Ge(S_xSe_(1-x))_2玻璃的组成、结构和光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫系玻璃具有宽的红外透过窗口、高的线性和非线性折射率及优异的光敏性,在红外探测、可逆光记录媒体、全光开关、无机光刻等领域具有广阔应用前景。考虑到结构和性能的密切关系,对硫系玻璃微结构的探索有着重要的理论和实际意义。基于玻璃具有组成、性能连续可调的特性,本文系统探索了S或Se取代对Ge(SxSe1-x)2玻璃微结构和光学性能的影响规律,并进而选择Ge(S0.8Se0.2)2玻璃探索了其微晶化规律。
     针对前人仅分析了Ge(SxSe1-x)2(0=x=0.25)玻璃的拉曼谱演变,本文选用高纯Ge,S和Se(全部5 N)作为原料,采取传统的熔融-淬冷法,通过制备工艺的优化,制备出了组成范围在0≤x≤1的Ge(SxSe1-x)2玻璃。通过拉曼散射技术和正电子湮灭技术探测,表征了Ge(SxSe1-x)2玻璃微结构的演变规律。拉曼研究结果表明S或Se取代并不改变Ge(SxSe1-x)2玻璃的微结构单元构型,仍为四面体单元,即[GeSnSe4-n](n=0,1,2,3,4);但随着S或Se替换,[GeSnSe4-n](n=0,1,2,3,4)四面体在玻璃中的分布发生变化。正电子寿命研究发现当S或Se取代达到某—值时,玻璃的开孔体积最小。折射率表征发现,折射率随组成变化呈现单调线性变化规律;基于Ge(SxSe1-x)2玻璃微结构单元分布演变规律可合理解释该现象。
     兼顾可见透过和高非线性性能,选择Ge(S0.8Se0.2)2玻璃,通过热处理工艺的剪裁,探索出了一种具有永久二阶非线性光学性能且可见透过的透红外硫系玻璃陶瓷。可见-近红外透过光谱测试表明,为保持样品良好的透过性能,Ge(S0.8Se0.2)2玻璃在470℃(Tg=468℃)热处理的时间不应超过24小时。通过Maker条纹法测试了制备得到的Ge(S0.8Se0.2)2玻璃陶瓷的二次谐波发生性能,计算得Ge(S0.8Se0.2)2玻璃陶瓷的二阶非线性系数χ(2)最高可达到3.54pm/V。
Chalcogenide glasses have wide application prospect in the fields of infrared detection、reversible optical recording medi、all-optical switching、inorganic photoresists and so forth due to their wide infrared transmission windows、high linear and nonlinear refractive indices and excellent photosensitivity. Considering the intimate relationship between the properties and structure, micro-structural investigation of chalcogenide glasses has important academic and practical meanings. Based on continuously tunable characteristic of composition and properties for Ge(SxSe1_x)2 glasses, a systemic study on the influence law of S or Se replacement to their microstructure and optical quality was conducted in the present work. Moreover, Ge(S0.8Se0.2)2 chalcogenide glasses were chosen to study the micro-crystallization law.
     Aiming at the previous analysis of Raman spectra evolvement only for Ge(SxSe1-x)2 (0=x=0.25) glasses, in this study, Ge(SxSe1-x)2 (0=x=1) glasses were prepared by conventional melt-quenching method using high purity Ge, S and Se (all of 5 N) as raw materials through preparation technical optimization. Microstructure evolution law of Ge(SxSe1-x)2 glasses was described by Raman scattering technology and positron annihilation technology. Raman scattering results show that microstructure unit model of Ge(SxSe1_x)2 glasses does not change along with S or Se replacement, tetrahedral unit configuration is preserved, namely [GeSnSe4-n] (n=0,1,2,3,4); but the distributing of [GeSnSe4-n] (n=0,1,2,3,4) tetrahedra in glass changes. Researches on positron annihilation lifetime detect that while S or Se replacement up to a certain value, open volume of the glass is smallest. Refractive index characterization shows that the change of refractive index presents a simple linear evolution which can be reasonably explained base on microstructure unit distributing evolvement law of Ge(SxSe1-x)2 glasses.
     Give attention to visible transmission and high nonlinear capability, Ge(S0.8Se0.2)2 glasses were chosen to study the second-order optical nonlinearity of obtained glass ceramics. An efficient heat treatment to permanent second-order optical nonlinearity was achieved in Vis-IR transparent chalcogenide glass ceramics. In order to keep the high transmisssion spectra, the time of 470℃(Tg=468℃) heating treating of Ge(S0.8Se0.2)2 glasses should be under 24 hours according to the Vis-NIR spectra. Using Maker fringe method describe SHG performance of prepared Ge(S0.8Se0.2)2 glass ciramics, calculated results show that the highest second harmonic coefficientx(2) of Ge(S0.8Se0.2)2 glass ciramics is up to 3.54pm/V.
引文
[1]Elliott SR. Chalcogenide glasses, Materials Science and Technology, ed. by Cahn RW, Haasen P, Kramer EJ, VoL9, Glass and Amorphous Materials, ed. by Zarzycji J,1991:380-448.
    [2]Yu Ivanova T, Man'shina A A, Kurochkin A V, et al., Er3+to glass matrix energy transfer in Ga-Ge-S:Er3+system[J]. Journal of Non-Crystalline Solids,2002,298(1):7-14.
    [3]Aitken B, Newhouse M A. Ga-and/or In-containing AsGe sulphide glasses. U.S. Patent 5,389,584,1995.
    [4]Gyu C Y, Yong H K, Byoung J L, et al., Emission properties of the Er3+:4I11/2→4I13/2 transition in Er3+-and Er3+/Tm3+-doped Ge-Ga-As-S glasses[J]. Journal of Non-Crystalline Solids,2000,278(1-3):137-144.
    [5]Churbanov M F. Recent advances in preparation of high-purity chalcogenide glasses in USSR[J]. J.Non-Cryst.Solids,1992,140:324-330.
    [6]Nemec P, Frumarova B, Frumar M, et al., Optical properties of low-phonon-energy Ge30Ga5Se65:Dy2Se3 chalcogenide glasses[J]. Journal of Physics and Chemistry of Solids, 2000,61(10):1583-1589.
    [7][日]和田达夫,雀部博之.日本の科学と技术[M].1996,240(27):31-35.
    [8]Zhou W, Method for exploring glass-forming regions in new systems[J]. J. Non-Cryst. Solids., 1996,201:251-261.
    [9]干福熹.玻璃的光学和光谱性质[M].上海:上海科学技术出版社,1992.
    [10]J.L. Adam. Non-oxide glasses and their applications in optics[J]. J. Non-Cryst. Solids,2001, 287:401-404.
    [11]干福熹著.光学玻璃[M].北京:科学出版社,1982:458-491.
    [12]Yamashita M, Yamanaka H. Formation and ionic conductivity of Li2S-GeS2-Ga2S3 glasses and thin films[J]. SOLID STATE IONICS,2003,158(1-2):151-156.
    [13]E. Marquez, R. Jimenez-Garay, A. Alegria, et al., Switching electrical power of bulk chalcogenide glassy semiconductors[J]. J. Mater. Sci. Lett.,1987,6:823-825.
    [14]R.K. Pan, H.Z. Tao, H.C. Zang, et al., Annealing effects on the structure and optical properties of GeSe2 and GeSe4 films prepared by PLD[J]. Journal of Alloys and Compounds, 2009,484:645-648.
    [15]R.K. Pan, H.Z. Tao, H.C. Zang, et al., Thermal-induced gradually changes in the optical properties of amorphous GeSe2 film preparedbyPLD[J]. Physica B,2009,404:3397-3400.
    [16]R.K. Pan, H.Z. Tao, H.C. Zang, et al., Optical properties of pulsed laser deposited amorphous (GeSe2)100-xBix films[J]. Appl Phys A,2010,99:889-894.
    [17]Govindarajan S K. Synthesis and characterization of chalcogenide glasses for fiber optic light sources in the 2 to 10μm region [D]. New Jersey:The State University of New Jersey,2001.
    [18]Usuki T, Araki F, Uemura O, et al., Structure changes during amorphization of Ge-Se alloys by mechanical milling[J]. Materials Transactions,2003,44(3):344-350.
    [19]FENG XIONG. ULTRA-LOW POWER PHASE CHANGE MEMORY WITH CARBON NANOTUBE INTERCONNECTS [D]. Illinois:University of Illinois at Urbana-Champaign, 2010.
    [20]Nasu H, Kurachi K, Mito A, et al., Second harmonic generation and structure of mixed alkali titanosilicate glass[J]. J.Non-Cryst. Solids,1997,217:182-188.
    [21]Elliott S R, Shimakawa K L, Model for bond-breaking mechanism in amporphous arsemic chalcogenide leading to light induced electron-spin resonance[J]. Phys.Rev.,1990, B42: 9766-9770.
    [22]Winter R, Pilgrim W C, Egelstaff P A, et al., Europhys.Lett.1990,11:225.
    [23]Feltz A, Pohle M, Steil H, et al., Glass formation and properties of chalcogenide systems: studies on the structure of vitreous GeS2 and GeSe2[J]. J.Non-Cryst.Solids,1985,69:271-282.
    [24]Cervinka L, Atomic-scale structure of amorphous and liquid sulphur mihai popescu[J]. J. Non-Cryst. Sol.,1987,97-98:187-190.
    [25]Pohle M, Feltz A, Steil H, et al., Glass formation and properties of chalcogenide systems ⅩⅩⅫ. RDF studies on the structure of vitreous Ge2S3 and Ge2Se3[J]. J.Non-Cryst.Solids, 1985,69:283-291.
    [26]Andreichin R, Nikiforova M, Skorodeva E, et al., Structure and physical properties of the glassy As2S3Gex system[J]. J.Non-Cryst.Solids,1976,20:101-122.
    [27]Eichhorn U, Frischat G H, Self-diffusion in the chalcogenide glass system Se-Ge-As[J]. J.Non-Cryst.Solids,1978,30:211-220.
    [28]汪中柱,程继健.As-Ge-Se-Te系统玻璃的结构.华东化工学院学报,1992,18:18-23.
    [29]Barnier S, Guittard M, C. Julien, Glass formation and structural studies of chalcogenide glasses in the CdS-Ga2S3-GeS2 system[J]. Mater. Sci. Eng. B,1990,7:209-214.
    [30]Yoshitsugu Y, Hiroyuki N, Tadanori H, et al., Second harmonic generation from thermally poled CdS microcrystal[J]. J. Non-Cryst. Solids.,2001,281:198-204.
    [31]Mingzhu H, Ching W Y, Calculation of optical excitations in cubic semiconductors. Ⅱ. Second-harmonic generation[J]. Phys. Rev. B,1993,47 (15):9464-9478.
    [32]Ewen P J S, Owen A E. Resonance Raman scattering in As-S glasses[J]. J.Non-Cryst.Solids 1980,35-36:1191-1196.
    [33]Tanaka K, Gohda S, Odajima A. Interrelations between optical absorption edges and structural order in glassy As2S3[J]. Solid State Commun.,1985,56(10):899-903.
    [34]Boolchand P, Grothaus J, Bresser W J, et al., Structural origin of broken chemical order in a GeSe2 glass[J]. Phys. Rev.,1982, B25:2975-2978.
    [35]Kazuo M, Kazuyuki Y, Toshiaki F. Interaction among clusters in chalcogen-rich galsses of Ge1-x(S or Se)x[J]. J.Non-Cryst.Sol.,1983,59-60:855-858.
    [36]毛友德.非晶态半导体[M].上海:上海交通大学出版社,1986.
    [37][美]M.H.布罗德斯基主编,朱琼瑞等译.非晶态半导体[M].北京:国防工业出版社,1985.
    [38]Parant J.P, Sergent C Le, Guignot D, et al., Chalcogenide glass optical fibres[J]. Glass Techn.,1983,24:161-163.
    [39]Viens J F, Meneghini C, Villeneuve A, et al., Fabrication and Characterization of Integated Optical Waveguides in Sulfide Chalcogenide Glasses[J]. Journal of lightwave technology,1999,17(7):1184-1191.
    [40]Mihai A. Popescu, Non-Crystalline Chalcogenides[M]. New York:Kluwer Academic Publishers,2000:190-191.
    [41]I. V. Alekseeva, A. A. Obraztsov, Z. U. Borisova, M. D. Balmakov, Fiz. iHim. Stekla,1978, 4(4):411.
    [42]I. M. Migolinets, M. Yu. Sichka, Fiz. i Him. Stekla.1979,5(3):287.
    [43]Z. G. Makovskaia, E. G. Zhukov, Izv. Akad. Nauk SSSR, Neorg. Mat.1980,16(2):251.
    [44]D. I. Bletskan, Uzhgorod University, Uzhgorod, Ukraine, Glass Formation in Binary and Ternary Chalcogenide Systems[J]. Chalcogenide Letters,2006,3(11):81-119.
    [45]J.E. Griffiths, G.P. Espinosa, J.C. Phillips, J.P. Remeika, Raman-Spectra And Athermal Laser Annealing Of Ge(SxSe1-x)2 Glasses[J]. PHYSICAL REVIEW B,1983,28(8):4444-4453.
    [46]Yoshiki Wada, Yong Wang, Osamu Matsuda, Koichi Inoue, Kazuo Murase, Photoluminescence study of glassy Ge(SxSe1-x)2[J]. Journal of Non-Crystalline Solids,1996, 198-200:732-735.
    [47]V.A. Vassilyev, M. Ko6s and I. K6sa Somogyi, Solid State Commun.1977,22:633.
    [48]K. Arai, U. Itoh and H. Namikawa, Jpn. J. Appl. Phys.1974,13:1305.
    [49]C.C. Wu, C.H. Ho, J.Y. Wu, S.L. Lin, Y.S. Huang, Characterization of Ge(Se1-xSx)2 series layered crystals grown by vertical Bridgman method[J]. JOURNAL OF CRYSTAL GROWTH,2005,281(2-4):377-383.
    [50]D. I. Bletskan, E. M. Hryha, V. N. Kabatsii, Raman and Photoluminescence Spectra of Crystalline and Glassy GeS2xSe2-2x Solid Solutions[J]. Inorganic Materials,2007,43(2): 105-111.
    [51]G. K. SOLANKI, DIPIKA B. PATEL, SANDIP UNADKAT, et al., STRUCTURAL CHARACTERIZATION OF GeS0.5Seo.5 CRYSTALS GROWN BY VAPOUR TRANSPORT TECHNIQUE[J]. Chalcogenide Letters,2009,6(6):257-263.
    [52]S. A. FAYEK, M. M. IBRAHIM, Calorimetric studies on Ge(Se1-xSx)2 chalcogenide glasses[J]. Chalcogenide Letters,2009,6(11):595-603.
    [53]黄德群,单振国,干福熹.新型光学材料[M].北京:科学出版社,1991.
    [54]张辉.钾铅硅酸盐玻璃二次谐波发生特性的研究[D].武汉:武汉工业大学,1997.
    [55]生瑜,章文贡.金属有机非线性光学材料[J].功能材料,1995,26(1):89-93.
    [56]杨尊先.若干氧化物玻璃性能与结构研究[D].武汉:武汉理工大学,2001.
    [57]Kazansky P G, Kamal A. High second-order nonlinearities induced in lead silicate glasses by electro-beam irradation[J]. Optic.Lett.,1993,18(9):1141-1143.
    [58]刘启明.硫系玻璃光学非线性发生特性的研究[D].武汉:武汉工业大学,1999.
    [59]洪海平,王业斌,林绮等.无机非线性光学材料的探索[J].化学通报,1994,10:65-68.
    [60]过已吉主编.非线性光学[M].西安:西北电讯工程学院出版社,1986.
    [61]Sasaki Y, Ohmori Y. Phaes-matched sum-frequency light generation in optical fibers[J]. Appl. Phys. Lett.,1981,39(6):466-468.
    [62]Osterberg U, Margulis W. Dye laser pumped by Nb:YAG laser pulses frequency doubled in a glass optical fiber[J]. Opt. Lett.,1986,11(8):516-518.
    [63]Myers R A, Mukherjee N, Brueck S R J. Large second-order nonlinearity in poled fused silica[J]. Opt. Lett.,1991,16(22):1732-1734.
    [65]Kazansky P G, Kamal A, Russell P St J. High second-order nonlinearities induced in lead silicate glass by electron-beam irradiation [J]. Opt. Lett.,1993,18(9):1141-1143.
    [66]Takumi F, Syuji M, Motoshi O, Akira J, et al., Origin and properties of second-order optical non-linearity in ultraviolet-poled GeO2-SiO2 glass[J]. J. Non-Cryst. Solids,2000,273: 203-208.
    [67]Stolen R H, Tom H W K. Self-organized phase-matched harmonic generation in optical fibers[J]. Opt. Lett.,1987,12(8):585-587.
    [68]Mukherjee N, Myers R A, Brueck. S R J. Dynamics of second-harmonic generation in fused silica[J]. J. Opt. Soc. Am. B,1994,11(4):665-669.
    [69]Alley T G, Brueck S R J, Myers R A. Space charge dynamics in thermally poled fused silica[J]. J. Non-cryst. Solids,1998,242:165-176.
    [70]Tanaka K, Narazaki A, Hirao K, et al., Optical second harmonic generation in poled MgO-ZnO-TeO2and B2O3-TeO2 glasses[J]. J. Non-cryst. Solids,1996,203:49-54.
    [71]陈红兵,徐建华,刘丽英等.电场极化条件对石英玻璃的电致二阶非线性关学效应的影响[J].中国激光,1998,25(1):56-60.
    [72]姚风仪,郭德威,桂明德.物理化学手册-氧硫硒分族[M].上海:上海科学技术出版社,1998.
    [73]H. Z. Tao, C. G. Lin, S. X. Gu, C. B. Jing, X. J. Zhao. Optical second-order nonlinearity of the infrared transmitting 82GeS2·18CdGa2S4 nanocrystallized chalcogenide glass[J]. Appl. Phys. Lett.2007,91:011904.
    [74]R. Krause-Rehberg, H. S. Leipner. Positron annihilation in semiconductors. Springer-Verlag Berlin Heidelberg,1999.
    [75]S. Y. CHUANG, Positron Annihilation and Phase Transitions in Molecular Substances[J]. CHINESE JOURNAL OF PHYSICS,16(2,3):111-131.
    [76]B. Somieski, T. T. M. Staab. The data treatment influence on the spectra decomposition in positron lifetime spectroscopy Part 1:On the interpretation of multi-component analysis studied by Monte Carlo simulated model spectra[J]. Nucl. Instrum. Meth. A,1996,381: 128-140.
    [77]M. J. Puska. Ab-initio calculation of positron annihilation rates in solids[J]. J. Phys.:Condens. Matter.,1991,3:3455-3469.
    [78]B. Bureau, X. H. Zhang, F. Smektala, J. Adam, J. Troles, H. L. Ma, C. Boussard-Pledel, J. Lucas, P. Lucas, D. L. Coq, M. R. Riley, J. H. Simmons. Recent advances in chalcogenide glasses[J]. J. Non-Crystal. Solids,2004,345&346:276-283.
    [79]A. Zakery, S.R. Elliott. Optical nonlinearities in chalcogenide glasses and their applications[J]. Springer-Verlag Berlin Heidelberg,2007.
    [80]物理百年.http://it.dgzx.net/personalweb/20032/wj/web/wuli.htm.
    [81]李政.拉曼散射理论及其应用[D].北京:北京工业大学,2005.
    [82][日]中本一雄 著,黄德如,汪仁庆 译.无机和配位化合物的红红外和拉曼光谱[M].北京:化学工业出版社,1986:1-7.
    [83]Yong Wang, Mitsutaka Nakamura, Osamu Matsuda, Kazuo Murase, Raman-spectroscopy studies on rigidity percolation and fragility in Ge-(S,Se) glasses[J]. Journal of Non-Crystalline Solids,2000,266:872-875.
    [84]P.J. Klar, L. Chen, M. Gungerich, W. Heimbrodt, D. Kempe, N. Oberender, M. Froba, Template-induced structural phase transition of GeS2 and GeSe2 in organic-inorganic hybrid mesostructures[J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002,13(2-4):1259-1263.
    [85]P. Tronc, M. Bensoussan, A. Brenac, Optical-Absorption Edge And Raman-Scattering In GexSe1-x Glasses[J]. PHYSICAL REVIEW B,1973,8(12):5947-5956.
    [86]J.E. Griffiths, G.P. Espinosa, J.P. Remeika, J.C. Phillips, Reversible Reconstruction And Crystallization Of GeSe2 Glass[J]. SOLID STATE COMMUNICATIONS,1981,40(12): 1077-1080.
    [87]J.E. Griffiths, G.P. Espinosa, J.P. Remeika, J.C. Phillips, Reversible Quasi-Crystallization In GeSe2 Glass[J]. PHYSICAL REVIEW B,1982,25(2):1272-1286.
    [88]Yong Wang, Osamu Matsuda, Koichi Inoue, Osamu Yamamuro, Takasuke Matsuo, Kazuo Murase, A Raman scattering investigation of the structure of glassy and liquid GexSe1-x[J]. JOURNAL OF NON-CRYSTALLINE SOLIDS,1998,234:702-707.
    [89]Pierre Lucas, Ellyn A. King, Ozgur Gulbiten, Jeffery L. Yarger, Emmanuel Soignard, Bruno Bureau, Bimodal phase percolation model for the structure of Ge-Se glasses and the existence of the intermediate phase[J]. PHYSICAL REVIEW B,2009,80(21)214114-1-8.
    [90]John C. Mauro, Arun K. Varshneya, Multiscale modeling of GeSe2 glass structure[J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY,2006,89(7):2323-2326.
    [91]P. Boolchand, X. Feng, W.J. Bresser, Rigidity transitions in binary Ge-Se glasses and the intermediate phase[J]. JOURNAL OF NON-CRYSTALLINE SOLIDS,2001,293:348-356.
    [92]Yong Wang, Kouhei Tanaka, Toshiyuki Nakaoka, Kazuo Murase, Evidence of nanophase separation in Ge-Se glasses[J]. JOURNAL OF NON-CRYSTALLINE SOLIDS,2002,299: 963-967.
    [93]Nor Aiyyuhal Jemali, Hasan Abu Kassim, V. Radhika Devi, Keshav N. Shrivastava, Ab initio calculation of vibrational frequencies of GexSe1-x glass[J]. JOURNAL OF NON-CRYSTALLINE SOLIDS,2008,354(15-16):1744-1750.
    [94]Tecklenburg, M.M., et al., Effect of copper on the local structure of GeSe2Cux probed by Raman spectroscopy[J]. JOURNAL OF NON-CRYSTALLINE SOLIDS,2003.328(1-3): 40-47.
    [95].Guo H.T., et al., Raman spectroscopic analysis of GeS2-Ga2S3-PbI2 chalcohalide glasses[J]. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2007,67(5):1351-1356.
    [96].Haizheng T., et al., Micro-structural study of the GeS2-In2S3-KCl glassy system by Raman scattering[J]. Spectrochimica Acta Part A,2006,64:1039-1045.
    [97]刘东红,刘裕勤,正电子湮没技术,现代物理知识,12(3):40-41.
    [98]O. Shpotyuk, J. Filipecki, R. Golovchak, A. Kovalskiy, M. Hyla. Application of positron annihilation lifetime technique for y-irradiation stresses study in chalcogenide vitreous semiconductors[J]. Adv. Eng. Mater.2002,4:571-574.
    [99]O.I. Shpotyuk, J. Filipecki, A. Kozdras, T.S. Kavetskyy. Radiation-induced defect formation in chalcogenide glasses[J].J. Non-Crysal. Solids,2003,326&327:268-272.
    [100]A. Kozdras, J. Filipecki, M. Hyla, O. Shpotyuk, A. Kovalskiy, S. Szymura. Nanovolume positron traps in glassy-like As2Se3[J]. J. Non-Crysal. Solids,2005,351:1077-1081.
    [101]H. E. Hansen, K. Petersen. Positron annihilation in Ge-S glasses[J]. Appl. Phys. A,1981,26: 35-38.
    [102]J. R. Qiu, J. Si, K. Hirao. Photoinduced stable second-harmonic generation in chalcogenide glasses[J]. Opt. Lett.,2001,26:914-916.
    [103]Q. M. Liu, F. X. Gan. Photobleaching in amorphous GeS2 thin films[J]. Mater. Lett.,2002, 53:411-414.
    [104]K. Tanaka. Photo-induced phenomena in chalcogenide glass:Comparison with those in oxide glass and polymer[J]. J. Non-Crystal. Solids,2006,352:2580-2584.
    [105]M. Guignard, V. Nazabal, F. Smektala, H. Zeghlache, A. Kudlinski, Y. Quiquempois, G. Martinelli. High second-order nonlinear susceptibility induced in chalcogenide glasses by thermal poling[J]. Opt. Express,2006,14:1524-1532.
    [106]B.V. Kobrin, V.P. Shantarovich, T.I. Kim, M.D. Mikhailov, Z.U. Borisova. Effects of copper and lead on the properties of As-Ge-X glasses (X=S, Se, Te) [J]. J. Non-Cryst. Solids,1987, 89:263-272.
    [107]J. H. Lee, A. P. Owens, A. Pradel, A. C. Hannon, M. Ribes, S. R. Elliott. Structure determination of Ag-Ge-S glasses using neutron diffraction [J]. Phys. Rev. B,1996,54: 3895-3909.
    [108]I. Yonenaga, M. Sakurai. Bond lengths in Ge1-xSix crystalline alloys grown by the Czochralski method[J]. Phys. Rev. B,2001,64:113206.
    [109][德]H.舒尔兹,黄照柏译.玻璃的本质结构和性质[M].北京:中国建筑工业出版社,1984.
    [110]Tongsuo Yuan, Yan Huang, Shujuan Dong, Tingji Wang, Minggui Xie, Infrared reflection of conducting polyaniline polymer coating[J]. Polymer Testing,2002,21:641-646.
    [111]Z.U. Borisova, J. George Adashka. Glassy semiconductors[M]. New York:Plenum press, 1981:1-2.
    [112]J. R. Qiu, J. Si, K. Hirao. Photoinduced stable second-harmonic generation in chalcogenide glasses[J]. Opt. Lett.,2001,26:914-916.
    [113]Q. M. Liu, F. X. Gan. Photobleaching in amorphous GeS2 thin films[J]. Mater. Lett.,2002, 53:411-414.
    [114]K. Tanaka. Photo-induced phenomena in chalcogenide glass:Comparison with those in oxide glass and polymer[J]. J. Non-Crystal. Solids,2006,352:2580-2584.
    [115]F. X. Gan. Structure and properties of amorphous thin film for optical data storage[J]. J. Non-Crystal. Solids,2008,354:1089-1099.
    [116]Changgui Lin, Haizheng Tao, Xiaolin Zheng, Second-harmonic generation in IR-transparent B-GeS2 crystallized glasses[J]. OPTICS LETTERS,2009,34(4):437-439.
    [117]I. Yonenaga, M. Sakurai. Bond lengths in Ge1-xSix crystalline alloys grown by the Czochralski method[J]. Phys. Rev. B,2001,64:113206.
    [118]S.Z. Zhu, H.L. Ma, M. Matecki, X.H..Zhang, J.L. Adam, J. Lucas. Controlled crystallization of GeS2-Sb2S3-CsCl glass for fabricating infrared transmitting glass-ceramics[J]. J. Non-Crystal. Solids,2005,351:3309-3313.
    [119]S. K. Kurtz, T. T. Perry. A powder technique for the evaluation of nonlinear optical materials[J]. J. Appl. Phys.,1968,39:3798-3813.
    [120]F. Xia, X. H. Zhang, J. Ren, G. R. Chen. H. L. Ma, J. L. Adam. Glass formation and crystallization behavior of a novel GeS2-Sb2S3-PbS chalcogenide glass system[J]. J. Am. Ceram. Soc,2006,89:2154-2157.
    [121]J. Jerphagnon, S. K. Kurtz. Optical nonlinear susceptibilities:Accurate relative values for quartz, ammonium, dihydrogen phosphate, and potassium dihydrogen phosphate[J]. Phys. Rev. B,1970,1:1739-1744.
    [122]I. Shoji, T. Kondo, A. Kitamoto, M.i Shirane, R. Ito. Absolute scale of second-order nonlinear-optical coefficients [J]. J. Opt. Soc. Am. B,1997,14:2268-2294.
    [123]R. L. Sutherland. Handbook of nonlinear optics[M]. Marcel Dekker, Inc. New York·Basel 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700