控制理论和计算中一些问题的投影方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究控制理论和计算中一些大规模问题的投影方法。我们给出迭代求解广义Sylvester方程的Galerkin方法和极小残量方法,这两种方法都利用Arnoldi过程构造某个Krylov子空间的一组正交规范基并利用系数矩阵的结构减少了对存储量的需求。基于全局Arnoldi过程,我们又分别给出求解大规模Sylvester方程和大规模广义Sylvester方程的新的投影方法。为求解二次特征值问题,我们首先引入基于方阵A_1和A_2以及具有正交规范列的矩阵Q_1的块二阶Krylov子空间,然后再分别给出生成该子空间一组正交规范基的块二阶Arnoldi过程和生成双正交基的块二阶双正交过程。利用投影技巧给出两种块二阶Krylov子空间方法,这两种方法都直接应用于二次特征值问题,从而保留了问题的结构和性质。然后我们给出保结构模型降阶算法来求解大规模二阶多输入多输出动力系统的模型降阶问题。这是基于块二阶Krylov子空间的投影方法,利用块二阶Arnoldi过程来生成投影空间的一组正交规范基。计算所得的约化系统保留了原始系统的二阶结构。最后,我们给出求解传输理论中非对称代数Riccati方程的修改的简单迭代法和修改的牛顿法。
The present Ph.D. dissertation is concerned with projection methods for large-scale problems in control theory and computation. We propose Galerkin method and minimal residual method for iteratively solving generalized Sylvester equations. The algorithms use Krylov subspace for which orthogonal basis are generated by the Arnoldi procedure and reduce the storage space required by using the structure of the matrix. We propose a new projection method based on global Arnoldi procedure for solving large Sylvester equations and the large generalized Sylvester equations. For solving large-scale quadratic eigenvalue problem (QEP), we first introduce a block second-order Krylov subspace based on a pair of square matrices A_1 and A_2 and an orthonormal matrix Q_1, then we present a block second-order Arnoldi procedure for generating an orthonormal basis of the space and a block second-order biorthogonalization procedure for generating biorthonormal basis. By applying the projection techniques, we derive two block second-order Krylov subspace methods. These methods are applied to the QEP directly. Hence they preserve essential structures and properties of the QEP. We present a structure-preserving model-order reduction method for solving large-scale second-order multi-input multi-output dynamical systems. It is a projection method based on a block second-order Krylov subspace. We use the block second-order Arnoldi procedure to generate an orthonormal basis of the projection subspace. The reduced system preserves the second-order structure of the original system. Finally, we propose a modified simple iterative method and a modified Newton method for nonsymmetric algebraic Riccati equations arising in transport theory.
引文
[1] 曹志浩,《数值线性代数》,复旦大学出版社,1996.
    [2] 曹志浩,《变分迭代法》,科学出版社,2005.
    [3] 林依勤,《收缩和扩张Krylov子空间方法》,复旦大学博士论文,2005.
    [4] R. Aldhaheri, Model order reduction via real Schur-form decomposition, Internat. J. Control, 53 (1991), pp. 709-716.
    [5] A. Amghayrir, N. Tanguy, P. Brehonnet, P. Vilbe and L. Calvez, Laguerre-Gram reduced-order modeling, IEEE Trans. Automat. Control, 50 (2005), pp. 1432-1435.
    [6] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in Design and Control 6, SIAM Publications, Philadelphia, PA, 2005.
    [7] A. C. Antoulas, D. Sorensen and S. Gugercin, A survey of model reduction methods for largescale systems, Contemporary Mathematics, 280 (2001), pp. 193-219.
    [8] W. E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quart. Appl. Math., 9 (1951), pp. 17-29.
    [9] Z. Bai, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Appl. Numer. Math., 43 (2002), pp. 9-44.
    [10] Z. Bai, D. Bindel, J. Clark, J. Demmel, K. S. J. Pister and N. Zhou, New numerical techniques and tools in SUGAR for 3D MEMS simulation, In Technical Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems, 2000, pp. 31-34.
    [11] Z. Bai, P. Dewilde and R. W. Freund, Reduced-order modeling, in Handbook of Numerical Analysis, Vol ⅫⅠ, pp. 825-891, Handb. Numer. Anal., ⅫⅠ, North-Holland, Amsterdam, 2005, Elsevier.
    [12] Z. Bai and D. Skoogh, A projection method for model reduction of bilinear dynamical systems, Linear Algebra Appl., 415 (2006), pp. 406-425.
    [13] Z. Bai and Y. Su, Dimension reduction of large-scale second-order dynamical systems via a second-order Arnoldi method, SIAM J. Sci. Comput.,26(2005), pp. 1692-1709.
    [14] Z. Bai and Y. Su, SOAR: a second-order Arnoldi method for the solution of the quadratic eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 640-659.
    [15] M. J. Balas, Trends in large space structure control theory: fondest theory, wildest dreams, IEEE Trans. Automat. Control, AC-27 (1982), pp. 522-535.
    [16] L. Bao, Y. Lin and Y. Wei, Krylov subspace methods for the generalized Sylvester equation. Appl. Math. Comput., 175 (2006), pp. 557-573.
    [17] L. Bao, Y. Lin and Y. Wei, A modified simple iterative method for nonsymmetric algebraic Riccati equations arising in transport theory, Appl. Math. Comput., 181 (2006), pp. 1499-1504.
    [18] L. Bao, Y. Lin and Y. Wei, A new projection method for solving large Sylvester equations, Appl. Numer. Math., 57 (2007), pp. 521-532.
    [19] R. H. Bartels and G. W. Stewart, Algorithm 432: Solution of the matrix equation AX+XB=C, Comm. ACM, 15 (1972), pp. 820-826.
    [20] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994.
    [21] P. Berner, V. Mehrmann and D. Sorenson (Eds.), Dimension Reduction of Large-Scale Systems, Springer-Verlag, Berlin/Heidelberg, Germany, 2005.
    [22] P. Berner, R. Freund, D. Sorenson and A. Varga, Preface. Special issue on "Order reduction of large-scale systems", Linear Algebra Appl., 415 (2006), pp. 231-234.
    [23] G. Birkhoff, R. S. Varga and D. Young, Alternating direction implicit methods, Advances in Computers, 3 (1962), pp. 189-273.
    [24] D. Calvetti, B. Lewis and L. Reichel, On the solution of large Sylvester-observer equation, Numer. Linear Algebra Appl., 8 (2001), pp. 435-451.
    [25] Y. Chahlaoui and P. Van Dooren, A collection of benchmark examples for model reduction of linear time invariant dynamical systems, SLICOT Working Note, ftp://wgs.esat.kuleuven.ac.be/pub/WGS/REPORTS/SLWN2002-2.ps.Z.
    [26] J. V. Clark, N. Zhou, D. Bindel, L. Schenato, W. Wu, J. Demmel, and K. S. J. Pister, 3D MEMS simulation using modified nodal analysis, In Proceedings of Microscate Systems: Mechanics and Measurements Symposium, 1981, pp. 68-75.
    [27] J. V. Clark, N. Zhou, and K. S. J. Pister, 3D MEMS simulation using SUGAR v0.5, In Proc. Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, 1998, pp. 191-196.
    [28] R. R. Craig, Jr., Structrual Dynamics: An Introduction to Computer Methods, John Wiley & Sons, 1981.
    [29] B. N. Datta, Numerical Methods for Linear Control Systems: Design and Analysis, Elsevier Academic Press, Amsterdam, 2004.
    [30] B. N. Datta and K. Datta, Theoretical and Computational Aspects of some Linear Algebar Problems in Control Theory, in: Computational and Combinatorial Methods in Systems Theory, eds. C.I. Byrnes and A. Lindquist (Elsevier, Amsterdam, 1986) pp. 201-212.
    [31] E. de Souza and S. P. Bhattacharyya, Contollability, observability and solution of AX-XB=C, Linear Algebra Appl., 39 (1981), pp. 167-188.
    [32] C. de Villemgne and R. Skelton, Model reductions using a projection formulation, Internat. J. Control, 46 (1987), pp. 2141-2169.
    [33] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
    [34] A. El Guennouni, K. Jbilou and A. J. Rlquet, Block Krylov Subspace methods for solving large Sylvester equations, Numer. Algorithms, 29 (2002), pp. 75-96.
    [35] N. S. Ellner and E. L. Wachspress Alternationg direction implicit iteration for systems with complex spectra, SIAM J. Numer. Anal. 28 (1991), pp. 859-870.
    [36] R. W. Freund, Krylov-subspace methods for reduced-order modeling in circuit simulation, J. Comput. Appl. Math., 123 (2000), pp. 395-421.
    [37] R. W. Freund, Model reduction methods based on Krylov susbspace, Acta Numerica, 12 (2003), pp. 267-319.
    [38] R. W. Freund, Pade-type model reduction of second-order and high-order linear dynamical systems, Technical report, Department of Mathematics, University of California, Davis, 2004.
    [39] R. W. Freund, Krylov subspaces associated with higher-order linear dynamical systems, BIT, 45 (2005), pp. 495-516.
    [40] K. Gallivan, A. Vandendorpe and P. Van Dooren, Model reduction of MIMO systems via tangential interpolation, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 328-349.
    [41] S.D. Garvey, Z. Chen, M. I. Friswell, and U. Prells, Model reduction using structure-preserving transformations, in Proceedings of the 21st International Modal Analysis Conference, Kissimmee, FL, 2003, pp. 361-377.
    [42] G. H. Golub, S. Nash and C. F. Van Loan, A Hessenberg-Shur method for the problem AX+XB=C, IEEE Trans. Automat. Control, 24 (1979), pp. 909-913.
    [43] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd edition, Johns Hoplins University Press, Baltimore, 1996.
    [44] C. H. Guo, Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for Mmatrices, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 225-242.
    [45] C. H. Guo, Efficient methods for solving a nonsymmetric algebraic Riccati fluid models, J. Comp. Appl. Math., 192 (2006), pp. 353-373.
    [46] C. H. Guo and A. J. Laub, On the iterative solution of a class of nonsymmetric algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 376-391.
    [47] X. X. Guo, W. W. Lin, and S. F. Xu, A structure-preserving doubling algebraic Riccati equation, Numer. Math., 103 (2006), pp. 393-412.
    [48] S. J. Hammarling, Numerical solution of the stable, nonnegative definite Lyapunov equation, IMA J. Numer. Anal., 2 (1982), pp. 303-323.
    [49] J. Z. Heaxon, Nonsingular solutions of TA-BT=C, Linear Algebra Appl., 16 (1997), pp. 57-63.
    [50] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Second Edition, 2002.
    [51] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, UK, 1985.
    [52] D. Y. Hu and L. Reichel, Krylov-Subspace Methods for the Sylvester Equation, Linear Algebra Appl., 172 (1992), pp. 283-313.
    [53] T. M. Hwang, W. W. Lin and V. Mehrmann, Numerical solution of quadratic eigenvalue problems with structure-preserving methods, SIAM J. Sci. Comput., 24 (2003), pp. 1283-1302.
    [54] C. Hyland and D. Bernstein, The optimal projection equations for fixed-order dynamic compensation, IEEE Trans. Automat. Control, 29 (1984), pp. 1034-1037.
    [55] I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227-251.
    [56] K. Jbilou, Block Krylov subspace methods for large algebraic Riccati equations, Numer. Algorithms, 34 (2003), pp. 339-353.
    [57] K. Jbilou, A. Messaoudi and H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31 (1999), pp. 49-63.
    [58] K. Jbilou and A. J. Riquet, Projection methods for large Lyapunov matrix equations, Linear Algebra Appl., 415 (2006), pp. 344-358.
    [59] J. Juang, Existence of algebraic matrix Riccati equations arising in transport theory, Linear Algebra Appl., 230 (1995), pp. 89-100.
    [60] J. Juang and I Der Chen, Iterative solution for a certain class of algebraic matrix Riecati equations arising in transport theory, Transport Theory Statist. Phys., 22 (1993), pp. 65-80.
    [61] J. Juang and W. W. Lin, Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices, SIAM J. Matrix Anal. Appl., 20 (1999), pp. 228-243.
    [62] J. Juang and Z. T. Lin, Convergence of an iterative technique for algebraic matrix Riccati equations and applications to transport theory, Transport Theory Statist. Phys., 21 (1992), pp. 87-100.
    [63] J. Kou, Y. Li and X. Wang, A modification of Newton method with third-order convergence, Appl. Math. Comput., 181 (2006), pp. 1106-1111.
    [64] T. Kowalski, Extracting a Few Eigenpairs of Symmetric Indefinite Matrix Pencils, Ph.D. thesis, University of Kentucky, Lexington, 2000.
    [65] A. J. Laub, M. T. Heath, C. C. Paige and R. C. Ward, Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms, IEEE Trans. Automat. Control, 32 (1987), pp. 115-122.
    [66] J. R. Li, Model reduction of large linear systems via low rank system Gramians, Ph.D. Thesis, Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 2000.
    [67] J. R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 260-280.
    [68] R. C. Li and Z. Bai, Structured-preserving model reduction using a Krylov subspace projection formulation, Comm. Math. Sci., 3 (2005), pp. 179-199.
    [69] Y. Lin, Implicitly restarted global FOM and GMRES for nonsymmetric matrix equations and Sylvester equations, Appl. Math. Comput., 167 (2005), pp. 1004-1025.
    [70] Y. Lin, Minimal residual methods augmented with eigenvectors for solving Sylvester equations and generalized Sylvester equations, Appl. Math. Comput., 181 (2006), pp. 487-499.
    [71] Y. Lin and L. Bao, Block second-order Krylov subspace methods for large quadratic eigenvalue problems, Appl. Math. Comput., 181 (2006), pp. 413-422.
    [72] Y. Lin, L. Bao and Y. Wei, Model-Order Reduction of Large-Scale Second-Order MIMO Dynamical Systems via a Block Second-Order Avnoldi Method, Int. J. Comput. Math, to appear.
    [73] Y. Lin, L. Bao and Y. Wei, A Modified Newton Method for Solving Nonsymmetric Algebraic Riccati Equations Arising in Transport Theory, IMA J. Numer. Anal., to appear.
    [74] L. Z. Lu, Solution form and simple iteration of a nonsymmetric algebraic Riccati equation arising in transport theory, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 679-685.
    [75] L. Z. Lu, Newton iterations for a non-symmetric algebraic Riccati equation, Numer. Linear Algebra Appl., 12 (2005), pp. 191-200.
    [76] V. Mehrmann and H. Xu, Numerical methods in control, J. Comput. Appl. Math., 123 (2000), pp. 371-394.
    [77] D. Meyer and S. Srinivasan, Balancing and model reduction for second-order form linear systems, IEEE Trans. Auto. Control, 41 (1996), pp. 1632-1644.
    [78] T. Penzl, Algorithms for model reduction of large dynamical systems, Linear Algebra Appl., 415 (2006), pp. 322-343.
    [79] A. Preumont, Vibration Control of Active Structures, Kluwer Academic Publishers, Dordrecht, 1997.
    [80] F. A. Raeven, A new Arnoldi approach for polynomial eigenproblems, In Proceedings of the Copper Mountain Conference on Iterative Methods, URL: http://www.mgnet.org/mgnet/Conferences/CMCIM96/Psfiles/raeven.ps.gz, 1996.
    [81] D. Ramaswamy and J. White, Automatic generation of small-signal dynamic macromodels from 3-D simulation, In Technical Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems, 2000, pp. 27-30.
    [82] M. Robbe and M. Sadkane, A convergence analysis of GMRES and FOM methods for Sylvester equations, Numer. Algorithms, 30 (2002), pp. 71-89.
    [83] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math. Comp. 37 (1981), pp. 105-126.
    [84] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986), pp. 856-869.
    [85] H. Schmitz, K. Volk and W. L. Wendland, On three-dimensional singularities of elastic fields near vertices, Numer. Methods Partial Differential Equations, 9 (1993), pp. 323-337.
    [86] H. R. Schwarz, Methode der Finiten Elemente, Teubner, Stuttgart, 1984.
    [87] G. L. G. Sleijpen, G. L. Booten, D. R. Fokkema and H. A. Van der Vorst, Jacobi Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT, 36 (1996), pp. 595-633.
    [88] G. L. G. Sleijpen, H. A. van tier Vorst and M. B. van Gijzen, Quadratic eigenproblems are no problem, SIAM News, 29 (1996), pp. 8-9.
    [89] R. D. Slone, Fast frequency sweep model order reduction of polynomial matrix equations resulting from finite element discretization, Ph. D. thesis, Ohio State University, Columbus, OH, 2002.
    [90] D. C. Sorensen and Y. Zhou, Direct methods for matrix Sylvester and Lyapunov equations, J. Appl. Math. 6 (2003), pp. 277-303.
    [91] T. Stykel, Analysis and numerical solution of generalized Lyapunov equations, Ph.D. Thesis, Institut fur Mathematik, Technische Universitat Berlin, Berlin, 2002.
    [92] T. J. Su and R. R. Craig, Jr., Model reduction and control of flexible structures using Krylov vectors, J. Guidance Control Dynamics, 14 (1991), pp. 260-267.
    [93] F. Tisseur, Backward error and condition of polynomial eigenvalue problems, Linear Algebra Appl., 309 (2000), pp. 339-361.
    [94] F. Tisseur and K. Mearbergen, The quadratic eigenvalue problem, SIAM Rev., 43 (2001), pp. 235-286.
    [95] R. S. Varga, Matrix terative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962.
    [96] E. L. Wachspress, Iterative solution of the Lyapunov matrix equation, Appl. Math. Lett., 1 (1988), pp. 87-90.
    [97] B. Wang, Y. Su and Z. Bai, The second-order biorthogonalization procedure and its application to quadratic eigenvalue problems, Appl. Math. Comp., 172 (2006), pp. 788-796.
    [98] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Science Press, Beijing, 2004.
    [99] W. Weaver and P. Johnston, Structural Dynamics by Finite Elements, Prentice Hall, Upper Saddle River, 1987.
    [100] T. Wittig, I. Munteanu, R. Schuhmann, and T. Weiland, Two-step Lanczos algorithm for model order reduction, IEEE Trans. Magn., 38 (2002), pp. 673-676.
    [101] K. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, Englewood Cliffs, NJ, 1996.
    [102] Y. Zhou, Numerical methods far large scale matrix equations with applications in large system model reduction, Ph.D. Thesis, CAAM Department, Rice University, Houston, TX, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700