多酰胺化合物的合成及其对汞离子的识别性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为典型的重金属离子,人们很早就对汞离子的毒性有所认识,寻找能快速准确检测汞离子的方法具有重要意义。分子荧光传感能将分子间的相互作用转变成为荧光信号传递给外界,因为它兼具便捷、专一和灵敏的优点,并能对化学体系和生命体系中的分析对象进行适时原位检测,近年来备受关注,成为超分子化学领域中最重要的研究课题之一。一般的荧光探针(包括荧光淬灭型和荧光增强型)的荧光强度容易受外界因素的影响,基于电荷转移(CT)机理的新型探针能够较好的消除这些因素的干扰,提供更加准确的测量数据。本论文以酰胺基团为识别基团,合成了一系列酰胺化合物作为汞离子荧光探针,检测了它们对金属离子的识别特性。主要研究内容包括:
     1.合成了6种具有潜在识别能力的双臂及三臂酰胺化合物(化合物1—6),经过核磁和质谱表征,确定了它们的结构。并且利用水热结晶法组装了超分子有机晶体(化合物7),研究了氢键对超分子结构的稳定和分子荧光效率的影响。
     2.讨论了浓度、pH值对酰胺化合物1—6的荧光光谱的影响,确定了测量荧光的最佳浓度和稳定pH区间。在此基础上,研究了化合物1—6对常见阴离子和金属离子的识别效果,研究表明,汞离子对化合物2有很强的荧光淬灭作用,向化合物5、6中加入汞离子引起荧光发射峰位红移。
     3.对化合物5、6的汞离子识别性能进行了详细研究。研究表明,化合物5、6对汞离子具有专一识别性,通过酰胺脱氢与汞离子配位,根据分子内电荷转移(ICT)原理,加入汞离子后分子荧光峰位红移,在紫外灯照射下肉眼可以观察到荧光颜色的变化,通过荧光强度的变化和Job法共同确定了化合物5、6与汞离子的配位比为1:1,并且其他金属离子的存在对汞离子识别不构成干扰。
As a typical heavy metal, Mercury has been known as a toxic metal since antiquity. To monitor and prevent mercury pollution, efforts are being made worldwide to develop new mercury detecting strategies for monitoring mercuric ion from the environment and biological samples, now several techniques are available. Fluorescent molecular sensing has attracted much attention over the years for its many inherent merits including high specificity and high sensitivity. As a link of material science and analysis chemistry, the study in fluorescent sensor and novel sensor material has received a growing attention with the rapid development of cross subject. This technology has been widely used for the real-time in situ detection of the molecular events both in the environmental chemical, analytic chemistry, and bio-medicinal science. The fluorescence intensities of common probes (both fluorescence quenching and fluorescence enhancement) are influenced by experimental factors such as photobleaching, excitation intensity, the micro-environment around the dye, and the concentration of the dye. The new probes based on the mechanism of charge transfer (CT) can normalize the variation of these effects and provide more robust and precise measurement results. In this work, the design, synthesis, and photophysical properties of six amide receptor fluorescent molecular sensors are presented. Moreover, sensing properties are also investigated. The results are shown as follows:
     1. A series of novel fluorescent probes for metal ions with amide receptor are designed and synthesized. A supramolecular complex has been synthesized under hydrothermal condition. This complex shows photoluminescence property indicating that it may be applied in the development of luminescent materials.
     2. The influence of concentration and pH value is investigated. On this basis, we find a new probe (compound 2) based on the mechanism of photoinduced electron transfer (PET) can be used to indicate Hg (Ⅱ) for its "ON-OFF" property. We also get another two new probes for their red-shift in fluorescence-emission after adding the Hg (Ⅱ).
     3. The amide receptor derived from 1,4-benzenedicarbonyl chloride and N-phenyl-o-phenylenediamine (compound 5) and another amide receptor derived from benzene-1,3,5-tricarbonyl chloride and N-phenyl-o-phenylenediamine (compound 6) could be used to specifically bind Hg2+ ion in acetonitrile solution by an amide deprotonation mechanism. We find these new fluorescent probes sense Hg (II) by means of a spctrofluorometer with a large red-shift in emission (blue to green). Investigated results revealed that only Hg (II) can significantly be discerned.
引文
[1]Pedersen C J. Cyclic polyethers and their complexes with metal salts [J]. J. Am. Chem. Soc.,1967,89(26):7017-7036.
    [2]Pedersen C J. Macrocyclic Polyethers for Complexing Metals [J]. Aldrichimica Acta, 1971,4(1):1.
    [3]Cram D J, Cram J M. Host-Guest Chemistry:Complexes between organic compounds simulate the substrate selectivity of enzymes [J]. Science,1974, 183(4127):803-809.
    [4]Cram D J. Cavitands:Organic Hosts with Enforced Cavities [J]. Science,1983, 219(4589):1177-1183.
    [5]Helgeson R C, Koga K, Timko J M, et al. Complete optical resolution by differential complexation in solution between a chiral cyclic polyether and an. alpha.-amino acid [J]. J. Am. Chem. Soc.,1973,95(9):3021-3023.
    [6]Cram D J. Preorganization-From Solvents to Spherands [J]. Angewandte Chemie International Edition in English,1986,25(12):1039-1057.
    [7]Dietrich B, Lehn J M, Sauvage J P. Diaza-polyoxa-macrocycles et macrobicycles [J]. Tetrahedron Letters,1969,10(34):2885-2888.
    [8]Lehn J M. Supramolecular Chemistry:Receptors, Catalysts, and Carriers [J]. Science,1985,227(4689):849-856.
    [9]Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices [J]. Angewandte Chemie International Edition in English,1988,27(1):89-112.
    [10]Steed J W, Atwood J L. Supramolecular Chemistry [M]. Second Edition. John Wiley & Sons, Ltd.2009.
    [11]McQuade D T, Pullen A E, Swager T M. Conjugated Polymer-Based Chemical Sensors [J]. Chem. Rev.,2000,100(7):2537-2574.
    [12]Martinez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem. Rev.,2003,103(11):4419-4476.
    [13]Pu L. Fluorescence of Organic Molecules in Chiral Recognition [J]. Chem. Rev., 2004,104(3):1687-1716.
    [14]de Silva A P, Nimal Gunaratne H Q, Gunnlaugsson T, et al. Signaling Recognition Events with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997, 97(5):1515-1566.
    [15]Liu S, Pestano J P C., Wolf C. Enantioselective Fluorescence Sensing of Chiral α-Amino Alcohols [J]. J. Org. Chem.2008,73:4267-4270.
    [16]Ngwendson J N, Banerjee A. A Zn(II) ion selective fluorescence sensor that is not affected by Cd(II) [J]. Tetrahedron Letters,2007,48:7316-7319.
    [17]Gawley R E, Mao H, Haque M M, et al. Visible Fluorescence Chemosensor for Saxitoxin [J]. J. Org. Chem.2007,72:2187-2191.
    [18]Peng X, Wu Y, Fan J, et al. Colorimetric and Ratiometric Fluorescence Sensing of Fluoride:Tuning Selectivity in Proton Transfer [J]. J. Org. Chem.2005, 70:10524-10531.
    [19]de Silva A P, Fox D B, Moody T S, et al. The development of molecular fluorescent switches [J]. Trends in Biotechnology,2001,19(1):29-34.
    [20]de Silva A P, McClenaghan N D. Molecular-Scale Logic Gates [J]. Chemistry-A European Journal,2004,10(3):574-586.
    [21]de Silva A P, de Silva S A. Fluorescent signalling crown ethers:'switching on'of fluorescence by alkali metal ion recognition and binding in situ [J]. J. Chem. Soc., Chem. Commun.,1986:1709-1710.
    [22]de Silva A P, Gunaratne H Q N. Molecular photoionic switches with an internal reference channel for fluorcsent pH sensing applications [J]. New J. Chem.,1996, 20:871-880.
    [23]de Silva A P, Gunaratne H Q N, McCoy C P. A molecular photoionic AND gate based on fluorescent signaling [J]. Nature,1993,364:42-44.
    [24]Magri D C, Brown G J, McClean G D, et al. Communicating Chemical Congregation:A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype [J]. J. Am. Chem. Soc.,2006,128(15):4950-4951.
    [25]Song K C, Kim J S, Park S M, et al. Fluorogenic Hg2+-Selective Chemodosimeter Derived from 8-Hydroxyquinline [J]. Org. Lett.,2006,8(16):3413-3416.
    [26]Zhan X Q, Qian Z H, Zheng H, et al. Rhodamine thiospirolactone. High selevtive and sensitive reversible sensing of Hg(II) [J]. J. Chem. Soc., Chem. Commun. 2008:1859-1861.
    [27]Lin W Y, Cao X W, Ding Y D, et al. A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamede-alkyne scaffold [J]. J. Chem. Soc., Chem. Commun.,2010:3529-3531.
    [28]Rurack K. Flipping the light switch'ON'-the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions [J]. Spectrochimica Acta Part A,2001,57(11):2161-2195.
    [29]Grynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties [J]. J. Biol. Chem,1985, 260:3440-3450.
    [30]Xu Z C, Xiao Y, Qian X H, et al. Ratiometric and Selective Fluorescent Sensor for CuII Based on Internal Charge Transfer (ICT) [J]. Org. Lett.2005, 7(5):889-892.
    [31]Xu Z C, Qian X H, Cui J N. Colorimetric and Ratiometric Fluorescent Chemosensor with a Large Red-Shift in Emission:Cu(II)-Only Sensing by Deprotonation of Secondary Amines as Receptor Conjugated to Naphthalimide Fluorophore [J]. Org. Lett.2005,7(14):3029-3032.
    [32]Martinez R, Espinosa A, Tarraga A, et al. New Hg2+ and Cu2" Selective Chromo and Fluoroionophore Based on a Bichromophoric Azine [J]. Org. Lett.2005, 7(26):5869-5872.
    [33]Li H W, Li Y, Dang Y Q, et al. An easily prepared hypersensitive water-soluble fluorescent probe for mercury (II) ions [J]. J. Chem. Soc, Chem. Commun., 2009:4453-4455.
    [34]Sun Y J, Liu Y, Turro C. Ultrafast Dynamics of the Low-Lying 3MLCT States of [Ru(bpy)2(dppp2)]2+[J]. J. Am. Chem. Soc.,2010,132(16):5594-5595.
    [35]Jager M, Kumar R J, Gorls H, et al. Facile Synthesis of Bistridentate Ru(II) Complexs Based on 2,6-Di(quinolin-8-yl)pyridyl Ligands:Sensitizers with Microsecond 3CT Excited State Lifetimes [J]. Inorg. Chem.,2009,48(7):3228-3238.
    [36]Chen F F, Bian Z Q, Liu Z W, et al. Highly Efficient Sensitized Red Emission from Europium (III) in Ir-Eu Bimetallic Complexes by 3MLCT Energy Transfer [J]. Inorg. Chem., 2008,47(7):2507-2513.
    [37]Rettig W. Charge Separation in Excited States of Decoupled Systems-TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis [J]. Angewandte Chemie International Edition in English,1986,25(11):971-988.
    [38]Collins G E, Choi L S, Callahan J H. Effect of Solvent Polarity, pH, and Metal Complexation on the Triple Fluorescence of 4-(N-1,4,8, 11-tetraazacyclotetradecyl)benzonitrile [J]. J. Am. Chem. Soc., 1998,120(7):1474-1478.
    [39]Kim J S, Choi M G, Song K C, et al. Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide [J]. Org. Lett.2007, 9(6):1129-1132.
    [40]Takakusa H, Kikuchi K, Urano Y, et al. Design and Synthesis of an Enzyme-Cleavable Sensor Molecule for Phosphodiesterase Activity Based on Fluorescence Resonance Energy Transfer [J]. J. Am. Chem. Soc.,2002,124(8):1653-1657.
    [41]Lee M H, Kim H J, Yoon S, et al. Metal Ion Induced FRET OFF-ON in Tren/Dansyl-Appended Rhodamine [J]. Org. Lett.2008,10(2):213-216.
    [42]Marti nez-Manez R, Sancenon F. Fluorogenic and Chromogenic Chemosensors and Reagents for Anions [J]. Chem. Rev.,2003,103(11):4419-4476.
    [43]Fabbrizzi L, Licchelli M, Pallavicini P, et al. An Anthracene-Based Fluorescent Sensor for Transition Metal Ions [J]. Angewandte Chemie International Edition in English, 1994,33 (19):1975-1977.
    [44]Moon S Y, Youn N J, Park S M, et al. Diametrically Disubstituted Cyclam Derivative Having Hg2+-Selective Fluoroionophoric Behaviors [J]. J. Org. Chem.2005, 70:2394-2397.
    [45]Chen Q Y, Chen C F. A New Hg2+-Selective Fluorescent Sensor on a Dansyl Amide-Armed Calix[4]-aza-crown [J]. Tetrahedron Letters,2005,46(1):165-168.
    [46]Wang J B, Qian X H. Two Regioisomeric and Exlusively Selective Hg(Ⅱ) Sensor Molecules Composed of a Naphalimide Fluorophore and an σ-Phenylenediamine Derived Triamide Receptor [J]. J. Chem. Soc., Chem. Commun.,2006:109-111.
    [47]Wang J B, Qian X H, Cui J N. Detecting Hg2+ Ions with an ICT Fluorescent Sensor Molecule:Remarkable Emission Spectra Shift and Unique Selectivity [J]. J. Org. Chem.2006,71:4308-4311.
    [48]Kim S H, Kim J S, Park S M, et al. Hg2+-Selective OFF-ON and Cu2+-Selective ON-OFF Type Fluoroionophore Based upon Cyclam [J]. Org. Lett.,2006,8(3):371-374.
    [49]Shiraishi Y, Sumiya S, Kohno Y, et al. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) [J]. J. Org. Chem. 2008,73:8571-8574.
    [50]Togashi M, Urano Y, Kojima H, et al. Sensitie Detection of Acrolein in Serum Using Time-Resolved Luminescence [J]. Org. Lett.2010,12(8):1704-1707.
    [51]Sun S S, Lees A J, Zavalij P Y. Highly Sensitive Luminescent Metal-Complex Receptors for Anionsthrough Charge-Assisted Amide Hydrogen Bonding [J]. Inorg. Chem.,2003, 42:3445-3453.
    [52]Rajput L, Singha S, Biradha K. Comparative Structural Studies on Homologues of Amides and Reverse Amides:Unprecedented 4-fold Interpenetrated Quartz Network, New β-Sheet, and Two-Dimensional Layers [J]. Crystal Growth & Design,2007,7(12):2788-2795.
    [53]Shinpei Hasegawa, Satoshi Horike, Ryotaro Matsuda, et al. Three-Dimensional Porous Coordination Polymer Functionalized with Amide Groups Based on Tridentate Ligand: Selective Sorption and Catalysis [J]. J. Am. Chem. Soc.,2007,129(9):2607-2614.
    [54]Palmans A R A, Vekemans J A J M, Kooijman H, et al. Hydrogen-bonded porous solid derived from trimesic amide [J]. J. Chem. Soc., Chem. Commun.,1997:2247-2248.
    [55]STEINER T. The Hydrogen Bond in the Solid State [J]. Angewandte Chemie International Edition in English,2002,41(1):48-76.
    [56]DESIRAJU G R. Hydrogen Bridges in Crystal Engineering:Interactions without Borders [J]. Ace. Chem. Res.2002,35(7):565-573.
    [57]BONG D T, CLARK T D, GRANJA J R, et al. Self-Assembling Organic Nanotubes [J]. Angewandte Chemie International Edition in English,2001,40(6):988-1011.
    [58]SEMETEY V, DIDIERJEAN C, BRIAND J P, et al. Self-Assembling Organic Nanotubes from Enantiopure Cyclo-N, N'-Linked Oligoureas:Design, Synthesis, and Crystal Structure [J]. Angewandte Chemie International Edition in English,2002,41(11):1895-1898.
    [59]GHADIRI M R, KOBAYASHI K, GRANJA J R, et al. The Structural and Thermodynamic Basis for the Formation of Self-Assembled Peptide Nanotubes [J]. Angewandte Chemie International Edition in English,1995,34(1):93-95.
    [60]Chen W, ZHENG J M, CHE Y X. Preparation and Crystal Structure of Monohydrate D-tartaric Acid Aniline Adduct [J]. Journal of Synthetic Crystals,2005,34(2):265-269.
    [61]HOENER M J, HOLMAN K T, WARD M D. Lamellae-Nanotube Isomerism in Hydrogen-Bonded Host Frameworks [J]. Angewandte Chemie International Edition in English,2001,40(21):4045-4048.
    [62]CARRASCO H, FOCES-FOCES C, PEREZ C, et al. Tubular Hydrogen-Bonded Networks Sustained by Water Molecules [J]. J. Am. Chem. Soc.,2001,123(48):11970-11981.
    [63]WANG X, LIU S Y, LIU L S, et al. Synthesis of Schiff Base with Hydrogen-Bond Induced and Its Optical Properties [J]. Journal of Wuhan University (Natural Science Edition), 2009,5:521-525.
    [64]YE K Q, WU Y, GUO J H, et al. Luminescent 1,2-Bis(2-pyridinecarboxamido) benzene Zinc(Ⅱ) Complexes [J]. Chemical Journal of Chinese Universities,2005,1:93-96.
    [65]SEELA F, WIGLENDA T, ROSEMEYER H.7-Deaza-2'-deoxyxanthosine Dihydrate Forms Water-Filled Nanotubes with C-H…O Hydrogen Bonds [J]. Angewandte Chemie International Edition in English,2002,41(4):603-605.
    [66]DODEIGNE C, THUNUS L, LEJEUNE R. Chemiluminescence as Diagnostic Tool. A review. [J]. Talanta,2000,51(3):415-439.
    [67]NEUMANN-SPALLART M, KALYANASUNDARAM K. Photoelectrochemical Cells for the Production of Hydrogen and Hydrogen Peroxide via Photoredox Reactions [J]. J. Phys. Chem.,1982, 86(14):2681-2690.
    [68]PILENI M P, GRATZEL M. Zinc Light-induced Redox Reactions of Proflavine in Aqueous and Micellar Solution [J]. J. Phys. Chem.,1980,84(19):2402-2406.
    [69]ARA I, BAHIJ F E. Synthesis and Crystal Structure of a Zinc Tris(xanthate) Anionic Derivative with a Diaminoacridine Cation [J]. Inorganic Chemistry Communications 2004, 7(10):1091-1094.
    [70]PEIXOTO P, ZEGHIDA W, CARREZ D, et al. Unusual Cellular Uptake of Cytotoxic 4-hydroxymethyl-3-aminoacridine [J]. European Journal of Medicinal Chemistry,2009, 44(11):4758-4763.
    [71]He J J, Quiocho F A. A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor [J]. Science,1991,251:1479-1481.
    [72]Beer P D, Gale P A. Anion Recognition and Sensing:The State of the Art and Future Perspectives [J]. Angewandte Chemie International Edition in English,2001, 40(3):486-516.
    [73]Buhlmann P, Pretsch E, Bakker E. Carrier-Based Ion-Selective Electrodes and Bulk Optodes.2. Ionophores for Potentiometric and Optical Sensors [J]. Chem. Rev.,1998, 98(4):1593-1688.
    [74]Kral V, Sessler J L. Molecular recognition via base-pairing and phosphate chelation. Ditopic and tritopic sapphyrin-based receptors for the recognition and transport of nucleotide monophosphates [J]. Tetrahedron,1995,51(2):539-554.
    [75]Kavallieratos K, Crabtree R H. Catalysis of aldehyde imination by hydrogen bonding with a simple organic disulfonamide receptor [J]. J. Chem. Soc., Chem. Commun., 1999:2109-2110.
    [76]Hubner G M, Glaser J, Seel C,et al. High-Yielding Rotaxane Synthesis with an Anion Template [J]. Angewandte Chemie International Edition,1999,38(3):383-386.
    [77]Beer P D, Drew M G B, Gradwell K. Synthesis and anion coordination chemistry of new calix[4]arene pyridinium receptors [J]. J. Chem. Soc., Perkin Trans.2, 2000(3):511-520.
    [78]Chrisstoffels L A J, Jong F, Reinhoudt D N, et al. Facilitated Transport of Hydrophilic Salts by Mixtures of Anion and Cation Carriers and by Ditopic Carriers [J]. J. Am. Chem. Soc.,1999,121(43):10142-10151.
    [79]Shioya T, Nishizawa S, Teramae N. Anion Recognition at the Liquid-Liquid Interface. Sulfate Transfer across the 1,2-Dichloroethane-Water Interface Facilitated by Hydrogen-Bonding Ionophores [J]. J. Am. Chem. Soc.,1999,120(44):11534-11535.
    [80]Tchounwou P B, Ayensu W K, Ninashcili N, et, al. Environmental exposure to mercury and its toxicopathologic implications for public health [J]. Environ. Toxicol. Chem., 2003,18:149-175.
    [81]Grandjean P, Heihe P, White R F, et, al. Envirion. Res.,1998,77:165-172.
    [82]Cizdziel J. V., Gerstenberger S. Determination of total mercury in human hair and animal fur by combustion atomic absorption spectrometry [J]. Talanta,2004,64:918-921.
    [83]Harrington C F, Merson S A, Silva T M D. Method to reduce the memory effect of mercury in the analysis of fish tissue using inductively coupled plasma mass spectrometry [J]. Analytica Chimica Acta,2004,505:247-254.
    [84]Coronado E, Gala'n-Mascarus J R, Marti-Gastaldo C, et, al. Reversible colorimetric probes for mercury sensing [J]. J. Am. Chem. Soc.,2005,127(46):12351-12356.
    [85]Yoon S, Albers A E, Wong A P, et, al. Screening mercury levels in fish with a selective fluorescent chemosensor [J]. J. Am. Chem. Soc.,2005,127:16030-16031.
    [86]Nolan E M, Racine M E, Lippard S J. Selective Hg(II) detection in aqueous solution with thiol derivatized fluoresceins [J]. Inorganic Chemistry,2006,45:2742-2749.
    [87]Zhang G X, Zhang D Q, Yin S W, et, al.1,3-dithiole-2-thione derivatives featuring an anthracene unit:new selective chemo dosimeters for Hg(II) ion [J]. J. Chem. Soc. Chem. Commun.,2005:2161-2163.
    [88]Wu J S, Hwang I C, Kim K S, et, al. Rhodamine-based Hg2+-selective chemodosimeter in aqueous solution:fluorescent OFF-ON [J]. Org. Lett.,2007,9(5):907-910.
    [89]Ros-Lis J V, Marcos M D, Martinez-manez R, et, al. A regenerative chemodosimeter based on meteal-induced dye formaton for the highly selective and sensitve optical determination of Hg2+ ions [J]. Angewandte Chemie International Edition in English, 2005,44:4405-4407.
    [90]Gopala K D, Anant K S, Uma S R, et, al. Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles [J]. J. Am. Chem. Soc.,2008, 130(25):8038-8043.
    [91]Wegner S V, Okesli A, Chen P, et, al. Design of an emission ratiometric biosensor form MerR family proteins:A sensitive and selective sensor for Hg2+ [J]. J. Am. Chem. Soc., 2007,129(12):3474-3475.
    [92]Nuriman, Kuswandi B, Verboom W. Selective chemosensor for Hg(II)ions based on tris[2-(4-phenyldiazenyl)phenylaminoethoxy]cyclotriveratrylene in aqueous samples [J]. Analytica Chimica Acta,2009,655:75-79.
    [93]Wu D Y, Huang W, Duan C Y, et, al. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media [J]. Inorganic Chemistry,2007,46:1538-1540.
    [94]Guo X F, Qian X H, Jia L H. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution [J]. J. Am. Chem. Soc.,2004, 126(8):2272-2273
    [95]Yu Y, Lin L R, Yang K B, et, al. p-Dimethylaminobenzaldehyde thiosemicarbazone:A simple novel selective and sensitive fluorescent sensor for mercury (II) in aqueous solution [J]. Talanta,2006,69:103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700