CdTe量子点/聚电解质多层膜的制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文中,我们首先制备了CdTe量子点/聚电解质多层膜,然后利用CdTe量子点/聚电解质多层膜的荧光特性,开拓了其在有机气态小分子与有机磷农药检测领域的应用。论文主要包括三部分内容:
     论文第一章综述了量子点的结构、光学特性,制备方法,介绍了量子点在各个研究领域中的应用现状。
     论文第二章中,我们利用层层自组装法制备CdTe量子点/聚电解质多层膜,并对其进行结构表征和光学特性的检测。甲醛对CdTe荧光量子点/聚电解质多层膜的荧光有猝灭作用。在优化了反应时间、猝灭温度等反应条件后,对气态甲醛进行了检测,检测甲醛的线性范围为5-500ppb,检出限为1ppb。
     论文第三章中,我们将CdTe荧光量子点/聚电解质多层膜用于农药中有机磷的检测。以对氧磷为测定组分,由于其含有的磷氧双键对CdTe量子点的荧光有增强作用,根据CdTe荧光量子点/聚电解质多层膜荧光强度的变化可以检测对氧磷的浓度。
Semiconductor quantum dots (QDs) have drawn widespread attention and exploited in a variety of multicolor imaging for bio-sample, vivo tissue and bio-fluorescence probe, especially in fluorescence sensors in the past decade. In the synthesis approaches of quantum dots, the aqueous syntheses are easier controlled, higher repeated, lower cost. It is easily to modify the surface of QDs with different functional groups using the aqueous syntheses. QDs provide robust and stable signal intensity, narrow emission spectra, and the broad emission wavelength which can be turned continuously by changing the size and component of the QD particles.
     In this work, CdTe quantum dots (QDs)/polyelectrolyte multilayer films (QDMF) were assembled by layer-by-layer (LBL) deposition of oppositely charged CdTe QDs and poly(dimethyldiallylemmonium chloride) (PDDA). Based on the fluorescence quenching of CdTe quantum dots (QDs)/polyelectrolyte multilayer films, a novel method for the direct detection of gaseous formaldehyde (QDMF) was proposed in this paper. Formaldehyde can quench the fluorescence of CdTe QDs multilayer films effectively. Under the optimization conditions, the fluorescence intensity of QDs decreased linearly with the increase of formaldehyde concentration in the range of 5–500 ppb. The detection limit for formaldehyde was 1 ppb. The quenching mechanism of CdTe QDs multilayer films by formaldehyde was also studied in detail. This proposed approach was simple, rapid and had excellent selectivity and sensitivity for the detection of gaseous formaldehyde
     CdTe quantum dots (QDs)/polyelectrolyte multilayer films were also used as sensors for paraoxon detection. Paraoxon can enhance the fluorescence intensity of CdTe QDs multilayer films effectively. Enhancements of photoluminescence of QDs is most likely due to the passivation of surface traps by ligand groups (P=O group of paraoxon). Under the optimization conditions, the fluorescence intensity of QDs multilayer films increased linearly with the increase of paraoxon concentration in the range of 5-200 ppb. The detection limit for paraoxon was 2 ppb. This approach was simple, rapid and had excellent selectivity and sensitivity for the detection of organophosphates.
引文
[1] WANG Y., HERRON N. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties [J].J. Phys. Chem., 1991, 95:525-532.
    [2] ALIVISATOS A P. Semiconductor clusters, nanocrystals, and quantum dots [J]. Science, 1996, 271: 933-937.
    [3] BRUS L E. Electronic wave functions in semiconductor clusters: experiment and theory [J]. J. Phys. Chem., 1986, 90:2555-2559.
    [4] HENGLEIN A. Electronics of colloidal nanometer particles [J]. Ber. Bunsenges. Phys. Chem., 1995, 99: 903-913.
    [5] HALPERIN W P. Quantum size effects in metal particles [J]. Rev. of Modern Phys., 1986, 58: 533-606.
    [6] BALL P., GARWIN, L. Science at the atomic scale [J]. Nature, 1992, 355: 761-766.
    [7] HEATH J R, SHIANG J J. Covalency in semiconductor quantum dots [J]. Chem. Soc. Rev., 1998, 27: 65-71.
    [8] PENG X., MANN L., WICKHAM J., et al. Shape control of CdSe nanocrystals: from dots to rods and back [J]. Nature, 2000, 404, 59-61.
    [9] PENG Z A, PENG X G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor[J].J. Am. Chem. Soc., 2001, 123(1): 183-184.
    [10] HINES M A., GUYOT-SIONNEST P. Bright UV-blue luminescent colloidal ZnSe nanocrystals [J]. J. Phys. Chem. B, 1998, 102: 3655-3657.
    [11] MURRAY C B., NORRIS D J., BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites [J]. J. Am. Chem. Soc., 1993, 115: 8706-8715.
    [12] BAILEY R E., NIE S M. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size [J]. J. Am. Chem. Soc., 2003, 125: 7100-7106.
    [13] WANG X Y., MA Q., SU X G., et al. The preparation of CdTe nanoparticles andCdTe nanoparticle-labelled microspheres for biological applications [J]. Luminescence, 2006,22(1):1- 8.
    [14] MAMEDOVA N N., KOTOV N A., ROGACH A L., et al. Albumin-CdTe nanoparticle bioconjugates: preparation, structure, and interunit energy transfer with antenna effect [J]. Nano Lett., 2001, 1, 281-286.
    [15] BAILEY R E., SMITH A M., NIE S. Quantum dots in biology and medicine [J]. Physica E, 2004, 25: 1–12.
    [16] FUALK W P., TAYLOR G M. An immunocolloid method for the electron microscope [J]. Immunochemistry, 1971, 8:1081-1083.
    [17] A.SUKHANOVA, J.DEVY, L.VENTEO, et al. Biocompatible fluorescent nanocrystals for immunolabeling of membrane proteins and cells [J]. Anal. Biochem., 2004, 324: 60-67.
    [18] WANG C., MA Q., SU X G., Synthesis of CdTe Nanocrystals with Mercaptosuccinic Acid as Stabilizer [J]. J. Nanosci. Nanotechnol., 2008, 8: 4408–4414.
    [19] TESSLER N., MEDVEDEV V., KAZES M., et al. Efficient near-infrared polymer nanocrystal light-emitting diodes [J]. Science, 2002, 295: 1506-1508.
    [20] SUNDAR V C., LEE J., HEINE J R., et al. Full color emission from II-VI semiconductor quantum dot-polymer composites [J]. Adv. Mater., 2000, 12: 1102-1105.
    [21] SCHLAMP M C., PENG X G., ALIVISATOS A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer [J]. J. Appl. Phys., 1997, 82: 5837-5842.
    [22] MATTOUSSI H., RADZILOWSKI L H., DABBOUSI B O., et al. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals [J]. J. Appl. Phys., 1998, 83: 7965-7974.
    [23]DUAN X F., NIU C M., SAHI V., et al. Low-dimensional Systems and Nanostructures [J]. Nature, 2003, 425: 274-278.
    [24] GREENHAM N C., PENG X G.., ALIVISATOS A P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied byphoto- luminescence quenching and photoconductivity [J]. Phys. Rev. B., 1996, 54: 17628-17637.
    [25] TALAPIN D V., POZNYAK S K., GAPONIK N P., et al. Synthesis of surface-modified colloidal semiconductor nanocrystals and transport in nanocrystal-polymer composites [J]. Physica E, 2002, 14: 237-241.
    [26] HAN M., GAO X., SU J Z., et al. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules [J]. Nat. Biotechnol., 2001, 19: 631-635.
    [27] BRUCHEZ M., MORONNE M., GIN P., et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281: 2013-2016.
    [28] CHAN W C W., NIE S M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281: 2016-2018.
    [29] PENG X G.., XIAO M. Photoactivated CdSe nanocrystals as nanosensors for gases [J]. Nano Lett., 2003, 3: 819-822.
    [30] ELLIS A B. Probing polymer adsorption using an emissive semiconductor substrate: adsorption of poly(acrylic acid) onto cadmium selenide [J]. Macromolecules, 2000, 33: 582-589.
    [31] DING S., CHEN J., JIANG H., et al. Application of quantum dotantibody conjugates for detection of sulfamethazine residue in chicken muscle tissue [J]. J. Agric. Food Chem., 2006, 54(17): 6139-6142.
    [32] LAO U L., MULCHANDANI A., CHEN W. Simple conjugation and purification of quantum dot?antibody complexes using a thermally responsive elastin-protein L scaffold as immunofluorescent agents [J]. J. Am. Chem. Soc., 2006, 128 (46): 14756-14757.
    [33] GOLDMAN E R., SHAUGHNESSY T J., SOTO C M., et al. Detection of proteins cross-linked within galactoside polyacrylate-based hydrogels by means of a quantum dot fluororeagent [J]. Anal. and Bioanal. Chem., 2004, 380 (7-8): 880-886.
    [34] KERMAN K., ENDO T., TSUKAMOTO M., et al. Quantum dot-based immunosensor for the detection of prostate-specific antigen using fluorescence microscopy [J]. Talanta, 2007, 71 (4): 1494-1499.
    [35] ZHENG J., LI H W., YEUNG E S. Manipulation of single DNA molecules vialateral focusing in a PDMS/glass microchannel [J]. J. Phys. Chem. B., 2004, 108(29): 10357-10362.
    [36] ZHOU D., YING L., HONG X., et al. A compact functional quantum dot?DNA conjugate: preparation, hybridization, and specific label-free DNA detection [J]. Langmuir; 2008, 24(5): 1659-1664.
    [37] WU X Y., LIU H J., LIU J Q, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots [J]. Nat. Biotechnol., 2003, 21: 41-46.
    [38] JAIWAL J K., SIMON S M. Potentials and pitfalls of fluorescent quantum dots for biological imaging [J]. Trends in Cell Biology, 2004, 14: 497-504.
    [39] SATHE T R., AGRAWAL A., NIE S M. Mesoporous silica beads Embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation [J]. Anal. Chem., 2006, 78: 5627-5632.
    [40] STSIAPURA V., SUKHANOVA A., ARTEMYEV M., et al. Functionalized nanocrystal-tagged fluorescent polymer beads: synthesis, physicochemical characterization, and immunolabeling application [J]. Anal. Biochem., 2004, 334: 257-265.
    [41] GAO X H, NIE S M. In situ microscope FTIRS studies of CO adsorption on an individually addressable array of nanostructured Pt microelectrodes -- An approach of combinatorial analysis of anomalous IR properties [J]. J. Phys. Chem. B, 2003, 107:11575-11578.
    [42] ULMAN A., Formation and structure of self-assembled monolayers [J]. Chem.Rev., 1996, 96: 1533-1554.
    [43] DECHER G., HONG J D., et al. Buildup of ultrathin multilayer films by a self-assembly process : Consecutive adsorption of anionic and cationic bipolaramphiphiles [J]. Makromol Chem, Macromol Symp., 1991, 46: 321-327.
    [44] DECHER G., HONG J D., SCHMITT J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin. Solid. Films., 1992, 210/211: 831-835.
    [45] SUKHORUKOV G B., DONATH E. Layer-by-layer self assembly of polyelectrolytes on colloidal particles [J]. Colloids and Surfaces A,1998, 137: 253-266.
    [46] DONATH E.,SUKHORUKOV G B., et al Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes [J]. Angew Chemi International Edition, 1998, 37(16): 2201– 2205.
    [47] LVOV Y., ARIGA K., KUNITAKE T., et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption [J]. J. Am. Chem. Soc., 1995, 117: 6117 -6123.
    [48] DECHER G., LVOV Y., SCHMITT J., et al. New nanocomposite films for biosensors: layer-by-layer adsorbed films of polyelektrolytes, proteins or DNA [J]. Biosensors.Bioelectron., 1994, 9: 677-684.
    [49] CARUSO F., LICHTENFELD H., GIERSIG M., et al. Assembly of silica nanoparticle polyelectrolyte multilayer films on polystyrene lattices [J]. J. Am. Chem. Soc., 1998, 120: 8523-8524.
    [50] CARUSO F., M?HWALD H. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids [J]. Langmuir, 1999, 15: 8276-8281.
    [51] CARUSO F., CARUSO R A., M(O)HWALD H. Production of hollow micr-ospheres from nanostructured composite particles [J]. Chem. Mater., 1999, 11:.3309-3314.
    [52] SERIZAWA T., TAKESHITA H., AKASHI M. Electrostatic adsorption of polystyrene nanospheres onto the surface of an ultrathin polymer film prepared by using an alternate adsorption technique[J]. Langmuir, 1998, 14: 4088-4094.
    [53] CARUSO R A., SUSHA A., CARUSO F. Multilayered titania, silica,and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres [J]. Chem. Mater., 2001, 13: 400-409.
    [54] CARUSO F., SPASOVA M., SUSHA A., et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach [J]. Chem. Mater., 2001, 13(1): 109-116.
    [55] CARUSO F., SHI X Y., CARUSO R A., et al. Hollow titania spheres from layered precursor deposition on sacrificial colloidal core particles [J]. Adv. Mater., 2001, 13(10): 740-744.
    [56] DAI Z F., VOIGT A., LEPORATTI S., et al. Layer-by-layer self-assembly of polyelectrolyte and low molecular weight species into capsules [J]. Adv. Mater., 2001, 13(17): 1339-1342.
    [57] MOYA S., DONATH E., SUKHORUKOV G B., et al. Lipid coating on polyelectrolyte surface modified colloidal particles and polyelectrolyte capsules [J]. Macromolecules, 2000, 33: 4538-4544.
    [58] ARIGA K., ONDA M., LVOV Y. et al. Alternate layer-by-layer assembly of organic dyes and proteins is facilitated by pre-mixing with linear polyions [J]. Chem. Lett., 1997, 25-26.
    [59] LVOV Y., RUSLING J., THOMSEN D L., et al. High-speed multilayer film assembly by alternate adsorption of silica nanoparticles and linear polycation [J]. Chem. Commun., 1998, 11: 1229-1230.
    [60] SCHMITT J., GRüNEWALD T., KJAER K., et al. The internal structure of layer-by-layer adsorbed polyelectrolyte films: a neutron and x-ray reflectivity study [J]. Macromolecules, 1993, 26: 7058-7063.
    [61] YOO D., SHIRATORI S S., RUBNER M F. Controlling bilayer composition and surface wettability of sequentially adsorbed multilayers of wear polyelectrolytes [J]. Macromolecules, 1998, 31: 4309-4318.
    [62] SHIRATORI S S., RUBNER M F. PH-Dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes [J]. Macromolecules, 2000, 33, 4213-4219.
    [63] BERTRAND P., JONAS A., LASCHEWSKY A., et al. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties [J]. Macromol. Rapid. Commun., 2000, 21:319-348.
    [64] HAMMOND P T. Recent explorations in electrostatic multilayer thin film assembly [J]. Curr. Opin. Colloid Interface Sci., 2000, 4: 430-442.
    [65] ZHANG X., SUN Y P., SHEN J. C. Protein architecture: interfacing molecularassemblies and immobilization biotechnology [M]. Marcel Deker, Inc, 2000.
    [66] LVOV Y., ARIGA K., ICHINOSE I., et al. Molecular film assembly via layer-by-layer adsorption of oppositely charged macromolecules (linear polymer, protein and clay) and concanavalin A and glycogen [J]. Thin. Solid. Films., 1996, 284/285: 797-801.
    [67] ONDA M., ARIGA K., KUNITAKE T. Acitivity and stability of glucose oxidase in molecular films assembled alternately with polyions [J]. J. Biosci. Bioeng., 1999, 87: 69-75.
    [68] CLARK S L., MONTAGUE M F., Hammond P T. Ionic effects of sodium chloride on the templated deposition of polyelectrolytes using layer-by-layer ionic assembly [J]. Macromolecules, 1997, 30: 7237-7244.
    [69] CLARK S L., HAMMOND P T. Engineering the microfabrication of layer-by-layer thin films [J]. Adv. Mater., 1998, 10: 1515-1519.
    [70] SUKHORUKOV G., DONATH E., LICHTENFELD H., et al. Layer-by-layer self assembly of polyelectrolytes on colloidal particles [J]. Colloids Surf. A, 1998, 137: 253-266.
    [71] CARUSO F., DONATH E., M?HWALD H. Influence of polyelectrolyte multilayer coatings on f?rster resonance energy transfer between 6-carboxyfluorescein and Rhodamine B-labeled particles in aqueous solution [J]. J. Phys. Chem. B, 1998, 102: 2011-2016.
    [72] DONATH E., SUKHORUKOV G B., CARUSO F., et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes [J]. Angew. Chem. Int. Ed., 1998, 37: 2201-2205.
    [73] CARUSO F., LICHTENFELD H., DONATH E. et al. Investigation of electrostatic interactions in polyelectrolyte multilayer films: binding of anionic fluorescent probes to layers assembled onto colloids [J]. Macromolecules 1999, 32: 2317-2328.
    [74] DAI Z., M?HWALD H., TIERSCH B., et al. Nanoengineering of polymeric capsules with a shell-in-shell structure [J]. Langmuir, 2002, 18: 9533-9538.
    [75] KHOPADE A J., CARUSO F. Electrostatically assembled polyelectrolyte/dendrimer multilayer films as ultrathin nanoreservoirs [J]. Nano lett., 2002, 2: 415-418.
    [76] SHIPWAY A N., LAHAV M., BLONDER R., et al. Bis-bipyridinium cyclophane receptor?Au nanoparticle superstructures for electrochemical sensing applications [J]. Chem. Mater., 1999, 11: 13-15.
    [77] LAHAV M., GABAI R., SHIPWAY A N., et al. Au-colloid-'molecular square' superstructures: novel electrochemical sensing interfaces [J]. Chem. Commun., 1999, 19: 1937-1938.
    [78] WANG C., ZHAO J., WANG Y., et al. Sensitive Hg (II) ion detection by fluorescent multilayer films fabricated with quantum dots [J]. Sensors and Actuators B, 2009, 139: 476–482.
    [79]赵晶.分光光度法测定甲醛[ J ] .广东微量元素科学, 2006, 13 (2) :17 - 22.
    [80] YANG P., LI C L., MURASE N. Highly photoluminescent multilayer QD?glass Films prepared by LbL self-assembly [J]. Langmuir, 2005, 21: 8913–8917.】
    [81] BURDA C., GREEN T C., LINK S., et al. Electron shuttling across interface of CdSe nanoparticles monitored by femtosecond laser spectroscopy [J]. J. Phys. Chem. B, 1999, 103: 1783–1788.
    [82] YUAN J., GUO W., WANG E., Utilizing a CdTe quantum dots?enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide [J]. Anal. Chem., 2008, 80: 1141–1145.
    [83] KURZ L C., FITE B., JEAN J., et al. Photophysics of tryptophan fluorescence: Link with the catalytic strategy of the citrate synthase from thermoplasma acidophilum [J]. Biochemistry, 2005, 44: 1394–1413.
    [84] GREENHAM, N C., PENG X., ALIVISATOS A P. Charge separation and transport in conjugated polymer/semiconductor nanocrystal composites studied by photoluminescence quenching and photoconductivity [J]. Phys. Rev. B, 1996, 54: 17628–17637.
    [85] SKRZYDLEWSKA E., ELAS M., FARBISZEWSKI R., et al. Effect of methanol intoxication on free-radical induced protein oxidation [J]. J. Appl. Toxicol., 2000, 20: 239-243.
    [86] KORPAN Y I., GONCHAR M V., SIBIRNY A A., et al. Development of highly selective and stable potentiometric sensors for formaldehyde determination [J]. Biosens. Bioelectron., 2000, 15: 77–83.
    [87] MITSUBAYASHI K., NISHIO G., SAWAI M., et al. A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde [J]. Sens. Actuators B, 2008, 130: 32–37.
    [88] LV P., TANG Z A., YU J., et al. Study on a micro-gas sensor with SnO2–NiO sensitive film for indoor formaldehyde detection [J]. Sens. Actuators B, 2008, 132: 74–80.
    [89]王刚垛,马兆扬,鱼涛等.甲基对硫磷人工抗原的合成及鉴定[J].卫生研究, 2000, 29 (2): 69-70.
    [90] GAO X., YANG L., PETROS J A., et al. In vivo molecular and cellular imaging with quantum dots [J]. Curr. Opin. Biotech., 2005, 16: 63-72.
    [91] RAININA E I., EFREMENCO E N., VARFOLOMEYEV S D., et al. The development of a new biosensor based on recombinant E. coli for the direct detection of organophosphorus neurotoxins [J]. Biosens. Bioelectron., 1996, 11: 991-1000.
    [92] VIVEROS L., PALIWAL S., MCCRAE D., et al. A fluorescence-based biosensor for the detection of organophosphate pesticides and chemical warfare agents [J]. Sens. Actuators B, 2006, 115: 150-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700