烟草野火病菌拮抗菌的筛选、鉴定及控病研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟草是一种重要的经济作物,烟草野火病是世界烟草生产上的重要病害之一。在我国大部分烟草种植区均有发生,且多个省市危害严重。由于生产上所种植的烟草品种抗性程度不高,防治上仍然以化学药剂为主要控病手段。长期使用化学农药易导致抗(耐)药性菌株的产生、环境污染和烟叶重金属含量超标等影响防治效果、生态安全和人类健康等问题出现。为此,本文针对烟草野火病生防控制设计试验,试验内容主要是拮抗菌株室内筛选,拮抗菌温室控病研究以及拮抗菌代谢产物分析,拮抗菌抑菌谱测定,拮抗菌生理生化特性以及16S rDNA序列分析。研究结果如下:
     1、烟草野火病菌拮抗活性菌株初步筛选
     利用实验室保存的120株菌株分别对烟草野火病菌进行抑菌测定,得到有拮抗活性的菌株35株,占待测菌总数的29.17%,其中放线菌21株、细菌14株。
     2、拮抗菌株对烟草野火病的温室控制效果
     利用平板拮抗效果较好的16个拮抗菌株进行温室盆栽试验,喷雾法接种20天后调查发现,有14个菌株对烟草野火病的相对防效大于60%;对初筛中有较好防效的菌株在接种病菌前后进行施菌试验,结果表明,有6株先喷施拮抗菌的相对防效好于后施拮抗菌的相对防效;喷施拮抗菌菌悬液和无菌发酵滤液及农用链霉素对野火病都有很明显的防控作用,其相对防效均在68%以上,其中菌株YCD2-7-2的防效最好,相对防效都在90%以上。
     3、抑菌谱测定
     抑菌谱测定结果表明,4个菌株除了对烟草野火菌具有抑制作用外,对供试的25种植物病原菌也有不同程度的抑菌作用,抑菌带宽度在2.0-26.6mm之间。菌株Itb80的抑菌范围最广,对烟草灰霉病菌、番茄圆纹病菌和烟草根黑腐病菌等19种供试的植物病原真菌有抑菌作用,对其中14株和7株抑菌带宽度分别在12~22mm和5~12mm之间,仅对番茄酸腐病菌、油菜菌核菌没有抑制作用。对供试的3种植物病原细菌的抑菌圈在5.6~15.6mmm。其次为菌株Itb162,该菌株对番茄酸腐病菌、油菜菌核菌则表现出一定的抑制作用。两株放线菌YCD1-7-1和YCD2-7-2菌株对病原细菌柑桔溃疡病菌和烟草角斑病菌表现出较强的抑菌作用,抑菌圈半径能达20.0mm以上。
     4、拮抗菌株的分类地位
     结合菌株菌落培养性状、形态特征和生理生化性状以及16S rDNA序列分析,确定菌株Itb80和Itb162为枯草芽孢杆菌(Bacillus subtilis),菌株YCD2-7-2和YCD1-7-1为灰产色链霉菌(Streptomyces griseochromogenes)
     5、拮抗菌代谢产物分析
     对4株温室防效较好的菌株进行拮抗代谢产物分析,结果表明,4株菌株均能产生纤维素酶、蛋白酶以及嗜铁素等生防活性物质,不产生几丁质酶。
The tobacco is a kind of important economic crops. Tobacco wildfire caused by Pseudomonas syringae pv. tabaci is a worldwide important disease. It is widely distributed throughout the tobacco planting area of china, and the disease severity is high in some provinces. For the resistance of planting varieties to tobacco wildfire is low, the main way to control the disease still keeps taking chemical pesticide. Thus, it causes the drug-resistant development, environmental pollution, and the exceeded heavy metals contents in tobacco leaves, and so on, finally impacts the disease control effect, ecological safety and mankind health. In this paper, trials for searching biological control of tobacco wildfire disease are designed, mainly for screening antagonistic strains, evaluation of resistance in greenhouse and antagonistic metabolic products analysis, determination of antifungal or antibacterial spectrum, physiological and biochemical characteristics of antagonistic and 16S rDNA sequence analysis. Major findings of the study are as follows.
     1. The preliminary screening of antagonistic strains against P. syringae pv. tabaci
     120 isolated laboratory strains have been screened by plate spraying method. Preliminary screening,29.17 percent of total number of test strains are screened out, showed that 35 strains have antagonistic effcet on P. syringae pv. tabaci,14 strains of which are actinomycetes and 21 strains of which are bacteria.
     2. Evaluation of resistance to tobacco wildfire disease in greenhouse
     16 strains antagonists whose resistant effect is good in agar plate confrontation test were chosen to use for greenhouse pot experimental. Spraying antagonist 20 days later,14 strains were found with a good antagonistic effect on tobacco wildfire disease, and the relative efficiency over 60%; Farther test were carried out by spraying antagonist vaccinating before and after vaccinating. The results showed that,6 strains had prevention effect better than cure effect. Greenhouse control disease test indicated that, bacterial suspension, sterile fermentation filtrate of antagonists and agricultural streptomycin kept good control effect on tobacco wildfire disease with relative efficiency over 68%, The strain YCD2-7-2 had better effect and more stable than others in both treatments, with relative efficiency over 90%.
     3. The antimicrobial effect of antagonists
     Antimicrobial spectrum test indicated that the antagonistic spectrum of the four strains was much broad, with a good antagonistic effect on 25 tested plant pathogens and the inhibition zone radius ranged from 2.0 to 26.6 mm. Itb80 was the best, which had good antagonistic effect on 19 pathogenic fungi, such as Botrytis cinerea, Phomopsis vexans, Thielaviopsis basicola, Sclerotium rolfsii., and so on. The best inhibition on the pathogens Botrytis cinerea was up to 22.0 mm. And the strain had antagonistic effect on 3 of plant pathogenic bacteria and the inhibition zone ranged from 5.6 to 15.6 mm. Followed by Itb162 strains, which have better antagonistic effect on Oospora lactis Fr. var. parasitica and Sclerotinia sclerotiorum, on Xathomonas campestris pv. citri., Pseudomonas angulata and Ralstonia solanacearum with the inhibition zone ranged from 5.0 to 12.6 mm. Two anti-actinomycetes strains (YCD1-7-1 and YCD2-7-2) showed good antimicrobial activity on Xathomonas campestris pv. citri and Pseudomona angulata with the inhibition zone over 20mm;
     4. The taxonomy of antagonistic strains
     Based on colonies'properties, morphological, physiological and biochemical characteristics, and 16S rDNA phylogenetic analysis, strains Itb80 and Itb 162 were identified as Bacillus subtilis. Strains YCD1-7-1 and YCD2-7-2 were identified as Streptomyces griseus.
     5. Analysis of the metabolic products of the four strains
     The results showed all of the strains had good biocontrol effects, and all of them could produce active substance for biocontrol, such as proteases, siderophores and so on. But it was found that they were unable to produce cellulases.
引文
[1]任怀玉.中国烟草业可持续发展的必由之路—加强烟草业的科技研究与应用[J].甘肃农业,2005(11):99.
    [2]Lucas G B. Diseases of Tobacco (3rd ed) [M]. Raleigh NC:BAC.1975,397-409.
    [3]孔凡玉.我国烟草侵染性病害发生趋势、原因及防治对策[J].中国烟草,1995(1):31-34.
    [4]Dye, Wilkie. A proposed nomenclature and classification for plant pathogenic bacteria[J]. New Zealand Journal of Agricultural Research,21,153-177.
    [5]葛莘.烟草假单胞杆菌(Pseudomonas syringae pv. tabaci)菌落的扫描电镜和微分干涉差显微镜观察[J].东北农学院学报,1988,19(4):354-360.
    [6]吕军鸿,张广民,丁爱云,等.烟草野火病菌毒素研究进展[J].微生物学通报,1999,26(5):358-360.
    [7]刘秋,吴元华,于基成.烟草野火病的研究进展[J].沈阳农业大学学报,1999,30(3):354-360.
    [8]高必达.植物抗病基因工程研究进展[J].湖南农学院学报,1994,20(6):587-596.
    [9]Durbin R.D., Levi C. The isolation and properties of a tabtoxin-hydrolyzing aminopeptidase from the periplasm of Pseudomonas syringae pv. tabaci[J]. Physiological and Molecular Plant Pathology,1986,28:345-352.
    [10]白宝璋,朱广发,谭桂茹.烟草叶片感染野火病时的某些生理生化[J].变化吉林农业大学学报,1994,16(2):28-30.
    [11]Woodend J. J., Mudzengerere E. Inheritance of resistance to wildfire and angular leaf spot derived from Nicotiana rusticar var. brasilea[J].Euphytica,1992,64(1-2):149-156.
    [12]彭润,王绍坤,熊立,等.云南省烟草野火病菌生理小种分化的研[J].植物病理学报,2005,35(1):1-5.
    [13]高洁,张佳环,迟明亮,等.烟草野火病发病规律的研究[J].吉林农业大学学报,1997,19(1):8-15.
    [14]刘雅婷,张世珖,李永忠.烟草野火病菌初侵染源的研究[J].湖南农业大学学报,2003,29(1):43-44.
    [15]河南农大,云南农大.烟草病理学教程[M].北京:中国科技出版社,1995.
    [16]宋纪真,李忠信.烟草野火病发病规律初探[J].烟草科技,1989,(1):32-33.
    [17]王绍坤,赵瑜,姜建文.氮肥对烟草野火病的影响初报[J].烟草科技,1991,106(3):43-44.
    [18]王绍坤,赵瑜.俩钾肥对烟草野火病的影响[J].烟草科技,1991,1:37-39.
    [19]姬广海,魏兰芳,夏贤仁.防治烟草野火病拮抗细菌菌株的筛选[J].西南农业大学学报,2005,27(2):293-296.
    [20]王玲玲,鲁燕汶,盛存波,等.烟草野火病土壤颉颃细菌的筛选和鉴定[J].西北农业学报,2006,15(3):79-82.
    [21]张广民,吕军鸿,阚光锋,等.烟草野火病研究概况[J].中国烟草学报,2002,8(2):34-37.
    [22]Weindling R. Trichoderma lignorum as a parasite of other soil fungi[J]. Phytopathology,1932.
    [23]赵雷,宋家华,杨合同,等.木霉菌生物学特性及拮抗机制研究概况[J].山东科学,1996,9(2):59-62.
    [24]李琼芳,曾华兰,叶鹏盛,等.哈茨木霉(Trichoerma harzianum) T23生防菌筛选及防治中药材根腐病的研究[J].西南大学学报,2007,29(11):109-112.
    [25]李卫平,林福呈.绿色木霉对蔬菜苗期病害的防治和促生作用[J].浙江农业学报,2000,12(2):106-107.
    [26]赵蕾.木霉菌的生物防治作用及其应用[J].生态农业研究,1999,7(1):66-68.
    [27]李良.用木霉防治白绢病[J].植物保护,1986,2:19-20.
    [28]王革,周晓罡,方敦煌,等.木霉拮抗烟草赤星病菌菌株的筛选及拮抗机制[J].烟草科技,2000,3:45-47.
    [29]茆振川.木霉菌培养液对苹果腐烂病菌的拮抗作用[J].河北果树,2000,3:15-16.
    [30]马辉刚.木霉素防治番茄灰霉病田间试验[J].植物保护,1998,2:18.
    [31]韦善君,李国庆,姜道宏,等.黄色蠕形霉对棉花上几种病原菌拮抗作用的研究[J].华中农业大学学报,1999,18(1):16-19.
    [32]何迎春,高必达.立枯丝核菌的生物防治[J].中国生物防治,2000,16(1):31-34.
    [33]谢德龄,倪楚芳,朱昌雄,等.中生菌素(农抗751)防治白菜软腐病的效果试验初报[J].生物防治通报,1990,6(2):74-75.
    [34]宗兆锋,乔宏萍,何杞真.2株重寄生菌的分离和对靶标菌的抑制作用[J].西北农业学报,2002,11(4):1-3.
    [35]刘大群, Neil A. Anderson, Linda L. Kinkel拮抗链霉菌防治马铃薯疮痂病的大田试验研究[J].植物病理学报,2000,30(3):237-244.
    [36]祁碧菽,杨文香,刘大群.链霉菌对玉米弯孢霉菌抑制作用的初探[J].河北农业大学学报,2000,23(3):76-79.
    [37]刘慧芹,张姝,韩巨才,等.番茄等植物内生放线菌的分离及抑菌作用[J].湖北农业科学,2009,48(9):2151-2153.
    [38]沈寅初.井岗霉素研究开发25年[J].植物保护,1996,4:44-45.
    [39]涂璇,黄丽丽,高小宁,等.黄瓜内生放线菌的分离、筛选及其活性菌株鉴定[J].植物病理学报,2008,38(3):244-251.
    [40]周启,王道本.农用抗生素和微生物杀虫剂[M].北京:中国农业出版社,1995.
    [41]金文藻,孟伟,王以光,等.新抗生素波拉霉素(Polaramycin)A或B及其制造方法[P]. 中国专利:95100949,2000-01-09.
    [42]梅汝鸿,徐维敏著.植物生态学[M].中国农业出版社,1998,48-51.
    [43]李守萍,程玉娥,唐明,等.油松菌根促生细菌—荧光假单胞菌的分离与鉴定[J].西北植物学报,2009,29(10):2103-2108.
    [44]郭坚华,潘登明,任欣正.抗青枯生防菌拮抗物性质的初步研究[J].南京农业大学学报,1994,18(2):59-62.
    [45]董春,董成刚,赵青峰,等.利用拮抗细菌防治烟草青枯病初步研究[J].广东农业科学,1996,5:28-30.
    [46]孙卉,师俊玲.枯草芽孢杆菌CCTCC M207209抗扩展青霉特性研究—活性物质的提取、稳定性与应用[J].西北农林科技大学学报,2010,38(1):201-208.
    [47]许曼琳,段永平,吴祖建,等.芽孢杆菌两菌株对香蕉炭疽病菌的抑制作用及其机制[J].云南农业大学学报,2009,24(4):522-527.
    [48]陈志谊,许志刚,陆凡,等.拮抗细菌B-916培养液对水稻纹枯病菌的抗生活性及其抗菌物质的研究[J].江苏农业学报,2000,16(3):148-152.
    [49]廖晓兰,罗宽.油菜花上细菌的分离及其对菌核菌的拮抗作用[J].湖南农业大学学报,2000,16(4):296-298.
    [50]戴晓燕,关桂兰.两株对辣椒疫霉菌有拮抗作用的拮抗菌分泌蛋白的研究[J].中国生物防治,1999,15(2):81-84.
    [51]李湘民,华菊玲,罗任华,等.水稻主要病害拮抗细菌的筛选与鉴定[J].江西农业学报,2000,12(3):32-35.
    [52]王东昌,辛玉成,李宝笃,等.新型抗菌素对苹果霉心病菌的抑制作用及防治研究[J].微生物学通报,2001,28(3):11-14.
    [53]姜成林,徐丽华著.微生物资源学[M].科学出版社,1997.
    [54]陈志谊,Mew T.W.在水稻生态系统中纹枯病拮抗细菌的分布和种类[J].中国水稻科学,1998,12(1):35-39.
    [55]Ongena M, Jacques P, Toure Y. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis[J]. Applied Microbiology Biotechnology,2005,69(1): 29-38.
    [56]Maget D R, Peypoux F. Iturins, a special class of pore-forming lipopeptides:biological and physicochemical properties[J]. Toxicology,1994,87(1):151-174.
    [57]Paik S H, Chakicherla A, Hansen JN. Identificat ion and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel an-tibiotic produce by Bacillus subtil is 168[J]. Journal of Biological Chemistry,1998, 273(36):23134-23142.
    [58]Babasaki K, Takao T, Shimonishi Y. Subtilosin A, a new antibiotic peptide produced by Bacillus subtil is 168:isolation, structural analysis, and biogenesis[J]. Journal of Biological Chemistry,1985,98(3):585-603.
    [59]Kl ichM A, Arthur K S, Lax A R, et al. Iturin A:a potential new fungicide for stored grains[J]. Mycopathologia,1994,127(2):123-127.
    [60]孔庆科,丁爱云.内生细菌作为生防因子的研究进展[J].山东农业大学学报(自然科学版),2001,32(2):256-260.
    [61]Maurhofer M, Keel C, Schnider U, et al. Influence of enhanced antibiotic production in Pseudomonas fluorescens strain CHAO on its disease suppressive capacity[J]. Phytopathology,1992,82:190-195.
    [62]Voisard C, Keel C, Haas D, et al. Cyanide production by Pseudomonas fluorescens helps suppress Black Root Rot of tobacco under gnotobiotic conditions[J]. EMBO J.1989,8:351-358.
    [63]Lim H, Kim Y, Kim S. Pseudomonas stutzeri YPL-1 genetic transformation and antifungal mechanisms against Fusarium solani, an agent of plant root rot[J]. Appl Environ Microbiol, 1991,510-516.
    [64]郑爱萍,李平,王世全,等.水稻纹枯病菌拮抗菌B34分离鉴定及杀菌蛋白的获得[J].中国水稻科学,2002,16(4):356-360.
    [65]Vandendergh P A, Gonzalez C F.1984. Methods for protecting the growth of plants employing mutant siderophore producing strains of Pseudomonas putida[J]. U.S. Patent, No. US4 479936.
    [66]Buysens S, Poppe J, Hofte M. Role of siderophores in plant growth simulation and antagonism by Pseudomonas aerruginosa 7NSK2, in:Ryder, M.H., Stephens, P.M, Bowen, D.G. (Eds.), Improving Plant Productivity with Rhizosphere Baceria[J]. Commonwealth Science and Industrial Research Organization, Adelaide, Australia,1994:139-141.
    [67]何红,蔡学清.内生菌BS-2菌株的抗菌蛋白及其防病作用[J].植物病理学报,2003,33(4):373-378.
    [68]孙建波,王宇光,李伟,等.产几丁质酶香蕉枯萎病拮抗菌的筛选、鉴定及抑菌作用[J].果树学报,2010,27(4):427-430.
    [69]Huang J. Ulstrastrcture of bacterial penetration in plants[J]. Annual review phytopathology, 1986,24:141-157.
    [70]Duffy B K. Competition, In O. C. Maloy and T. D. Murray (ed.), Encyclopedia of plant pathol-ogy. John Wiley & Sons, Inc., New York, N.Y.2001,243-244.
    [71]Bacon C W, Yates I E, Hinton D M, et al. Biological control or Fusarium moniforme in maize [J]. Environmental Health Perspectives,2001,109(Suppl.2):325-332.
    [72]Castignetti D, Smarrelli J J. First year field performance of spruce seedlings inoculated with plant growth promoting rhizobacteria[J]. Can.J. Microbiol,1986,39:1084-1088.
    [73]O'Sullivan D J, O'Gara F. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens[J]. Microbiol Rev,1992,56:662-676.
    [74]Viswanathan R., Samiyappan R. Induction of systemic resistance by plant growth promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane[J]. Proceedings of the Sugar Technology Association of India,1999,61:24-39.
    [75]喻国辉,周林,程萍,等.枯草芽孢杆菌TR21对香蕉抗病相关基因表达的诱导作用[J].中国生物防治学报,2012,28(1):152-156.
    [76]高伟,田黎,张久明,等.海洋芽孢杆菌B9987菌株对番茄灰霉病和早疫病的作用机制初探[J].植物保护,2010,36(1):55-59.
    [77]连玲丽,谢荔岩,郑璐平,等.小芽孢杆菌EN16诱导番茄对细菌性青枯病的抗性[J].福建农林大学学报,2009,38(5):460-464.
    [78]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511.
    [79]Benhamou N, Kloepper J W, Tuzun S, et al. Induction of defense-related ultrastructural modi-fications in pea root tissues inoculated with endophytic bacteria[J]. Plant Physiol,1996,112: 919-929.
    [80]Conn K L, Nowak J, Lazarovits G. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria[J]. Can. J. Microbiol,1997,43:801-808.
    [81]王万能,全学军,韦云隆.烟草内生细菌118菌株对烟草黑胫病的诱导抗性[J].烟草科技,2004,(1):4-6.
    [82]杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展[J].植物病理学报,2000,30(2):106-110.
    [83]Malhotra M, Srivastava S. Organization of theipdCregion regulates IAA levels in different Azospirillum brasilense strains:molecular and functional analysis of ipdC in strain SM[J]. Environ Microbiol,2008,10(5):1365-1373.
    [84]Lazarovits G, Nowak J. Rizobateria for improvement of Plant growth and stablishment[J]. Hortscience,1997,32:188-192.
    [85]蔡学清,何红,胡方平.内生菌BS-2对辣椒苗的促生作用及对内源激素的影响[J].亚热带农业研究,2005,1(4):49-52.
    [86]刘雅婷,张世珖,李永忠,等.防治烟草野火病的药剂筛选及应用研究[J].湖南农业大学学报,2002,28(2):109-111.
    [87]李梅云.烟草野火病病原菌对农用链霉素的抗药性测定[J].植物保护科学,2007,23(12):328-332.
    [88]梁建根,竺利红,吴吉安,等.生防菌株B-3对辣椒枯萎病的防治及其鉴定[J].植物保护学报,2007,34(5):529-533.
    [89]方中达.植病研究方法[M].北京:中国农业出版社,1998.
    [90]董春,曾宪明,刘琼光.利用无致病力青枯菌株防治番茄青枯病的研究[J].华南农业大学学报,1999,20(4):1-4.
    [91]王丽珍,肖崇刚.重庆烟草主要病害土壤拮抗细菌的筛选[J].烟草科技,2008,294(4):60-64.
    [92]王万能,全学军,肖崇刚.烟草内生细菌防治烟草黑胫病及促生作用研究[J].植物学通报,2005,22(4):426-431.
    [93]易龙,肖崇刚,马冠华,等.拮抗放线菌TA21对烟草根黑腐病菌的抑制及其控病作用[J].中国生物防治,2010,26(2):186-192.
    [94]檀根甲,李增智,刘淑芳,等.枯草芽孢杆菌BS80-6对苹果采后炭疽病的控病效果及作用机制[J].植物保护学报,2008,35(3):228-232.
    [95]杨春平,韩小美,韩江涛,等.冬青卫矛内生放线菌YDG17菌株发酵液抑菌活性研究[J].农药学学报,2008,10(1):53-60.
    [96]杨秀芳,刘伟成,卢彩鸽,等.拮抗放线菌A03的生防作用及其分类鉴定[J].植物保护学报,2007,34(1):73-77.
    [97]万秀清,郭兆奎,乔婵,等.PF7-5对烟草野火病的抑制及田间防治效果[J].烟草科技,2009,267(10):58-60.
    [98]易龙,严占勇,肖崇刚.烟草赤星病拮抗细菌Ata28菌株的控病及促生效应[J].烟草科技,2007,245(12):60-62.
    [99]魏代福,谭青涛,张广民.防治烟草野火病的药剂测定与筛选[J].中国烟草科学,2010,31(2):42-44.
    [100]易有金,尹华群,罗宽,等.烟草内生短芽孢杆菌的分离鉴定及对烟草青枯病的防效[J].植物病理学报,2007,37(3):301-306.
    [101]邱思鑫,何红,阮宏椿,等.内生芽孢杆菌TBZ防治辣椒疫病效果及其机理初探[J].植物病理学报,2004,34(2):173-179.
    [102]王程亮,张潞生,高微微,等.芽孢杆菌TS-01对苹果斑点落叶病菌的拮抗作用及防病效果[J].植物病理学报,2008,35(2):183-184.
    [103]高俊明,马丽娜,李欣,等.内生放线菌ts一对灰葡萄抱菌的拮抗作用及其防病效果[J].植物病理学报,2007,34(1):107-108.
    [104]马冠华,肖崇刚,李浩申,等.烟草病原真菌拮抗性内生细菌的筛选[J].烟草科技,2004,2005(8):183-184.
    [105]杨秀芳,刘伟成,卢彩鸽,等.拮抗放线菌A03的生防作用及其分类鉴定[J].植物保护学报,2007,34(1):73-77.
    [106]宋光桃,周国英.油茶炭疽病拮抗放线菌的筛选及其抑菌谱研究[J].中南林业科技大学学报,2010,30(2):75-78.
    [107]李社增,鹿秀云,马平,等.小麦纹枯病拮抗细菌的筛选[J].植物病理学报(增刊),2005,35(6):95-98.
    [108]唐圣华,万秀清,郭兆奎,等.烟草赤星病拮抗生防菌BS0621的筛选[J].安徽农业科学,2008,36(35):15564-15565,15595.
    [109]王羽,肖崇刚.番茄青枯病病菌无致病力菌株的分离和控病研究[J].西南农业大学学报,2004,26(4):426-428.
    [110]赵凯,肖崇刚,孔德英.内生细菌对番茄青枯病的控病作用及其抗菌谱[J].西南农业大学学报,2006,28(2):314-318.
    [111]周翠,乔鲁芹,金静,等.一株枯草芽孢杆菌挥发性物质的抑菌作用初步研究[J].农药学学报,2011,13(2):201-204.
    [112]周德庆.微生物学试验教程[M].北京:高等教育出版社,2006.
    [113]Marmur J. A procedure for the isolation of deoxyribo-nucleic acid from microorganisms[J]. Journal of Molecular Biology,1961,3:208-218.
    [114]姜淑梅,张龙,戴世鲲,等.一种简单、有效的适于PCR操作的放线菌DNA提取方法[J].生物技术,2007,17(1):39-41.
    [115]Weisburg W G, Barns S M, Pelletier D A, et al.16S ribosomal DNA amplification for phylogenetic study [J]. Journal of Bacteriology,1991,173(2):697-703.
    [116]Woese C R, Kandler O, Wheelis M. Towards a natural system of organisms:Proposal for the domains Archea, Bacteria, and Eucarya. PNAS,1990,87:4576-4579.
    [117]Kumar S, Nei M, Dudley J, et al. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,2008,9(4):299-306.
    [118]John D R, David M O. Chitinase-overproducing mutant of Serratia marcescens [J]. Applied and Environmental Microbiology,1981,41(3):664-669.
    [119]徐刘平.辣椒疫霉生防细菌筛选、生防潜能评估及生物防治研究[D].南京农业大学,2007.
    [120]Ghose T K. Measurement of cellulase activities[J]. Pure & Appl Chem,1987,59 (2):257-268.
    [121]詹萍,吴明.产纤维素酶菌种的分离筛选和酶学性质的研究[J].安徽农业科学,2009,37(13):5846-5847,5914.
    [122]B. Schwyn, J.B Neilands. Universal Chemical Assay for the Detection and Determination of Siderophores[J]. Analytical Biochemistry,1987,160:47-56.
    [123]陈丽华,张爱香,朱韬,等.禾谷丝核菌拮抗细菌的鉴定及其拮抗产物分析[J].植物病理学报,2008,38(1):88-95.
    [124]Kumar S, Nei M, Dudley J, Tamura K. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,2008,9(4):299-306.
    [125]程亮,游春平,肖爱萍.拮抗细菌的研究进展[J].江西农业大学学报,2003,25(5):732-737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700