butanediol and acetoin discovered in Y2genome provide molecular evidence for Y2to control diseases caused by fungi and root-knot nematode and promote plant growth.
     4. An amazing phenomenon we discovered is that Y2is a surfactin-deficient strain because of the deletion of srfAB, the second gene member in surfactin operon srfA. The indirect result of srfAB deletion leads to the loss of comS, an essential gene in natural competence, which makes Y2deficient in natural transformation. comX, an upstream regulatory gene of comS, was also absent. At the same time, Y2contains type I restriction-modification system hsdRMS (MUS_3105~MUS_3103). All of that leads to difficulty in molecular manipulation of Y2.
     5. Several types of Escherichia coli-Bacillus shuttle vector in GFP expression had been constructed based on the backbone of Bacillus expression plasmid pHT01. These vectors were transformed into transient hosts B. subtilis168and B. amyloliquefaciens FZB42by natural transformation. Y2electro-competent cells were electroporated with the plasmid DNA extracted from B168and FZB42.3GFP-tagged Y2strains were obtained and named as Y2-pHAPII, Y2-pGFP4412and Y2-P43GFPmut3a, respectively.
     6. The colonization dynamics and endophytic characteristic of Y2in maize root and rhizo spheric soil were studied primarily, with the GFP-tagged strain Y2-P43GFPmut3a as inoculant. The results showed that Y2had a good colonization in maize roots, root surface and rhizospheric soil, whose population number has been10~104,106~107and105~106cfu/g (root or soil), respectively, and hasn't changed sharply during two months. Furthermore, Y2could colonize in maize stem and leaf although the number was only102cfu/g (fresh tissue). The tissue slices were observed under the confocal laser scanning microscopy. And the results showed2days after inoculation (DAI), Y2-P43GFPmut3a could colonize the root hair, elongation region and matured zone of maize root and in maize stem and leaf tissue at5DAI and9DAI, respectively. The phenomenon was proved by fluorescence observation.
     7. Inducible expression vector pHT01-comK was constructed, based on pHT01skeleton. The natural competence of Y2was recovered through the inducible expression of ComK, a key factor in Bacillus natural competence. The condition of natural competence formation was optimized primarily, and resulted in the highest transformation efficiencies3.06±0.22×104cfu/μg DNA when using GCHE medium as growth medium, and inducibly expressing1h with a final concentration of lmM IPTG with0.5-0.6OD6oo, recovering3h after the addition of exogenous plasmid DNA. So far, it is the first report to recover the natural transformation of undomesticated B. amyloliquefaciens deficient in natural competence, which could provide a technological strategy for gene manipulation in these strains.
引文
1. 陈涛,王靖宇,班睿等.,枯草芽孢杆菌感受态研究新进展.生命的化学,2004,24:130-134.
    2. 陈志谊,陆凡,刘永锋等.,防治水稻病害微生物农药纹曲宁的研制及产业化.江苏农业学报,2003,19:108-108.
    3. 陈志谊,苗东华.拮抗细菌的定殖,浓度和喷施期与水稻纹枯病的关系.江苏农业学报,1998,14:31-35.
    4. 陈志谊,许志刚,高泰东等.,水稻纹枯病拮抗细菌的评价与利用.中国水稻科学,2000,14:98-102.
    5. 迟玉杰,杨谦.毛壳菌对植物病害的生物防治及存在的问题.农业系统科学与综合研究,2002,18:215-218.
    6. 董锦艳,李铷,周艳等.,粉红粘帚霉1A毒杀线虫活性代谢物的研究.中国抗生素杂志,2006,31:232-236.
    7. 董伟欣,李宝庆,李社增等.,脂肽类抗生素fengycin在枯草芽胞杆菌NCD-2菌株抑制番茄灰霉病菌中的功能分析.植物病理学报,2013,43:401-410
    8. 范晓静,邱思鑫,吴小平等.,绿色荧光蛋白基因标记内生枯草芽孢杆菌.应用与环境生物学报,2007,13:530-534.
    9. 冯海艳.土壤和宿主磷水平对AM真菌生长及ALP活性调控的研究.[博士学位论文].北京:中国农业大学图书馆,2003.
    10.顾真荣,韩长安.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报,2001,17:92-96.
    11.郭兴华,熊占,周民等.,枯草杆菌-大肠杆菌多功能穿梭载体的构建.生物工程学报,1991,7:224-229.
    12.何逵夫,马跃超,杜姗姗等.,解淀粉芽胞杆菌关键酶基因过表达对鸟苷积累的影响.微生物学报,2012,52:718-725.
    13.蒋宝贵,赵斌.解磷解钾自生固氮菌的分离筛选及鉴定.华中农业大学学报,2005,24:43-48.
    14.姜道宏,李国庆,易先宏等.,盾壳霉所产抗细菌物质的特性.植物病理学报,1998,28:29-32.
    15.江木兰,赵瑞,胡小加等.,油菜内生生防菌BY-2在油菜体内的定殖与对油菜菌核病的防治作用.植物病理学报,2007,37:192-196.
    16.来航线,杨保伟,邱学礼等.,9株芽孢杆菌的初步分离鉴定与拮抗性试验(?).西北农林科技大学学报(自然科学版),2004,32.
    17.李淼,产祝龙,檀根甲等.,木霉菌防治植物真菌病害研究进展.生物技术通讯,2009,20: 286-290.
    18.黎起秦,叶云峰,王涛等.,内生枯草芽孢杆菌B47菌株入侵番茄的途径及其定殖部位.中国生物防治,2008,24:133-137.
    19.李瑞芳,薛雯雯,黄亮等.,枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究.生物技术通报,2011,5:227-230.
    20.廖继佩,林先贵,曹志洪.内外生菌根真菌对重金属的耐受性及机理.土壤,2003,35:370-377.
    21.林东,徐庆.枯草芽孢杆菌S0113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.农业生物技术学报,2001,9:77-80.
    22.林红梅,施建飞,李岳桦,.西洋参病原菌拮抗细菌的分离筛选与鉴定.吉林农业科学,2013,38:62-65.
    23.刘晶晶,束长龙,张杰等.,苏云金芽胞杆菌内生质粒提取方法的改进[J].生物技术通报,2008.
    24.刘玮玮.芽孢杆菌所产挥发物对几种土传病原物的拮抗活性测定与成分分析 .[博士学位论文].泰安:山东农业大学图书馆,2009.
    25.刘永锋,张杰,陈志谊等.,枯草芽孢杆菌Bs-916胞外抗菌蛋白质的生物功能分析.江苏农业学报,2008,24:269-273.
    26.刘忠梅,王霞,赵金焕等.,有益内生细菌B946在小麦体内的定殖规律.中国生物防治,2005,21:113-116.
    27.罗楚平,王晓宇,陈志谊等.,枯草芽孢杆菌Bs916中脂肽抗生素Bacillomycin L的操纵子结构及生物活性.中国农业科学,2010,43:4624-4634.
    28.罗秀针,施碧红,郑虹等.,枯草芽胞杆菌FB123细菌素的理化性质及抑菌谱的研究.微生物学杂志,2008,28:64-67.
    29.吕燕妮,李平兰,孙成虎等.,戊糖乳杆菌31-1菌株所产细菌素的理化及生物学特性.中国农业大学学报,2006,11:39-43.
    30.吕正兵,朱国萍.一种适合芽孢杆菌质粒DNA提取的改良碱裂解法.安徽师范大学学报:自然科学版,2002,25:54-55.
    31.马平,李社增,Huang H等.,利用棉花体内非致病镰刀菌防治棉花黄萎病.中国生物防治,2001,17:71-74.
    32.任莉.重寄生真菌盾壳霉降解草酸毒素及其引起的生防效应研究.[博士学位论文].武汉,华中农业大学图书馆,2007.
    33.宋福平,刘邮洲,罗楚平.枯草芽孢杆菌Bs-916的抑菌活性及其抑菌物质初探.农药学学报,2007,9:92-95.
    34.孙建光,张燕春,徐晶等.,高效固氮芽孢杆菌筛选及其生物学特性.中国农业科学,2009,42: 2043-2051.
    35.田涛,元雪晨,王琦等.,芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报,2004,34:346-351..
    36.汪雪静,卜春亚,靳永胜等.,草莓根腐病菌拮抗细菌的分离与鉴定.园艺学报,2011,38:1657-1666.
    37.王志远,吴兴兴,吴毅歆等.,解淀粉芽孢杆菌B9601-Y2抗性基因标记及其在作物根部的定殖能力.华中农业大学学报,2012,31:313-319.
    38.魏燕丽.产壳聚糖酶细菌的筛选及其对绿豆和黄瓜立枯病的生物防治.[博士学位论文].开封:河南大学图书馆,2007.
    39.吴兴兴,吴毅歆,赵正龙等.,4个PGPR菌株拌种对干旱条件下蚕豆生长及产量的影响.干旱区研究,2012,29:203-207.
    40.辛玉成,秦淑莲.几种拮抗菌株对苹果霉心病菌抑制作用的研究.中国果树,1999:14-15.
    41.辛玉成,尹士采.枯草芽孢杆菌XM16菌株制剂对苹果霉心病的防治及病原的抑制作用.植物病理学报,2000,30:66-70.
    42.徐同,钟静萍,孟征.木霉在植病生防中的地位[A].[博士学位论文].地址:第二届全国真菌地衣学术讨论会论文及论文摘要汇中国植物学会真菌学会.北京1990,1990.
    43.杨金艳.枯草芽孢杆菌XM16分泌蛋白的抑菌作用及抗菌蛋白的分离纯化.河南农业科学,2009:78-81..
    44.叶佳舒.丛枝菌根影响植物抗旱性机理研究.[博士学位论文].南京:南京农业大学图书馆,2012.
    45.张楠.根际有益芽孢杆菌N11及SQR9与植物根系的互作研究.[博士学位论文].南京:南京农业大学图书馆,2012.
    46.郑福庆,黄文生,王彬等.,植物病害生物防治研究进展.江西植保,1998,21:29-33.
    47. Abuamsha R, Salman M, Ehlers R-U. Effect of seed priming with Serratia plymuthica and Pseudomonas chlororaphis to control Leptosphaeria maculans in different oilseed rape cultivars. European Journal of Plant Pathology, 2011,130:287-295.
    48. Alexeyenko A, Tamas I, Liu G, et al. Automatic clustering of orthologs and inparalogs shared by multiple proteomes. Bioinformatics, 2006,22:e9-e15.
    49. Allaway D, Schofield N A, Leonard M E, et al. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes. Environmental Microbiology, 2001,3: 397-406.
    50. Altena K, Guder A, Cramer C, et al. Biosynthesis of the lantibiotic mersacidin: organization of a type B lantibiotic gene cluster. Applied and environmental microbiology, 2000,66:2565-2571.
    51. Amann R I, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological reviews, 1995,59:143-169.
    52. Ansaldi M, Marolt D, Stebe T, et al. Specific activation of the Bacillus quorum-sensing systems by isoprenylated pheromone variants. Molecular microbiology, 2002,44:1561-1573.
    53. Aranda F J, Teruel J A, Ortiz A. Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochimica et BiophysicaActa (BBA)-Biomembranes, 2005,1713:51-56.
    54. Arnaud M, Chastanet A, Debarbouille M. New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Applied and environmental microbiology, 2004,70:6887-6891.
    55. Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and environmental microbiology, 1996,62:4081-4085.
    56. Avila-Perez M, Hellingwerf K J, Kort R. Blue light activates the σB-dependent stress response of Bacillus subtilis via YtvA. Journal of bacteriology, 2006,188:6411-6414.
    57. Bacon C W, Yates I E, Hinton D M, et al. Biological control of Fusarium moniliforme in maize. Environmental Health Perspectives, 2001,109:325.
    58. Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic acids research,2000,28:45-48.
    59. Bais H P, Fall R, Vivanco J M. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant physiology, 2004,134:307-319.
    60. Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol.,2006,57:233-266.
    61. Bakker P, Van Peer R, Schippers B. Suppression of soil-borne plant pathogens by fluorescent pseudomonads:mechanisms and prospects. Biotic interactions and soil-borne diseases,1991,23: 217-230.
    62. Bakker P A, Pieterse C M, Van Loon L. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 2007,97:239-243.
    63. Barrows-Broaddus J, Dwinell L, Kerr T. Evaluation of Arthrobacter sp. for biological control of the pitch canker fungus (Fusarium moniliforme var. subglutinans) on slash pines. Canadian Journal of Microbiology,1985,31:888-892.
    64. Bauer R, Dicks L. Mode of action of lipid Ⅱ-targeting lantibiotics. International Journal of Food Microbiology, 2005,101:201-216.
    65. Beauchamp C, Kloepper J, Lemke P. Root colonization of various host plants by Tn5 bioluminescent pseudomonads. Bulletin OILB SROP (France),1991.
    66. Behal V. Bioactive products from Streptomyces. Adv. Appl. Microbiol, 2000,47:113-156.
    67. Benhamou N, Kloepper J W, Quadt-Hallman A, et al. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant physiology, 1996,112: 919-929.
    68. Benhamou N, Kloepper J W, Tuzun S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta, 1998,204:153-168.
    69. Bertani G, Baresi L. Genetic transformation in the methanogen Methanococcus voltae PS. Journal of bacteriology, 1987,169:2730-2738.
    70. Bertin C, Yang X, Weston L A. The role of root exudates and allelochemicals in the rhizosphere. Plant and soil, 2003,256:67-83.
    71. Bierbaum G, Brotz H, Koller K P, et al. Cloning, sequencing and production of the lantibiotic mersacidin. FEMS microbiology letters, 1995,127:121-126.
    72. Bokman S H, Ward W W. Renaturation of Aequorea green-fluorescent protein. Biochemical and biophysical research communications, 1981,101:1372-1380.
    73. Bolwerk A, Lagopodi A L, Wijfjes A H, et al. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Molecular Plant-Microbe Interactions, 2003,16:983-993.
    74. Bongiorni C, Ishikawa S, Stephenson S, et al. Synergistic regulation of competence development in Bacillus subtilis by two Rap-Phr systems. Journal of bacteriology, 2005,187:4353-4361.
    75. Borriss R, Chen X-H, Rueckert C, et al. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. International journal of systematic and evolutionary microbiology, 2011,61:1786-1801.
    76. Brotz H, Bierbaum G, Leopold K, et al. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrobial agents and chemotherapy, 1998,42:154-160.
    77. Brotz H, Bierbaum G, Reynolds P E, et al. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. European Journal of Biochemistry, 1997,246: 193-199.
    78. Branda S S, Chu F, Kearns D B, et al. A major protein component of the Bacillus subtilis biofilm matrix. Molecular microbiology, 2006,59:1229-1238.
    79. Branda S S, Gonzalez-Pastor J E, Ben-Yehuda S, et al. Fruiting body formation by Bacillus subtilis. Proceedings of the National Academy of Sciences, 2001,98:11621-11626.
    80. Brannen P, Kenney D. Kodiak(?)—a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology and Biotechnology, 1997, 19:169-171.
    81. Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal community composition and diversity. Applied and environmental microbiology, 2008,74:738-744.
    82. Bron S, Luxen E, Swart P. Instability of recombinant pUB110 plasmids in Bacillus subtilis: Plasmid-encoded stability function and effects of DNA inserts. Plasmid, 1988,19:231-241.
    83. Brown A E, Hamilton J. Indole-3-ethanol produced by Zygorrhynchus moelleri, an indole-3-acetic acid analogue with antifungal activity. Mycological Research, 1992,96:71-74.
    84. Buckley N D, Vadeboncoeur C, Leblanc D J, et al. An Effective Strategy, Applicable to Streptococcus salivarius and Related Bacteria, To Enhance or Confer Electroporation Competence. Applied and environmental microbiology, 1999,65:3800-3804.
    85. Burkett-Cadena M, Kokalis-Burelle N, Lawrence K S, et al. Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control, 2008,47:55-59.
    86. Cameotra S S, and Makkar R S. Recent applications of biosurfactants as biological and immunological molecules. Current opinion in microbiology, 2004,7:262-266.
    87. Cao G, Zhang X, Zhong L, et al. A modified electro-transformation method for Bacillus subtilis and its application in the production of antimicrobial lipopeptides. Biotechnology letters, 2011,33: 1047-1051.
    88. Cao L, Qiu Z, Dai X, et al. Isolation of Endophytic Actinomycetes From Roots and Leaves of Banana (Musa Acuminata) Plants and Their Activities Against Fusarium oxysporumf. sp. cubense. World Journal of Microbiology and Biotechnology, 2004,20:501-504.
    89. Cao Y, Zhang Z, Ling N, et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology and Fertility of Soils, 2011,47:495-506.
    90. Carrillo C, Teruel J A, Aranda F J, et al. Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochimica et Biophysica Acta (BBA)-Biomembranes,2003, 1611:91-97.
    91. Cascales E, Christie P J. The versatile bacterial type IV secretion systems. Nature Reviews Microbiology, 2003,1:137-149.
    92. Chacon M R, Rodriguez-Galan O, Benitez T, et al. Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. International microbiology, 2010, 10:19-27.
    93. Chai Y, Chu F, Kolter R, et al. Bistability and biofilm formation in Bacillus subtilis. Molecular microbiology, 2008,67:254-263.
    94. Chai Y, Kolter R, Losick R. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Molecular microbiology, 2009,74:876-887.
    95. Chai Y, Norman T, Kolter R, et al. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes & development, 2010,24:754-765.
    96. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science,1994,263:802-805.
    97. Chang S, Cohen S N. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Molecular and General Genetics MGG, 1979,168:111-115.
    98. Chen C, Belanger R R, Benhamou N, et al. Induced systemic resistance (ISR) by Pseudomonas spp. impairs pre-and post-infection development of Pythium aphanidermatum on cucumber roots. European Journal of Plant Pathology, 1998,104:877-886.
    99. Chen I, Dubnau D. DNA uptake during bacterial transformation. Nature Reviews Microbiology, 2004,2:241-249.
    100. Chen I, Provvedi R, Dubnau D. A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. Journal of Biological Chemistry, 2006,281:21720-21727.
    101. Chen P T, Chiang C J, and Chao Y P. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnology progress, 2007,23:808-813.
    102. Chen X H, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature biotechnology, 2007,25:1007-1014.
    103. Chen Y, Cao S, Chai Y, et al. A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Molecular microbiology, 2012,85:418-430.
    104. Chen Y, Yan F, Chai Y, et al. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environmental Microbiology, 2013,15:848-864.
    105. Cheng H-R, Jiang N. Extremely rapid extraction of DNA from bacteria and yeasts. Biotechnology letters,2006,28:55-59.
    106. Cheng YQ, Tang G-L, Shen B. Type I polyketide synthase requiring a discrete acyltransferase for polyketide biosynthesis. Proceedings of the National Academy of Sciences, 2003,100: 3149-3154.
    107. Chiu W-L, Niwa Y, Zeng W, et al. Engineered GFP as a vital reporter in plants. Current Biology, 1996,6:325-330.
    108. Chmara H. Inhibition of glucosamine synthase by bacilysin and anticapsin. Journal of general microbiology, 1985,131:265-271.
    109. Chu F, Kearns D B, Mcloon A, et al. A novel regulatory protein governing biofilm formation in Bacillus subtilis. Molecular microbiology, 2008,68:1117-1127.
    110. Chung Y, Breidt F, Dubnau D. Cell surface localization and processing of the ComG proteins, required for DNA binding during transformation of Bacillus subtilis. Molecular microbiology, 1998,29:905-913.
    111. Chung Y, Dubnau D. ComC is required for the processing and translocation of ComGC, a pilin-like competence protein of Bacillus subtilis. Molecular microbiology, 1995,15:543-551.
    112. Cody C W, Prasher D C, Westler W M, et al. Chemical structure of the hexapeptide chromophore of the A equorea green-fluorescent protein. Biochemistry, 1993,32:1212-1218.
    113. Colepicolo P, Cho K, Poinar G, et al. Growth and luminescence of the bacterium Xenorhabdus luminescens from a human wound. Applied and environmental microbiology, 1989,55: 2601-2606.
    114. Compant S, Clement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 2010,42:669-678.
    115. Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 2005,71:4951-4959.
    116. Corvey C, Stein T, Dusterhus S, et al. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochemical and biophysical research communications,2003,304:48-54.
    117. Costerton J W, Lewandowski Z, Caldwell D E, et al. Microbial biofilms. Annual Reviews in Microbiology, 1995, 49:711-745.
    118. Cross T, Goodfellow M. Taxonomy and classification of the actinomycetes. Paper presented at the Society for Applied Bacteriology symposium series, 1973.
    119. Cubitt A B, Heim R, Adams S R, et al. Understanding, improving and using green fluorescent proteins. Trends in biochemical sciences, 1995,20:448-455.
    120. Cunningham J E, and Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Applied and environmental microbiology, 1992,58: 1451-1458.
    121. D'souza C, Nakano M M, and Zuber P. Identification of comS, a gene of the srfA operon that regulates the establishment of genetic competence in Bacillus subtilis. Proceedings of the National Academy of Sciences, 1994,91:9397-9401.
    122. Davidsen T, Rodland E A, Lagesen K, et al. Biased distribution of DNA uptake sequences towards genome maintenance genes. Nucleic acids research, 2004,32:1050-1058.
    123. De Boer M, Bom P, Kindt F, et al. Control of Fusarium wilt of radish by combining Pseudomonas putida strains that have different disease-suppressive mechanisms. Phytopathology, 2003,93:626-632.
    124. De Weger L A, Dunbar P, Mahafee W F, et al. Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Applied and environmental microbiology, 1991,57: 3641-3644.
    125. Deleu M, Paquot M, Nylander T. Fengycin interaction with lipid mono layers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. Journal of colloid and interface science,2005,283:358-365.
    126. Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995,7: 1085.
    127.Dorenbos R, Stein T, Kabel J, et al. Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. Journal of Biological Chemistry,2002,277: 16682-16688.
    128. Drahos D J, Hemming B C, Mcpherson S. Tracking Recombinant Organisms in the Environment: β-Galactosidase as a Selectable Non-Antibiotic Marker for Fluorescent Pseudomonads. Nature biotechnology, 1986,4:439-444.
    129. Dubnau D. Binding and transport of transforming DNA by Bacillus subtilis:the role of type-Ⅳ pilin-like proteins-a review. Gene, 1997,192:191-198.
    130. Dubnau D. DNA uptake in bacteria. Annual Reviews in Microbiology, 1999,53:217-244.
    131. Dubnau D. Genetic competence in Bacillus subtilis. Microbiological reviews, 1991,55:395.
    132. Dubnau D. Genetic exchange and homologous recombination. Bacillus subtilis and other gram-positive bacteria: biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, DC, 1993:555-584.
    133. Dubnau D. Genetic transformation of Bacillus subtilis: a review with emphasis on the recombination mechanism. Microbiology, 1976,1976:14-27.
    134. Dubnau D, Cirigliano C. Fate of transforming DNA following uptake by competent Bacillus subtilis:Ⅳ. The endwise attachment and uptake of transforming DNA. Journal of molecular biology, 1972, 64:31-46.
    135. Dubnau D, Cirigliano C. Genetic characterization of recombination-deficient mutants of Bacillus subtilis. J Bacteriol, 1974,117:488.
    136. Dufour S, Deleu M, Nott K, et al. Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochimica et Biophysica Acta (BBA)-General Subjects, 2005, 1726:87-95.
    137. Duitman E H, Hamoen L W, Rembold M, et al. The mycosubtilin synthetase of Bacillus subtilis ATCC6633:a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proceedings of the National Academy of Sciences, 1999,96:13294-13299.
    138. Duitman E H, Wyczawski D, Boven L G, et al. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Applied and environmental microbiology, 2007,73:3490-3496.
    139. Dunn A K, Klimowicz A K, Handelsman J. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens. Applied and environmental microbiology, 2003,69:1197-1205.
    140. Dunn R, Munster M, Sharp R, et al. A novel method for regenerating the protoplasts of thermophilic bacilli. Archives of microbiology, 1987,146:323-326.
    141. Eisenstadt E, Lange R, Willecke K. Competent Bacillus subtilis cultures synthesize a denatured DNA binding activity. Proceedings of the National Academy of Sciences, 1975,72:323-327.
    142. Elad Y, Barak R, and Chet I. Parasitism of sclerotia of Sclerotium rolfsii by Trichoderma harzianum. Soil Biology and Biochemistry, 1984,16:381-386.
    143. Espinosa-Urgel M, Kolter R, Ramos J-L. Root colonization by Pseudomonas putida: love at first sight. Microbiology, 2002,148:341-343.
    144. Fall R, Kinsinger R F, Wheeler K A. A Simple Method to Isolate Biofilm-forming Bacillus subtilis and Related Species from Plant Roots. Systematic and applied microbiology, 2004,27: 372-379.
    145. Fan B, Chen X H, Budiharjo A, et al. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. Journal of biotechnology, 2011,151:303-311.
    146. Fang F C. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nature Reviews Microbiology, 2004,2:820-832.
    147. Fawcett P, Eichenberger P, Losick R, et al. The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proceedings of the National Academy of Sciences, 2000,97: 8063-8068.
    148. Fink P. Biosynthesis of the branched-chain amino acids. Bacillus subtilis and other gram-positive bacteria. American Society for Microbiology, Washington, DC, 1993:307-317.
    149. Finking R, Marahiel M A. Biosynthesis of nonribosomal peptides 1. Annu. Rev. Microbiol.,2004, 58:453-488.
    150. Flach J, Bossie M, Vogel J, et al. A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Molecular and cellular biology, 1994,14:8399-8407.
    151. Gao C, Xue Y, Ma Y. Protoplast transformation of recalcitrant alkaliphilic Bacillus sp. with methylated plasmid DNA and a developed hard agar regeneration medium. PloS one, 2011,6: e28148.
    152. Gerdes H-H, Kaether C. Green fluorescent protein: applications in cell biology. Febs Letters, 1996,389:44-47.
    153.Giczey G, Kerenyi Z, Fiilop L, et al. Expression of cmg1, an exo-β-1,3-glucanase gene from Coniothyrium minitans, increases during sclerotial parasitism. Applied and environmental microbiology, 2001,67:865-871.
    154. Gonzalez-Pastor J E. Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS microbiology reviews, 2011,35:415-424.
    155. Goodfellow M, Williams S. Ecology of actinomycetes. Annual Reviews in Microbiology, 1983, 37:189-216.
    156. Goudjal Y, Toumatia O, Sabaou N, et al. Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World Journal of Microbiology and Biotechnology, 2013,29:1821-1829.
    157. Grunewald J, Marahiel M A. Chemoenzymatic and template-directed synthesis of bioactive macrocyclic peptides. Microbiology and Molecular Biology Reviews, 2006,70:121-146.
    158. Grandoni J A, Zahler S, and Calvo J. Transcriptional regulation of the ilv-leu operon of Bacillus subtilis. Journal of Bacteriology, 1992,174:3212-3219.
    159. Grangemard I, Peypoux F, Wallach J, et al. Lipopeptides with Improved Properties:Structure by NMR, Purification by HPLC and Structure-Activity Relationships of New Isoleucyl-rich Surfactins. Journal of Peptide Science, 1997,3:145-154.
    160. Groot M N, Nieboer F, Abee T. Enhanced transformation efficiency of recalcitrant Bacillus cereus and Bacillus weihenstephanensis isolates upon in vitro methylation of plasmid DNA. Applied and environmental microbiology, 2008,74:7817-7820.
    161.Gruss A, Ehrlich S D. The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiological reviews,1989,53:231-241.
    162. Guder A, Schmitter T, Wiedemann I, et al. Role of the single regulator MrsR1 and the two-component system MrsR2/K2 in the regulation of mersacidin production and immunity. Applied and environmental microbiology, 2002,68:106-113.
    163. Guder A, Wiedemann I, Sahl H G. Posttranslationally modified bacteriocins—the lantibiotics. Peptide Science, 2000,55:62-73.
    164. Guetskyl R, Shtienberg D, Dinoor A, et al. Establishment, survival and activity of the biocontrol agents Pichia guilermondii and Bacillus mycoides applied as a mixture on strawberry plants. Biocontrol Science and Technology, 2002,12:705-714.
    165. Guiral S, Mitchell T J, Martin B, et al. Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: genetic requirements. Proceedings of the National Academy of Sciences of the United States of America, 2005,102:8710-8715.
    166. Hofte M, Mergeay M, Verstraete W. Marking the rhizopseudomonas strain 7NSK2 with a Mu d (lac) element for ecological studies. Applied and environmental microbiology, 1990,56: 1046-1052.
    167. Haas D, Keel C. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual review of phytopathology, 2003,41: 117-153.
    168. Haas J, Park E-C, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Current Biology, 1996,6:315-324.
    169. Haggag W, Timmusk S. Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 2008,104: 961-969.
    170. Hahn J, Albano M, Dubnau D. Isolation and characterization of Tn9171ac-generated competence mutants of Bacillus subtilis. J Bacteriol,1987,169:3104-3109.
    171. Hahn J, Kong L, Dubnau D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. Journal of bacteriology, 1994,176:5753-5761.
    172. Hahn J, Maier B, Haijema B J, et al. Transformation Proteins and DNA Uptake Localize to the Cell Poles in Bacillus subtilis. Cell,2005,122:59-71.
    173. Hahn K, Strittmatter G Pathogen-Defence Gene prpl-1 from Potato Encodes an Auxin-Responsive Glutathione S-Transferase. European Journal of Biochemistry, 1994,226:619-626.
    174. Haijema B J, Hahn J, Haynes J, et al. A ComGA-dependent checkpoint limits growth during the escape from competence. Molecular microbiology, 2001,40:52-64.
    175. Hamill J. Alterations in auxin and cytokinin metabolism of higher plants due to expression of specific genes from pathogenic bacteria: a review. Functional Plant Biology, 1993,20:405-423.
    176. Hammes W, Schleifer K, Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan. Journal of bacteriology, 1973,116:1029-1053.
    177. Hamoen L W, Eshuis H, Jongbloed J, et al. A small gene, designated comS, located within the coding region of the fourth amino acid-activation domain of srfA, is required for competence development in Bacillus subtilis. Molecular microbiology, 1995,15:55-63.
    178. Hamoen L W, Kausche D, Marahiel M A, et al. The Bacillus subtilis transition state regulator AbrB binds to the —35 promoter region of comK. FEMS microbiology letters, 2003a,218: 299-304.
    179. Hamoen L W, Smits W K, De Jong A, et al. Improving the predictive value of the competence transcription factor (ComK) binding site in Bacillus subtilis using a genomic approach. Nucleic acids research,2002,30:5517-5528.
    180. Hamoen L W, Van Werkhoven A F, Bijlsma J J, et al. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix. Genes & development, 1998,12:1539-1550.
    181. Hamoen L W, Venema G, Kuipers O P. Controlling competence in Bacillus subtilis: shared use of regulators. Microbiology, 2003b,149:9-17.
    182. Hariey J, Smith S. Mycorrhizal symbiosis. London:Academic Press, 1983.
    183. Harman G E. Myths and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzinum T-22. Plant disease,2000,84:377-393.
    184. Hartley C P. Damping-off in forest nurseries. Vol.926:US Dept. of Agriculture, 1921.
    185. Hasper H E, De Kruijff B, Breukink E. Assembly and stability of nisin-lipid Ⅱ pores. Biochemistry, 2004,43:11567-11575.
    186. Hastings J. Chemistries and colors of bioluminescent reactions:a review. Gene, 1996,173:5-11.
    187. Hastings J, Tu S C, Becvar J E, et al. Bioluminescence from the reaction of FMN, H2O2 and long chain aldehyde with bacterial luciferase. Photochemistry and Photobiology, 1979,29:383-387.
    188. Hausner M, Wuertz S. High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Applied and environmental microbiology, 1999,65:3710-3713.
    189. He P, Hao K, Blom J, et al. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. Journal of biotechnology,2012,164:281-291.
    190. Hecker M, Volker U. General stress proteins in Bacillus subtilis. FEMS microbiology letters, 1990,74:197-213.
    191. Heerklotz H, Seelig J. Leakage and lysis of lipid membranes induced by the lipopeptide surfactin. European Biophysics Journal, 2007,36:305-314.
    192. Heim R, Prasher D C, Tsien R Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences, 1994,91: 12501-12504.
    193. Henrichsen J. Bacterial surface translocation:a survey and a classification. Bacteriological reviews, 1972,36:478.
    194. Herzner A M, Dischinger J, Szekat C, et al. Expression of the lantibiotic mersacidin in Bacillus amyloliquefaciens FZB42. PloS one, 2011,6:e22389.
    195.Hiradate S, Yoshida S, Sugie H, et al. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochemistry, 2002,61:693-698.
    196. Hoa T T, Tortosa P, Albano M, et al. Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK. Molecular microbiology, 2002,43:15-26.
    197. Hofemeister J, Conrad B, Adler B, et al. Genetic analysis of the biosynthesis of non-ribosomal peptide-and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Molecular Genetics and Genomics,2004,272:363-378.
    198. Hofemeister J, Israeli-Reches M, Dubnau D. Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome. Molecular and General Genetics MGG, 1983,189:58-68.
    199. Hofreuter D, Odenbreit S, Haas R. Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Molecular microbiology, 2001, 41:379-391.
    200. Holo H, Nes IF. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Applied and environmental microbiology, 1989,55:3119-3123.
    201. Howell C. Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and damping-off of cotton seedlings. Phytopathology, 1982,72:496-498.
    202. Howell C R, Stipanovic R D. Gliovirin, a new antibiotic from Gliocladium virens, and its role in the biological control of Pythium ultimum. Canadian Journal of Microbiology, 1983,29:321-324.
    203. Htay K, Kerr A. Biological control of crown gall: seed and root inoculation. Journal of Applied Microbiology, 1974,37:525-530.
    204. Hu L B, Shi Z Q, Zhang T, et al. Fengycin antibiotics isolated from B-FSO1 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS microbiology letters, 2007,272: 91-98.
    205. Huang Y, Xu C, Ma L, et al. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. European Journal of Plant Pathology, 2010,126:417-422.
    206. Huertas-Gonzalez M, Ruiz-Roldan M, Di Pietro A, et al. Cross protection provides evidence for race-specific avirulence factors in Fusarium oxysporum. Physiological and Molecular Plant Pathology,1999,54:63-72.
    207. Idris E E, Iglesias D J, Talon M, et al. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions,2007,20:619-626.
    208. Inamine G, Dubnau D. ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. Journal of bacteriology, 1995,177: 3045-3051.
    209. Ito M, Nagane M. Improvement of the electro-transformation efficiency of facultatively alkaliphilic Bacillus pseudofirmus OF4 by high osmolarity and glycine treatment Bioscience, biotechnology, and biochemistry, 2001,65:2773-2775.
    210. Jack R W, Jung G Lantibiotics and microcins: polypeptides with unusual chemical diversity. Current opinion in chemical biology, 2000,4:310-317.
    211. Jack R W, Tagg J R, Ray B. Bacteriocins of gram-positive bacteria. Microbiological reviews, 1995,59:171-200.
    212. Jaenicke R. Abundance of cellular material and proteins in the atmosphere. Science, 2005,308: 73-73.
    213. Janniere L, Bruand C, Dusko Ehrlich S. Structurally stable Bacillus subtilis cloning vectors. Gene, 1990,87:53-61.
    214. Jefferson K K. What drives bacteria to produce a biofilm? FEMS microbiology letters, 2004,236: 163-173.
    215. Jefferson R A. Assaying chimeric genes in plants:the GUS gene fusion system. Plant molecular biology reporter, 1987,5:387-405.
    216. Jermyn W S, Boyd E F. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology, 2002,148: 3681-3693.
    217. Johnsborg O, Eldholm V, Havarstein L S. Natural genetic transformation: prevalence, mechanisms and function. Research in microbiology, 2007, 158:767-778.
    218. Jones D, Kerr A. Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84, for biological control of crown gall. Plant disease, 1989,73:15-18.
    219. Jones E, Whipps J. Effect of inoculum rates and sources of Coniothyrium minitans on control of Sclerotinia sclerotiorum disease in glasshouse lettuce. European Journal of Plant Pathology, 2002, 108:527-538.
    220. Julkowska D, Obuchowski M, Holland I B, et al. Comparative analysis of the development of swarming communities of Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J Bacteriol, 2005,187:65-76.
    221. Kain S, Adams M, Kondepudi A, et al. Green fluorescent protein as a reporter of gene expression and protein localization. Biotechniques,1995, 19:650.
    222. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids research, 2000,28:27-30.
    223. Katz E, Demain A L. The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriological reviews, 1977,41:449.
    224. Kaur R, Kaur J, Singh R S, et al. Biological Control of Fusarium oxysporum f. sp. ciceri by Nonpathogenic Fusarium and Fluorescent Pseudomonas. International Journal of Botany, 2007, 3.
    225. Kearns D B, Chu F, Branda S S, et al. A master regulator for biofilm formation by Bacillus subtilis. Molecular microbiology, 2005,55:739-749.
    226. Keggins K M, Lovett P S, Duvall E J. Molecular cloning of genetically active fragments of Bacillus DNA in Bacillus subtilis and properties of the vector plasmid pUB110. Proceedings of the National Academy of Sciences, 1978,75:1423-1427.
    227. Kenig M, Vandamme E T, Abraham E. The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. Journal of general microbiology, 1976,94: 46-54.
    228. Kerr J, Taylor G, Rutman A, et al. Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. Journal of clinical pathology, 1999,52:385-387.
    229. Khamna S, Yokota A, Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 2009,25:649-655.
    230. Kilian M, Steiner U, Krebs B, et al. FZB24(?) Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer, 2000,1:1.
    231. Kim S B, Shin B S, Choi S K, et al. Involvement of acetyl phosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis. FEMS microbiology letters, 2001,195: 179-183.
    232. Kinsinger R F, Shirk M C, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. Journal of bacteriology, 2003,185:5627-5631.
    233. Kleerebezem M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides, 2004,25:1405-1414.
    234. Klein C, Entian K. Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Applied and environmental microbiology, 1994,60:2793-2801.
    235. Klein D, Eveleigh D. Ecology of trichoderma. Trichoderma and Gliocladium. Basic biology, taxonomy and genetics, 1998,1:57-73.
    236. Kloepper J, Schroth M. Plant growth-promoting rhizobacteria on radishes. Paper presented at the Proceedings of the 4th international conference on plant pathogenic bacteria,1978.
    237. Kloepper J W, Beauchamp C J. A review of issues related to measuring colonization of plant roots by bacteria. Canadian Journal of Microbiology, 1992,38:1219-1232.
    238. Kloepper J W, Leong J, Teintze M, et al. Pseudomonas siderophores:a mechanism explaining disease-suppressive soils. Current microbiology, 1980,4:317-320.
    239. Kloepper J W, Ryu C-M. Bacterial endophytes as elicitors of induced systemic resistance. In Microbial root endophytes, 33-52:Springer,2006.
    240. Kluepfel D, Kline E, Skipper H, et al. The release and tracking of genetically engineered bacteria in the environment. Phytopathology, 1991,81:348-352.
    241. Kobayashi M, Suzuki T, Fujita T, et al. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proceedings of the National Academy of Sciences, 1995,92:714-718.
    242. Koga J, Adachi T, Hidaka H. IAA Biosynthetic Pathway from Tryptophan via Indole-3-pyruvic Acid in Enterobacter cloacae (Microbiology & Fermentation Industry). Agricultural and biological chemistry, 1991,55:701-706.
    243.Koponen O, Takala T M, Saarela U, et al. Distribution of the NisI immunity protein and enhancement of nisin activity by the lipid-free NisI. FEMS microbiology letters, 2004,231: 85-90.
    244. Koumoutsi A, Chen X-H, Henne A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of bacteriology, 2004,186:1084-1096.
    245. Kriegeskorte A, Peters G. Horizontal gene transfer boosts MRSA spreading. Nature medicine, 2012,18:662.
    246. Kubicek C P, Herrera-Estrella A, Seidl-Seiboth V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome biology, 2011,12: R40.
    247. Kunst F, Msadek T, Bignon J, et al. The DegS/DegU and ComP/ComA two-component systems are part of a network controlling degradative enzyme synthesis and competence in Bacillus subtilis. Research in microbiology, 1994,145:393-402.
    248. Lazazzera B A, Solomon J M, Grossman A D. An exported peptide functions intracellularly to contribute to cell density signaling in Bacillus subtilis. Cell, 1997,89:917-925,
    249. Le Grice S F, Sonenshein A L. Interaction of Bacillus subtilis RNA polymerase with a chromosomal promoter. Journal of molecular biology, 1982,162:551-564.
    250. Leclere V, Bechet M, Adam A, et al. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Applied and environmental microbiology, 2005,71:4577-4584.
    251. Leclere V, Marti R, Bechet M, et al. The lipopeptides mycosubtilin and surfactin enhance spreading of Bacillus subtilis strains by their surface-active properties. Archives.of microbiology, 2006,186:475-483.
    252. Lee J Y, Moon S S, Hwang B K. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Pest management science, 2003,59:872-882.
    253. Lee M S, Marians K J. Differential ATP requirements distinguish the DNA translocation and DNA unwinding activities of the Escherichia coli PRIA protein. Journal of Biological Chemistry, 1990,265:17078-17083.
    254. Li M, Wong S. Cloning and characterization of the groESL operon from Bacillus subtilis. Journal of bacteriology, 1992,174:3981-3992.
    255. Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature,2009,463:311-317.
    256. Li X, Zhang G, Ngo N, et al. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence. Journal of Biological Chemistry, 1997,272: 28545-28549.
    257. Lian L, Tian B, Xiong R, et al. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Letters in applied microbiology, 2007,45:262-269.
    258. Lim J-H, Park B-K, Kim M-S, et al. The anti-thrombotic activity of surfactins. Journal of veterinary science, 2005,6.
    259. Liu B, Qiao H, Huang L, et al. Biological control of take-all in wheat by endophytic Bacillus subtilis EIR-j and potential mode of action. Biological Control, 2009,49:277-285.
    260. Londono-Vallejo J, Dubnau D. Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. Journal of bacteriology, 1994,176:4642-4645.
    261. Lu Y P, Zhang C, Lv F, et al. Study on the electro-transformation conditions of improving transformation efficiency for Bacillus subtilis. Letters in applied microbiology, 2012,55:9-14.
    262. Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annual review of microbiology, 2009,63:541-556.
    263. Lugtenberg B J, Dekkers L, Bloemberg G V. Molecular determinants of rhizosphere colonization by Pseudomonas. Annual review of phytopathology, 2001,39:461-490.
    264. Lynch J, Ebben M. The use of micro-organisms to control plant disease. Journal of applied bacteriology, 1986,61:115-126.
    265. Mejean V, Claverys J-P. Polarity of DNA entry in transformation of Streptococcus pneumoniae. Molecular and General Genetics MGG, 1988,213:444-448.
    266. Maget-Dana R, Peypoux F. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology, 1994,87:151-174.
    267. Magnuson R, Solomon J, Grossman A D. Biochemical and genetic characterization of a competence pheromone from Bacillus subtilis. Cell, 1994,77:207-216.
    268. Mahlstedt S A, Walsh C T. Investigation of anticapsin biosynthesis reveals a four-enzyme pathway to tetrahydrotyrosine in Bacillus subtilis. Biochemistry, 2010,49:912-923.
    269. Maier B, Chen I, Dubnau D, et al. DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nature structural & molecular biology, 2004,11: 643-649.
    270. Mallonee D H, Speckman R. Transformation of Bacillus polymyxa with plasmid DNA. Applied and environmental microbiology, 1989,55:2517-2521.
    271. Martinez Noel G M A, Madrid E A, Bottini R, et al. Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiology and Biochemistry, 2001,39:815-823.
    272. Martinez D, Berka R M, Henrissat B, et al. Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nature biotechnology, 2008,26:553-560.
    273. Mathis L S, Scocca J J. Haemophilus influenzae and Neisseria gonorrhoeae recognize different specificity determinants in the DNA uptake step of genetic transformation. Journal of general microbiology, 1982,128:1159-1161.
    274. Mcauliffe O, Ross R P, Hill C. Lantibiotics:structure, biosynthesis and mode of action. FEMS microbiology reviews, 2001,25:285-308.
    275. Mcdonald I, Riley P, Sharp R, et al. Factors affecting the electroporation of Bacillus subtilis. Journal of Applied Microbiology, 1995,79:213-218.
    276. Mcelroy W D, Deluca M. Firefly luminescence. Vol.387:Marcel Dekker, New York, 1985.
    277. Mcloon A L, Guttenplan S B, Kearns D B, et al. Tracing the domestication of a biofilm-forming bacterium. Journal of bacteriology, 2011,193:2027-2034.
    278. Mcquilken M P, Budge S P, Whipps J M. Effects of culture media and environmental factors on conidial germination, pycnidial production and hyphal extension of Coniothyrium minitans. Mycological Research, 1997,101:11-17.
    279. Mcquilken M P, Gemmell J, Hill R A, et al. Production of macrosphelide A by the mycoparasite Coniothyrium minitans. FEMS microbiology letters, 2003,219:27-31.
    280. Meighen E A. Molecular biology of bacterial bioluminescence. Microbiological reviews, 1991,55: 123-142.
    281.Meima R, Eschevins C, Fillinger S, et al. The bdbDC Operon of Bacillus subtilis Encodes Thiol-disulfide Oxidoreductases Required for Competence Development. Journal of Biological Chemistry, 2002,277:6994-7001.
    282. Merrill L, Dunbar J, Richardson J, et al. Composition of Bacillus species in aerosols from 11 US cities. Journal of forensic sciences,2006,51:559-565.
    283. Milgroom M G, Cortesi P. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu. Rev. Phytopathol., 2004,42:311-338.
    284. Mintz A, Walter J. A private industry approach: Development of GlioGardTM for disease control in horticulture. Pest Management: Biologically Based Technologies, 1993:398-403.
    285. Mironczuk A M, Kovacs T, Kuipers O P. Induction of natural competence in Bacillus cereus ATCC14579. Microbial biotechnology, 2008,1:226-235.
    286. Morin J G, Hastings J. Energy transfer in a bioluminescent system. Journal of cellular physiology, 1971,77:313-318.
    287. Morise H, Shimomura O, Johnson F H, et al. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry, 1974,13:2656-2662.
    288. Mortier-Barriere I, Velten M, Dupaigne P, et al. A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell, 2007,130:824-836.
    289. Moscoso M, Claverys J P. Release of DNA into the medium by competent Streptococcus pneumoniae:kinetics, mechanism and stability of the liberated DNA. Molecular microbiology, 2004,54:783-794.
    290. Moyne A L, Shelby R, Cleveland T, et al. Bacillomycin D:an iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 2001,90:622-629.
    291. Mulligan C N. Environmental applications for biosurfactants. Environmental pollution, 2005,133: 183-198.
    292. Murphy J F, Zehnder G W, Schuster D J, et al. Plant growth-promoting rhizobacterial mediated protection in tomato against Tomato mottle virus. Plant disease, 2000,84:779-784.
    293. Murray E J, Kiley T B, Stanley-Wall N R. A pivotal role for the response regulator DegU in controlling multicellular behaviour. Microbiology,2009,155:1-8.
    294. Nakano M, Magnuson R, Myers A, et al. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol,1991,173: 1770-1778.
    295. Nakano M M, Corbell N, Besson J, et al. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Molecular and General Genetics MGG, 1992,232:313-321.
    296. Nakano M M, Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol, 1989,171:5347-5353.
    297. Naruse N, Tenmyo O, Kobaru S, et al. Pumilacidin, a complex of new antiviral antibiotics. Production, isolation, chemical properties, structure and biological activity. The Journal of antibiotics,1990,43:267-280.
    298. Nicholson W. Roles of Bacillus endospores in the environment. Cellular and Molecular Life Sciences CMLS,2002,59:410-416.
    299. Nickoloff J A. Plant cell electroporation and electrofusion protocols. Springer, 1995.
    300. Nielsen T, Christophersen C, Anthoni U, et al. Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. Journal of Applied Microbiology, 1999,87:80-90.
    301.Nijland R, Burgess J G, Errington J, et al. Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PloS one, 2010,5:e9724.
    302. Nuss D L. Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiological reviews, 1992,56:561-576.
    303. O'brien K P, Remm M, Sonnhammer E L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic acids research, 2005,33:D476-D480.
    304. O'reilly M, Devine K M. Expression of AbrB, a transition state regulator from Bacillus subtilis, is growth phase dependent in a manner resembling that of Fis, the nucleoid binding protein from Escherichia coli. J Bacteriol,1997,179:522-529.
    305.0'sullivan L, Ross R, Hill C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie, 2002,84:593-604.
    306. Oberhansli T, DeTago G, Haas D. Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHA0 of Pseudomonas fluorescens: role of tryptophan side chain oxidase. Journal of general microbiology, 1991,137:2273-2279.
    307. Ogura M, Liu L, Lacelle M, et al. Mutational analysis of ComS:evidence for the interaction of ComS and MecA in the regulation of competence development in Bacillus subtilis. Molecular microbiology, 1999,32:799-812.
    308. Ongena M, Jacques P. Bacillus lipopeptides:versatile weapons for plant disease biocontrol. Trends in microbiology,2008,16:115-125.
    309. Ongena M, Jacques P, Toure Y, et al. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied microbiology and biotechnology, 2005,69:29-38.
    310. Ongena M, Jourdan E, Adam A, et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 2007,9: 1084-1090.
    311. Ormo M, Cubitt A B, Kallio K, et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science, 1996,273:1392-1395.
    312. Ostrowski A, Mehert A, Prescott A, et al. YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis. Journal of bacteriology, 2011,193:4821-4831.
    313.Paik S H, Chakicherla A, Hansen J N. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. Journal of Biological Chemistry, 1998,273: 23134-23142.
    314. Palleroni N J. Pseudomonas. Topley and Wilson's Microbiology and Microbial Infections, 1984.
    315. Pandey A, Palni L M S. Bacillus species:The dominant bacteria of the rhizosphere of established tea bushes. Microbiological research, 1997,152:359-365.
    316. Pandey A, Trivedi P, Kumar B, et al. Characterization of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Current microbiology, 2006,53:102-107.
    317. Park K S, Kloepper J W. Activation of PR-la Promoter by Rhizobacteria That Induce Systemic Resistance in Tobacco against Pseudomonas syringae pv. tabaci. Biological Control, 2000,18: 2-9.
    318. Patten C L, Glick B R. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology, 1996,42:207-220.
    319. Pedersen P, Bjornvad M, Rasmussen M, et al. Cytotoxic Potential of Industrial Strains of Bacillus sp. Regulatory toxicology and pharmacology, 2002,36:155-161.
    320. Persuh M, Turgay K, Mandic-Mulec I, et al. The N- and C- terminal domains of MecA recognize different partners in the competence molecular switch. Molecular microbiology, 1999, 33:886-894.
    321. Pertot I, Puopolo G, Hosni T, et al. Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS microbiology ecology, 2013,86:505-519.
    322. Peypoux F, Bonmatin J, Wallach J. Recent trends in the biochemistry of surfactin. Applied microbiology and biotechnology, 1999,51:553-563.
    323. Phae C G, Shoda M, Kubota H. Suppressive effect of Bacillus subtilis and it's products on phytopathogenic microorganisms. Journal of fermentation and bioengineering, 1990,69:1-7.
    324. Piazza F, Tortosa P, Dubnau D. Mutational analysis and membrane topology of ComP, a quorum-sensing histidine kinase of Bacillus subtilis controlling competence development. Journal of bacteriology, 1999,181:4540-4548.
    325. Pieterse C M, Van Wees S C, Van Pelt J A, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell Online, 1998,10:1571-1580.
    326. Pinchuk I V, Bressollier P, Sorokulova I B, et al. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Research in microbiology, 2002,153:269-276.
    327. Ping L, Boland W. Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends in plant science, 2004,9:263-266.
    328. Pirri G, Giuliani A, Nicoletto S F, et al. Lipopeptides as anti-infectives: a practical perspective. Central European journal of biology, 2009,4:258-273.
    329. Pottathil M, Lazazzera B A. The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Frontiers in bioscience: a journal and virtual library, 2003,8:d32-45.
    330. Powell I B, Achen M G, Hillier A J, et al. A simple and rapid method for genetic transformation of Lactic Streptococci by electroporation. Applied and environmental microbiology, 1988,54: 655-660.
    331. Prasch T, Naumann T, Marker R L, et al. Constitution and solution conformation of the antibiotic mersacidin determined by NMR and molecular dynamics. European Journal of Biochemistry, 1997,244: 501-512.
    332. Prasher D C, Eckenrode V K, Ward W W, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992,111:229-233.
    333. Prowedi R, Chen I, Dubnau D. NucA is required for DNA cleavage during transformation of Bacillus subtilis. Molecular microbiology, 2001,40:634-644.
    334.333. Prowedi R, Dubnau D. ComEA is a DNA receptor for transformation of competent Bacillus subtilis. Molecular microbiology, 1999,31:271-280.
    335. Przestalski S, Sarapuk J, Kleszczynska H, et al. Influence of amphiphilic compounds on membranes. Acta Biochimica Polonica, 1999,47:627-638.
    336. Ratnayake-Lecamwasam M, Serror P, Wong K-W, et al. Bacillus subtilis CodY represses early-stationary-phase genes by sensing GTP levels. Genes & development, 2001,15:1093-1103.
    337. Reva O N, Smirnov V V, Pettersson B, et al. Bacillus endophyticus sp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). International journal of systematic and evolutionary microbiology, 2002,52:101-107.
    338. Rifai M A. A revision of the genus Trichoderma. CABI, 1969.
    339. Roberts R J, Vincze T, Posfai J, et al. REBASE-enzymes and genes for DNA restriction and modification. Nucleic acids research,2007,35:D269-D270.
    340. Roberts R J. REBASE:restriction enzymes and methyltransferases. Nucleic acids research, 2003, 31:418-420.
    341. Robertson J B, Gocht M, Marahiel M A, et al. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proceedings of the National Academy of Sciences, 1989,86:8457-8461.
    342. Roggiani M, Dubnau D. ComA, a phosphorylated response regulator protein of Bacillus subtilis, binds to the promoter region of srfA. J Bacteriol,1993,175:3182-3187.
    343. Roggiani M, Hahn J, Dubnau D. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J Bacteriol, 1990,172:4056-4063.
    344. Romero D, De Vicente A, Rakotoaly R H, et al. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions,2007,20:430-440.
    345. Romero D, Perez-Garcia A, Veening J-W, et al. Transformation of undomesticated strains of Bacillus subtilis by protoplast electroporation. Journal of Microbiological Methods, 2006,66: 556-559.
    346. Ron E Z, Rosenberg E. Natural roles of biosurfactants. Environmental Microbiology, 2001,3: 229-236.
    347. Ruanpanun P, Tangchitsomkid N, Hyde K D, et al. Actinomycetes and fungi isolated from plant-parasitic nematode infested soils: screening of the effective biocontrol potential, indole-3-acetic acid and siderophore production. World Journal of Microbiology and Biotechnology, 2010,26:1569-1578.
    348. Rudrappa T, Czymmek K J, Pare P W, et al. Root-secreted malic acid recruits beneficial soil bacteria. Plant physiology, 2008,148:1547-1556.
    349. Ryu C-M, Farag M A, Hu C-H, et al. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant physiology, 2004,134:1017-1026.
    350. Ryu C-M, Farag M A, Hu C-H, et al. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences, 2003,100:4927-4932.
    351. Ryu C M, Hu C H, Reddy M, et al. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytologist, 2003,160:413-420.
    352. Sadaie Y, Yata K, Fujita M, et al. Nucleotide sequence and analysis of the phoB-rrnE-groESL region of the Bacillus subtilis chromosome. Microbiology, 1997,143:1861-1866.
    353. Schippers B, Lynch J, Neuenschwander P, et al. Biological control of pathogens with rhizobacteria [and discussion]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 1988,318:283-293.
    354. Schmidt E L. Initiation of plant root-microbe interactions. Annual Reviews in Microbiology, 1979, 33:355-376.
    355. Schmidt T, Kopecky K, Nealson K. Bioluminescence of the insect pathogen Xenorhabdus luminescens. Applied and environmental microbiology, 1989,55:2607-2612.
    356. Schnell N, Entian K-D, Schneider U, et al. Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings.1988.
    357. Scholz R, Molohon K J, Nachtigall J, et al. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol, 2011,193:215-224.
    358. Scholz R, Vater J, Budiharjo A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J Bacteriol, 2014:JB.01474-01414.
    359. Serror P, Sonenshein A L. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol, 1996,178:5910-5915.
    360. Shah-Smith D, Burns R. Shelf-life of a biocontrol Pseudomonas putida applied to sugar beet seeds using commercial coatings. Biocontrol Science and Technology, 1997,7:65-74.
    361. Sharon E, Bar-Eyal M, Chet I, et al. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology, 2001,91:687-693.
    362. Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein. Febs Letters, 1979,104:220-222.
    363. Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of cellular and comparative physiology, 1962,59:223-239.
    364. Shoda M. Bacterial control of plant diseases. Journal of bioscience and bioengineering, 2000,89: 515-521.
    365. Siddiqui I A, Ehteshamul-Haque S. Suppression of the root rot-root knot disease complex by Pseudomonas aeruginosa in tomato: The influence of inoculum density, nematode populations, moisture and other plant-associated bacteria. Plant and soil, 2001,237:81-89.
    366. Sieber S A, Marahiel M A. Learning from nature's drug factories: nonribosomal synthesis of macrocyclic peptides. J Bacteriol, 2003,185:7036-7043.
    367. Sies H. Damage to plasmid DNA by singlet oxygen and its protection. Mutation Research/Genetic Toxicology, 1993,299:183-191.
    368. Sies H, Menck C F. Singlet oxygen induced DNA damage. Mutation Research/DNAging, 1992, 275:367-375.
    369. Solomon J M, Lazazzera B A, Grossman A D. Purification and characterization of an extracellular peptide factor that affects two different developmental pathways in Bacillus subtilis. Genes & development, 1996,10:2014-2024.
    370. Solomon J M, Magnuson R, Srivastava A, et al. Convergent sensing pathways mediate response to two extracellular competence factors in Bacillus subtilis. Genes & development, 1995,9: 547-558.
    371. Sonenshein A L, Hoch J A, Losick R. Bacillus subtilis and its closest relatives: from genes to cells. Asm Press, 2002.
    372. Souto G, Correa O, Montecchia M, et al. Genetic and functional characterization of a Bacillus sp. strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal of Applied Microbiology, 2004,97:1247-1256.
    373. Spizizen J. Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America, 1958,44:1072.
    374. Stover A G, Driks A. Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA. Journal of Bacteriology, 1999,181:5476-5481.
    375. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses:genetic, biochemical and ecological aspects. FEMS microbiology reviews,2000,24:487-506.
    376. Stein T. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Molecular microbiology, 2005,56:845-857.
    377. Stein T, Borchert S, Conrad B, et al. Two different lantibiotic-like peptides originate from the ericin gene cluster of Bacillus subtilis A1/3. J Bacteriol, 2002a,184:1703-1711.
    378. Stein T, Borchert S, Kiesau P, et al. Dual control of subtilin biosynthesis and immunity in Bacillus subtilis. Molecular microbiology, 2002b,44:403-416.
    379. Stein T, Dusterhus S, Stroh A, et al. Subtilosin production by two Bacillus subtilis subspecies and variance of the sbo-alb cluster. Applied and environmental microbiology, 2004,70:2349-2353.
    380. Stein T, Heinzmann S, Kiesau P, et al. The spa-box for transcriptional activation of subtilin biosynthesis and immunity in Bacillus subtilis. Molecular microbiology, 2003a,47:1627-1636.
    381. Stein T, Heinzmann S, Solovieva I, et al. Function of Lactococcus lactis nisin immunity genes nisI and nisFEG after coordinated expression in the surrogate host Bacillus subtilis. Journal of Biological Chemistry, 2003b, 278:89-94.
    382. Steller S, Vollenbroich D, Leenders F, et al. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chemistry & biology, 1999, 6:31-41.
    383. Stepanov S, Puzanova O B, Dityatkin S Y, et al. Glycine-induced cryotransformation of plasmids into Bacillus anthracis. Journal of general microbiology, 1990,136:1217-1221.
    384. Stewart G C, Bort K F. DNA sequence of the tandem ribosomal RNA promoter for Bacillus subtilis operon rrnB. Nucleic acids research, 1983,11:6289-6300.
    385. Stewart P S. Diffusion in biofilms. J Bacteriol,2003,185:1485-1491.
    386. Stockwell V, Johnson K, Sugar D, et al. Antibiosis contributes to biological control of fire blight by Pantoea agglomerans strain Eh252 in orchards. Phytopathology, 2002,92:1202-1209.
    387. Susanna K A, Den Hengst C D, Hamoen L W, et al. Expression of transcription activator ComK of Bacillus subtilis in the heterologous host Lactococcus lactis leads to a genome-wide repression pattern: a case study of horizontal gene transfer. Applied and environmental microbiology, 2006, 72:404-411.
    388. Symmank H, Franke P, Saenger W, et al. Modification of biologically active peptides: production of a novel lipohexapeptide after engineering of Bacillus subtilis surfactin synthetase. Protein engineering,2002, 15:913-921.
    389. Tamehiro N, Okamoto-Hosoya Y, Okamoto S, et al. Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrobial agents and chemotherapy, 2002,46:315-320.
    390. Tatusov R L, Natale D A, Garkavtsev I V, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic acids research, 2001,29: 22-28.
    391. Teresa Alegre M, Carmen Rodriguez M, Mesas J M. Transformation of Lactobacillus plantarum by electroporation with in vitro modified plasmid DNA. FEMS microbiology letters, 2004,241: 73-77.
    392. Thimon L, Peypoux F, Exbrayat J, et al. Effect of iturin A, a lipopeptide from Bacillus subtilis on morphology and ultrastructure of human erythrocytes. Cytobios, 1993,79:69-83.
    393. Thomashow L S, Weller D M, Bonsall R F, et al. Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Applied and environmental microbiology, 1990,56:908-912.
    394. Thorne C B, Stull H B. Factors affecting transformation of Bacillus licheniformis. Journal of Bacteriology, 1966,91:1012-1020.
    395. Timmis K N. Pseudomonas putida: a cosmopolitan opportunist par excellence. Environmental Microbiology, 2002,4:779-781.
    396. Timmusk S, Grantcharova N, Wagner E G H. Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and environmental microbiology, 2005,71:7292-7300.
    397. Titok M, Chapuis J, Selezneva Y, et al. Bacillus subtilis soil isolates: plasmid replicon analysis and construction of a new theta-replicating vector. Plasmid, 2003,49:53-62.
    398. Titok M, Suski C, Dalmais B, et al. The replicative polymerases PolC and DnaE are required for theta replication of the Bacillus subtilis plasmid pBS72. Microbiology, 2006,152:1471-1478.
    399. Tortosa P, Dubnau D. Competence for transformation: a matter of taste. Current opinion in microbiology, 1999,2:588-592.
    400. Toure Y, Ongena M, Jacques P, et al. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. Journal of Applied Microbiology, 2004,96:1151-1160.
    401. Tran L S P, Nagai T, Itoh Y. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Molecular microbiology, 2000,37:1159-1171.
    402. Tsuge K, Ano T, Hirai M, et al. The genes degQ, pps, and lpa-8 (sfp) are responsible for conversion of Bacillus subtilis 168 to plipastatin production. Antimicrobial agents and chemotherapy, 1999,43:2183-2192.
    403. Tsuge K, Inoue S, Ano T, et al. Horizontal transfer of iturin A operon, itu, to Bacillus subtilis 168 and conversion into an iturin A producer. Antimicrobial agents and chemotherapy, 2005,49: 4641-4648.
    404. Tsuge K, Matsui K, Itaya M. Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. Journal of biotechnology, 2007,129:592-603.
    405. Tsuge K, Ohata Y, Shoda M. Gene yerP, involved in surfactin self-resistance in Bacillus subtilis. Antimicrobial agents and chemotherapy, 2001,45:3566-3573.
    406. Turgay K, Hahn J, Burghoorn J, et al. Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. The EMBO journal, 1998,17:6730-6738.
    407. Vagner V, Claverys J P, Ehrlich S, et al. Direction of DNA entry in competent cells of Bacillus subtilis. Molecular microbiology, 1990,4:1785-1788.
    408. Van Der Rest M, Lange C, Molenaar D. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied microbiology and biotechnology, 1999,52:541-545.
    409. Van Sinderen D, Venema G. comK acts as an autoregulatory control switch in the signal transduction route to competence in Bacillus subtilis. Journal of bacteriology, 1994,176: 5762-5770.
    410. Van Sinderen D, Withoff S, Boels H, et al. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. Molecular and General Genetics MGG, 1990,224:396-404.
    411. Vanittanakom N, Loeffler W, Koch U, et al. Fengycin--a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of antibiotics, 1986,39:888-901.
    412. Vehmaanpera J. Transformation of Bacillus amyloliquefaciens by electroporation. FEMS microbiology letters, 1989,61:165-170.
    413. Voskuil M I, Chambliss G H. Rapid isolation and sequencing of purified plasmid DNA from Bacillus subtilis. Applied and environmental microbiology, 1993,59:1138-1142.
    414. Vullo D L, Coto C, Sineriz F. Characteristics of an inulinase produced by Bacillus subtilis 430A, a strain isolated from the rhizosphere of vernonia herbacea (Vell Rusby). Applied and environmental microbiology, 1991,57:2392-2394.
    415.Wackett L P. Pseudomonas putida—a versatile biocatalyst. Nature biotechnology, 2003,21: 136-138.
    416. Wang J, Liu J, Chen H, et al. Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Applied microbiology and biotechnology, 2007,76:889-894.
    417. Wang P-Z, Doi R H. Overlapping promoters transcribed by Bacillus subtilis sigma 55 and sigma 37 RNA polymerase holoenzymes during growth and stationary phases. Journal of Biological Chemistry, 1984,259:8619-8625.
    418. Wang S, Hazelrigg T. Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis.1994.
    419. Wang S, Kondo H, Liu L, et al. A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Virus research, 2013.
    420. Wei G, Kloepper J, Tuzun S. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology, 1996,86:221-224.
    421. Weindling R. Experimental consideration of the mold toxins of Gliocladiwn and Trichoderma. Phytopathology, 1941,31:991.
    422. Weindling R, Emerson O. The isolation of a toxic substance from the culture filtrate of Trichoderma. Phytopathology, 1936,26:1068-1070.
    423. Weinrauch Y, Penchev R, Dubnau E, et al. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes & development, 1990,4:860-872.
    424. Widder E A. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science, 2010,328:704-708.
    425. Wilson K J, Giller K E, Jefferson R A. β-Glucuronidase (GUS) operon fusions as a tool for studying plant-microbe interactions. In Advances in Molecular Genetics of Plant-Microbe Interactions Vol.1,226-229:Springer, 1991.
    426. Winstanley C, Morgan J, Pickup R W, et al. Use of a xylE marker gene to monitor survival of recombinant Pseudomonas putida populations in lake water by culture on nonselective media. Applied and environmental microbiology, 1991,57:1905-1913.
    427. Wipat A, Harwood C R. The Bacillus subtilis genome sequence:the molecular blueprint of a soil bacterium. FEMS microbiology ecology, 1999,28:1-9.
    428. Wojtaszek P A. Oxidative burst: an early plant response to pathogen infection. Biochem. J,1997, 322:681-692.
    429. Wolf H, Puhler A, Neumann E. Electrotransformation of intact and osmotically sensitive cells of Corynebacterium glutamicum. Applied microbiology and biotechnology, 1989,30:283-289.
    430. Worrell V E, Nagle D, Mccarthy D, et al. Genetic transformation system in the archaebacterium Methanobacterium thermoautotrophicum Marburg. Journal of bacteriology, 1988,170:653-656.
    431. Wu M, Zhang L, Li G, et al. Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. Virology,2010,406:117-126.
    432. Wu S-C, Wong S-L. Development of improved pUB110-based vectors for expression and secretion studies in Bacillus subtilis. Journal of biotechnology, 1999,72:185-195.
    433. Xiao T-J, Tan S-Y, Shen Q-R, et al. Bacillus cereus X5 suppresses root-knot nematode of tomato by colonizing in roots and soil. African Journal of Microbiology Research, 2012,6:2321-2327.
    434. Xie J, Wei D, Jiang D, et al. Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. Journal of general virology, 2006,87:241-249.
    435. Xue G-P, Johnson J S, Dalrymple B P. High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. Journal of Microbiological Methods, 1999,34:183-191.
    436. Yanez-Mendizabal V, Zeriouh H, Vinas I, et al. Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 2012,132:609-619.
    437. Yakimov M M, Timmis K N, Wray V, et al. Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Applied and environmental microbiology, 1995,61:1706-1713.
    438. Yang T-T, Cheng L, Kain S R. Optimized codon usage and chromophore mutations provide enhanced sensitivity with the green fluorescent protein. Nucleic acids research, 1996,24: 4592-4593.
    439. Yarwood J M, Bartels D J, Volper E M, et al. Quorum sensing in Staphylococcus aureus biofilms. Journal of bacteriology, 2004,186:1838-1850.
    440. Yasui K, Kano Y, Tanaka K, et al. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic acids research, 2009,37:e3-e3.
    441. Yoshida K-I, Ishio I, Nagakawa E, et al. Systematic study of gene expression and transcription organization in the gntZ-ywaA region of the Bacillus subtilis genome. Microbiology, 2000,146: 573-579.
    442. Yu G, Sinclair J, Hartman G, et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology and Biochemistry, 2002,34:955-963.
    443. Yu X, Li B, Fu Y, et al. A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proceedings of the National Academy of Sciences, 2010,107: 8387-8392.
    444. Zakataeva N P, Nikitina O V, Gronskiy S V, et al. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Applied microbiology and biotechnology, 2010,85:1201-1209.
    445. Zazzerini A, Tosi L. Antagonistic activity of fungi isolated from sclerotia of Sclerotinia sclerotiorum. Plant pathology, 1985,34:415-421.
    446. Zehnder G, Kloepper J, Tuzun S, et al. Insect feeding on cucumber mediated by rhizobacteria-induced plant resistance. Entomologia Experimentalis et Applicata, 1997,83:81-85.
    447. Zehnder G W, Murphy J F, Sikora E J, et al. Application of rhizobacteria for induced resistance. European Journal of Plant Pathology, 2001,107:39-50.
    448. Zhang G-Q, Bao P, Zhang Y, et al. Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing. Analytical biochemistry, 2011,409:130-137.
    449. Zhang G, Wang W, Deng A, et al. A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. PLoS genetics, 2012,8:e1002987.
    450. Zhang N, Wu K, He X, et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant and soil, 2011,344:87-97.
    451. Zhang X Z, Zhang Y H P. Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis. Microbial biotechnology, 2011,4:98-105.
    452. Zheng G, Yan L Z, Vederas J C, et al. Genes of the sbo-alb Locus of Bacillus subtilis Are Required for Production of the Antilisterial Bacteriocin Subtilosin. Journal of bacteriology, 1999, 181:7346-7355.
    453.Zimand G, Elad Y, and Chet I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology, 1996,86:1255-1260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700