磁性纳米药物靶向治疗肿瘤的体外实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:阿霉素(Adriamycin, ADR或Doxorubicin, DOX)是一种蒽环类广谱抗肿瘤药,具有强烈的细胞毒性,可广泛应用于治疗骨肉瘤、白血病、淋巴瘤、卵巢癌及晚期乳腺癌。但在化疗过程中,阿霉素对肿瘤组织特异性较差,可引起剂量限制性毒性。而且肿瘤细胞也可对多种化疗药物产生抗药性。这些问题一直限制着其在肿瘤治疗中的应用。为了解决这些问题,近几十年来的研究主要集中于研发肿瘤特异性药物及载体系统,可将抗肿瘤药物选择性地集中释放到肿瘤部位。纳米技术的进步为肿瘤靶向给药系统的进一步发展提供了广阔的发展前景。纳米靶向给药一般采用两种形式,即被动靶向及主动靶向。被动靶向通过肿瘤组织血管的高通透性和不连续性导致纳米颗粒渗漏到血管外肿瘤组织及肿瘤限制淋巴引流系统这两种途径,实现纳米颗粒在肿瘤组织的选择性聚集,称为增强的透过及滞留(EPR)效应。主动靶向主要利用肿瘤细胞表面过度表达的特异性抗原表位和受体作为靶点,或通过纳米颗粒的某种物理性质(如对温度、酸碱度、电荷、光、声或磁场的灵敏度)实现其靶向作用。纳米颗粒作为靶向给药系统具有下列显著优势:(1)能够实现多重靶向机制,增强药物对肿瘤组织的特异性及选择性;(2)降低达到靶区特定浓度所需的药物剂量;(3)降低正常组织的药物浓度,减轻毒副作用;(4)通过胞吞作用或吞噬作用可在细胞水平发挥药效;(5)可以构建多功能纳米颗粒,集肿瘤显像、靶向化疗、热疗、放疗于一体。
     研究目的:本课题的目的是构建一种多重靶向的纳米给药系统一偶联单克隆抗体的载阿霉素磁性纳米颗粒,在外部磁场、抗体靶向及纳米颗粒被动靶向共同作用下,能选择性地将阿霉素释放到肿瘤组织,降低用药剂量及毒副作用。本阶段的研究内容主要包括两方面:(1)体外研究两种不同粒径的载阿霉素的磁性纳米颗粒的细胞毒性;(2)制备、纯化并鉴定抗人骨肉瘤OS-732细胞株的单克隆抗体。
     研究方法:(1)本实验中采用两种不同粒径的载阿霉素的磁性纳米颗粒:Fe3O4-DEX-DOX及Fe3O4-PLGA-DOX,以比较它们对细胞的毒性;Hoechst33258染色,荧光显微镜观察其被细胞摄取及在细胞内分布的情况;MTT法检测其对肿瘤细胞的增殖抑制作用;LDH释放法测定其对肿瘤细胞的杀伤作用:Annexin V-FITC/PI双荧光染色,流式细胞术(FCM)检测其促肿瘤细胞凋亡/坏死的作用。(2)利用杂交瘤细胞诱生腹水制备单克隆抗体,Protein A Sepharose CL-4B亲和层析法纯化单克隆抗体,聚丙烯酰胺凝胶电泳(SDS-PAGE)、免疫组化染色及酶联免疫特异性测定(ELISA)法鉴定其性质。
     研究结果:(1)荧光显微镜观察发现,载阿霉素磁性纳米颗粒可选择性地大量进入肿瘤细胞,并可进入细胞核,却很少进入正常人胚肺细胞。(2)载阿霉素磁性纳米颗粒具有逆转肿瘤细胞多药耐药性的作用。(3)Annexin V-FITC/PI双荧光染色,流式细胞术检测结果显示,载阿霉素的磁性纳米颗粒促进肿瘤细胞坏死,坏死率高于单纯阿霉素,随浓度增高及时间延长,凋亡率下降,坏死率增高。(4)MTT检测结果显示,载阿霉素磁性纳米颗粒抑制肿瘤细胞生长的作用强于单纯阿霉素,差异有统计学意义(p<0.05)。(5)LDH检测结果显示,载阿霉素的磁性纳米颗粒组释放LDH显著高于单纯阿霉素组(p<0.05)。(6)载阿霉素磁性纳米颗粒易被单核巨噬细胞及人脐静脉内皮细胞摄取,提示给药途径应尽量避免与血液循环系统接触。(7)纯化的单克隆抗体对人骨肉瘤、软骨肉瘤、脂肪肉瘤、尤文氏肉瘤及恶性纤维组织细胞瘤等骨科恶性肿瘤的组织切片免疫组化染色阳性,SDS-PAGE鉴定抗体纯度高达93%,ELISA测定活性为1X10-7。
     结论:(1)载阿霉素的磁性纳米颗粒能够选择性地进入并存留在肿瘤细胞内,能增强阿霉素对肿瘤细胞的毒性,促进肿瘤细胞坏死。(2)制备、纯化的单克隆抗体特异性强,能与多种骨科恶性肿瘤细胞结合,纯度高,生物活性好。
Background:The anthracycline antibiotic adriamycin or doxorubicin is a highly efficient antineoplastic agent commonly used in the therapy of a variety of cancers like osteosarcoma, leukaemia, lymphomas, ovarian cancer and late stage breast cancer. During chemotherapy, however, pharmacologically active doxorubicin reaches the tumor tissue with poor specificity and can induce dose-limiting toxicity. Moreover, the cancer cells may eventually develop resistance to multiple chemotherapeutics. These problems have long been primary hindrances for the clinical application of doxorubicin. To tackle these difficulties, decades of research have focused on developing cancer-specific drugs or delivery systems that can selectively localise chemotherapeutics to the tumor site. Recent advances in nanotechnology promise further developments in tumor targeted drug delivery systems. Nanoparticle-based targeted drug delivery may use passive or active strategies. Passive targeting occurs as a result of extravasation of the nanoparticles at the tumor site where the microvasculature is hyperpermeable and leaky, a process aided by tumor-limited lymphatic drainage. Combined, these factors lead to the selective accumulation of nanoparticles in tumor tissue, a phenomenon known as enhanced permeability and retention (EPR) effect. Active targeting is based on the over or exclusive expression of different epitopes or receptors in tumor cells, and on specific physical characteristics (e.g. sensitivity to temperature, pH, electric charge, light, sound or magnetism). The potential of nanoparticle-based drug delivery systems stems from significant advantages such as:(1) the ability to achieve multiple target access allowing for even better specificity and selectivity to the tumor mass; (2) the reduction of the quantity of drug needed to attain a particular concentration in the vicinity of the target; (3) the reduction of the drug concentration at normal tissue, minimizing severe side effects; (4) the ability to act at the cellular level through endocytosis or phagocytosis; (5) the capability to creat multifunctional nanoparticle formulations combining tumor imaging, drug targeting, guided hyperthermia and radiation in an all-in-one system.
     Objective:The purpose of the present study is to construct a multiple targeted drug delivery system-doxorubicin loaded magnetic Fe3O4 nanoparticles with monoclonal antibody conjugated to the surface, which can selectively target nanoparticles to the tumor mass under the co-ordination of magnetic field, antibody and nanoparticle-based targeting mechanisms, thus reducing overall dosage and side effects. At the present stage, the study consists of two parts:(1) in vitro study of the cytotoxicity of two kinds of doxorubicin loaded magnetic nanoparticles with different particle sizes; (2) preparation, purification and identification of the monoclonal antibody against human osteosarcoma OS-732 cell line.
     Methods:(1)Two kinds of doxorubicin loaded magnetic Fe3O4 nanoparticles (Fe3O4-DEX-DOX and Fe3O4-PLGA-DOX) with different sizes were prepared and utilized in the present study to compare their cytotoxic effects on cancer cells. The celluar uptake and distribution of doxorubicin loaded magnetic nanoparticles were observed by fluorescence microscopy; The inhibitory effects on the proliferation of cancer cells were evaluated in vitro by MTT assay; The cytotoxic effects on the membrane damage of cancer cells were evaluated in vitro by lactate dehydrogenase (LDH) assay; The apoptotic and necrotic rates of cancer cells exposed to doxorubicin loaded magnetic nanoparticles were determined by flow cytometry using the Annexin V-FITC/PI staining method. (2)The monoclonal antibody against human osteosarcoma OS-732 cell line was prepared through ascites induced by hybridoma cells, and purified by Protein A Sepharose CL-4B affinity chromatography and its properties were evaluated by SDS-PAGE、Immunohistochemistry and ELISA.
     Results:(1)The observation of fluorescence microscopy demonstrated that doxorubicin loaded magnetic nanoparticles faciliated internalization of doxorubicin to cancer cells with selectivity, and particularly may penentrate the nuclear membrane, however with much less uptake by human embryonic lung cells. (2)Doxorubicin loaded magnetic nanoparticles showed great potential to reverse multidrug resistance of cancer cells. (3)The FCM results illustrated that magnetic nanoparticles loaded with doxorubicin induced higher necrotic rates than free doxorubicin, and the necrotic rates increased in a dose and time dependent manner. (4) The MTT results indicated that the inhibitory effects of magnetic nanoparticles loaded with doxorubicin on cell proliferation were higher than that of free doxorubicin, with statistical significance (p<0.05). (5)The LDH leakages in groups exposed to magnetic nanoparticles loaded with doxorubicin were significantly higher than that of free doxorubicin group(p<0.05). (6) Magnetic nanoparticles loaded with doxorubicin were preferrentially ready for uptake by the mononuclear macrophages and human umbilical vascular endothelial cells, suggesting that the administration routes should be separated from circulation system. (7)With immunohistochemical staining, the monoclonal antibody showed positive reactions on formaldehyde-fixed sections from human osteosarcoma, chondrosarcoma, liposarcoma, Ewing's sarcoma, malignant fibrous histiotoma and so on; the purity of monoclonal antibody was identified about 93%with SDS-PAGE (10%); the immunoactivity was 1 X 10-7 by ELISA.
     Conclusions:(1)Magnetic nanoparticles loaded with doxorubicin can faciliate penetration and retention in cancer cells selectively, enhance cytotoxicity of doxorubicin, and induce necrosis instead of apoptosis. (2)The monoclonal antibodies produced are of high purity and immunoactivity with specificity to malignant bone tumors.
引文
[1]Kim JA, Targeted therapies for the treatment of cancer. The American Journal of Surgery,2003,186:264-268.
    [2]Kay P. Targeted therapies:a nursing perspective. Semin Oncol Nurs,2006,22 (1 Suppl 1):1-4.
    [3]Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Tecehnol Cancer Res Treat.2005,4(4):363-74.
    [4]Ehrlich P. A general review of the recent work in immunity (Collected papers of Paul Eahrlich). In "Immunology and Cancer Research", Pergamon Press, London,1956,(2),456-461.
    [5]Mitra S, Gaur U, Ghosh PC, et al. Tumor targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosane nanoparticles as carrier. J Control Release,2001,74:317-23.
    [6]Na K, Lee ES, Bae YH.2003. Adriamycin loaded pulluan acetate/sulfonamide conjugate nanoparticles responding to tumor pH:pH-dependant cell interaction, internalization and cytotoxicity. J Control Release,87:3-13.
    [7]Shikata F, Tokumitso H, Ichikava H, et al. In vitro cellular accumulation of gadolinium incorporated into chitosan nanoparticles designed for neutron capture therapy of cancer. Eur J Pharm Biopharm,2002,53:57-63
    [8]Sun QH, De Lisser HM, Zukowski MM, et al. Individually distinct Ig homology domains in PEC AM-1 regulate homophilic binding and modulate receptor affinity. J Biol Chem 1996,271:1090-1098.
    [9]Chunfu Z, Jinquan C, DuanZhi Y, et al. Preparation and radiolabeling of human serum albumin (HSA) coated magnetite nanoparticles for magnetically targeted therapy. Appl Radiat Isot.2004,61 (6):1255-9.
    [10]Kuznetsov AA, Podoinitsyn SN, Filippov VI, et al. Development of the method of magnetic neutron capture therapy of cancer. Izv Akad Nauk Ser Biol.2005,(4):448-52.
    [11]Tsafnat N, Tsafnat G, Lambert TD, Jones SK. Modelling heating of liver tumours with heterogeneous magnetic microsphere deposition. Phys Med Biol.2005,50(12):2937-53.
    [12]Ogiue-Ikeda M, Sato Y, Ueno S. A new method to destruct targeted cells using magnetizible beads and pulsed magnetic force. IEEE Trans Nanobioscience. 2003,2(4):262-5.
    [13]Klement G, Huang P, Mayer B, et al.Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast caneer xenografts[J].Clin Cancer Res,2002, 8(1):221-232.
    [14]Remsen LG, Enhaneed delivery improves the effieacy of a tumor-specific doxorubicin inununoconjugate in a human brain tumor xenograft model [J]. Neurosurgery,2000,46(3):704-709
    [15]Guillemard V, Saragovi HU. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity[J].Cancer Res, 2001,61(2):694-699.
    [16]Suzawa T, Nagamura S, Saito H, et al. Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly (ethylene glycol)-based cleavable linker [J]. J Controlled Release,2002,19(1-3):229-242.
    [17]Xiong HQ, Abbruzzese JL. Epidermal growth factor receptor-targeted therapy for pancreatic cancer[J]. Semin Oncol,2002,29(5 Suppl 14):31-37
    [18]Herbst RS. Dose-comparative monotherapy trials of ZD 1839 in previously treated non-small cell lung cancer patienis[J]. Semin Oncol,2003,30(1 Suppl 1):30-38.
    [19]Pattyn F, Speleman F, Depaepe A, et al. RT Primer DB:the real-time PCR primer and probe database[J]. Nucleic Acids Res,2003,31(1):122-123.
    [20]Dufes C, Schatzlein AG, Tetley L, et al. Niosomes and polymeric chitosan based vesicle bearing transferring and glucose ligands for drug targeting [J]. Pharm Res,2000,17(10):1250-1258.
    [1]Rupniak HT, Whelan RD, Hill BT. Concentration and time-dependent inter-relationships for antitumour drug cytotoxicities against tumour cells in vitro. Int J Cancer,1983,32:7-12
    [2]A Colin de Verdiere, C Dubernet, F Nemati, et al. Uptake of doxorubicin from loaded nanoparticles in multidrug resistant leukemic murine cells. Cancer Chemother Pharmacol,1994,33:504-508.
    [3]V Omelyanenko, P Kopeckova, C Gentry, et al. Targetable HPMA copolymer-adriamycin conjugates. Recognition, internalization, and subcellular fate. J Control Rel,1998,53:25-37.
    [4]Jordan A. Nanotechnology and consequences for surgical oncology. Kongressbd Dtsch Ges Chir Kongr,2002,119:821-828
    [5]Fayette J, Soria JC, Armand JP. Use of angiogenesis inhibitors in tumor treatment. Eur. J. Cancer,2005,41:1109-1116.
    [6]Wartlick H, Michaelis K, Balthasar S, et al. Highly specific HER2-mediated cellular uptake of antibody-modified nanoparticles in tumor cells. J Drug Target, 2004,12(7):461-471.
    [7]El-Sayed I.H, Huang X, El-Sayed M.A, et al. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics:applications in oral cancer. Nano Lett,2005,5(5):829-834.
    [8]Loo C, Lowery A, Halas N, West J, et al. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett,2005,5(4):709-711.
    [9]龙玲,袁正,尹龙萍,等.纯磁性纳米四氧化三铁颗粒对肝癌和肺腺癌细胞活性的影响[J].毒理学杂志.2009,23(2):89-92
    [10]Urs O. Hafeli, Judy S. Riffle, Linda Harris-Shekhawat, et al.Cell Uptake and in Vitro Toxicity of Magnetic Nanoparticles Suitable for Drug Delivery[J]. Molecular Pharmaceutics, 2009,6(5):1417-1428
    [11]Alexandra Kroll, Mike H. Pillukat, Daniela Hahn, et al. Current in vitro methods in nanoparticle risk assessment:Limitations and challenges [J]. European Journal of Pharmaceutics and Biopharmaceutics,2009,72:370-377
    [12]TEWARI M.Yama/CPP32B, amammalian homology of a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose)polymerase[J]. Cell, 1995,81:801-809.
    [13]de Murcia G, Jacobson M, Shall S. Regulation by ADP-ribosylation[J]. Trends Cell Biol,1995,5:78-81.
    [14]Lazebink YA, et al. Cleavage of poly(ADP-ribose)polymerase by a protease with properties lide ICE[J].Nature,1994,371:346-347.
    [15]Sayes CM.Reed KL.Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.Toxicol Sci.2007,97:163-180.
    [16]Moore A,Marecos E,Bogdanov A Jr. Temporal distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology,2000,21 (4):568-574.
    [17].van Landeghem FK, Maier-Hauff K, Jordan A, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials,2009,30(1):52-57
    [1]金伯泉.细胞和分子免疫学实验技术[M].西安:第四军医大学出版社,2002,26-28.
    [2]Fuller SA, Takahashi M, Hurrell JG. Purification of monoclonal antibodies[J]. Current Protocols in Molecular Biology.2001 May;Chapter 11:Unitl1.11
    [3]黎燕,冯健男,张纪岩.分子免疫学实验指南[M].北京:化学工业出版社,2008,5-7.
    [4]Kohler G, Milstein C. Continous coultures of fused cells secreting antibody of predefined specificity[J]. Nature,1975;256:495-497.
    [5]Bouvet JP.A modified gel filtration technmique predicting an unusual exclusion volume of IgM,a simple way of preparation monoclonal IgM[J]. Immunol Meth,1984,66:229.
    [6]Clegradin P. Trandem purification of mouse IgM momoclonal antibodies produced in vitro using anion-exchange and gel fast protein liquid chromatography [J]. Chromatogar,1986,358:209.
    [7]Lamoyi E.Preparation of F(ab) fragment from mouse IgG of various subclasses[J].Immunol Meth,1983,56:235.
    [8]Ogden JR.Purification of murine monoclonal antibodies by caprylie acid[J].Immunol Meth,1982,53:133.
    [9]Barton DE, Yang Feng TL, Mason AJ, et al. Mapping of genes for inhibin subunits alpha,teta A,and beta B on human and mouse chromosomes and studies of jsd mice [J].Genomics,1989,5(1):91.
    [10]Roberts UJ, Barth SL. Expression of messenger ribonacleic acid encloding the inhibin lactivin system during mid-and late gestation rat embrogogenesis[J].Endoerinol,1994,134(2):914.
    [11]Khan KD, Emmanouilides C, Benson DM, et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma.Clinical Cancer Research,2006,12:7046-7053.
    [12]Klement G, Huang P, Mayer B, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug resistant human breast cancer xenografts [J]. Clin Cancer Res, 2002,8(1):221-232.
    [13]Remsen LG. Enhanced delivery improves the efficacy of a tumor-specific doxorubicin inununoconjugate in a human brain tumor xenograft model[J]. Neurosurgery,2000,46 (3):704-709
    [14]Guillemard V,Saragovi HU.Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility,and tumor target selectivity[J]. Cancer Res, 2001,61 (2):694-699.
    [15]Suzawa T, Nagamura S, Saito H, et al. Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly(ethylene glycol)-based cleavable linker [J]. J Controlled Release,2002,19(1-3):229-242.
    [16]Nobs L, Buchegger F, Gurny R, et al. Biodegradable nanoparticles for direct or two-step tumor immunotargeting.Bioconjugate Chemistry,2006,17:139-145.
    [17]Nellis DF, Ekstrom DL, Kirpotin DB, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE,liposome-inserting conjugate 1 Gram-scale production and purification. Biotechnol. Progress,2005,21:205-220.
    [1]Pinkel D, et al. Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer 1971,27:247-256.
    [2]Hyrniuk WM, et al. The effect of close intensity in adjuvant chemotherapy.In Salman SE. Adjuvant therapy of Cancer V. Orlundo:Grune and station,1987, 13-23.
    [3]Slee PH, et al. Variations in exposure to mitomycin C in an in vitro colony-forming assary. Br J Cancer,1987,54:951
    [4]Ehrlich P. A general review of the recent work in immunity (Collected papers of Paul Eahrlich). In "Immunology and Cancer Research", Pergamon Press, London,1956,(2),456-461.
    [5]Dong YC, Feng SS. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.Biomaterials,2005,26: 6068-6076.
    [6]Elisabetta E, Chiellini, Federica C, et al. Polymeric Nanoparticles for Targeted Delivery of Proteic Drugs. Journal of Nanoscience and Nanotechnology,2006,6:3040-3047.
    [7]Langer R, Tirrell DA. Designing materials for biology and medicine. Nature, 2004,428:487-492.
    [8]Torchilin VP. Drug targeting. Eur J Pharm Sci,2000,11:81-91.
    [9]Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier,1989,6:193-210.
    [10]Ferrari M. Cancer nanotechnology:opportunities and challenges. Nature Reviews Cancer,2005,5:161-71.
    [11]Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials.2002,23 (7):1553-1561.
    [12]Kong G, Braun RD, Dewhirst WM. Hyperthermia enables tumor-specific nanoparticle delivery.effect of particle size.Cancer Res,2000,60(16):4440- 4445.
    [13]Na K, Bae YH. Self-assembled hydrogel nanoparticles responsive to tumor extracellular PH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro, Pharm Res, 2002,19(15):681-688.
    [14]Maeda H.Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J].J Controlled Release,2000,65:271-282.
    [15]Bukowski R. Pegylated interferon alfa-2b treatment for patients with solid tumors:a phase Ⅰ/Ⅱ study [J]. Journal of Clinical Oncology,2002,20:3841-3851.
    [16]Anatoly NL, Vladimir PT. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs[J]. Adv Drug Deliv Rev,2004,56:1273-1289.
    [17]Kawashima Y. Nanoparticulate system for improved drug delivery. Adv Drug Deliv Rev,2001,471:39-54.
    [18]Mitra S, Gaur U, Ghsh PC, et al. Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release,2001,74(1-3):317-323.
    [19]Yang K, Wen Y, Wang C. Clinical application of anticancer nanoparticles targeting metastasis foci of cervical lymph node in patients with oral carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi,2003,21(6):447-450.
    [20]Khan KD, Emmanouilides C, Benson DM, et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin's lymphoma. Clinical Cancer Research,2006,12:7046-7053.
    [21]Klement G, Huang P, Mayer B, et al. Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug resistant human breast cancer xenografts [J]. Clin Cancer Res, 2002,8(1):221-232.
    [22]Remsen LG Enhanced delivery improves the efficacy of a tumor-specific doxorubicin inununoconjugate in a human brain tumor xenograft model [J]. Neurosurgery,2000,46 (3):704-709
    [23]Guillemard V, Saragovi HU. Taxane-antibody conjugates afford potent cytotoxicity, enhanced solubility, and tumor target selectivity[J]. Cancer Res, 2001,61(2):694-699.
    [24]Suzawa T, Nagamura S, Saito H, et al. Enhanced tumor cell selectivity of adriamycin-monoclonal antibody conjugate via a poly(ethylene glycol)-based cleavable linker [J].J Control Release,2002,19(1-3):229-242.
    [25]Nobs L, Buchegger F, Gurny R, et al. Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjugate Chemistry,2006,17:139-145.
    [26]Nellis DF, Ekstrom DL, Kirpotin DB, et al. Preclinical manufacture of an anti-HER2 scFv-PEG-DSPE, liposome-inserting conjugate.1. Gram-scale production and purification.. Biotechnol. Progress,2005,21:205-20.
    [27]Leamon CP, Reddy JA. Folate-targeted chemotherapy[J]. Adv Drug Deliv Rev,2004,56(8):1127-1141.
    [28]Hilgenbrink AR, Low PS. Folate-receptor-mediated drug targeting:from therapeutics to diagnostics [J]. J Pharm Sci,2005,94 (10):2135-2146.
    [29]Weitman SD, Lark RH, Coney LR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues[J]. Cancer Res,992, 52(12):3396-3401.
    [30]Kennedy MD, Jallad KN, Lu J, et al. Evaluation of folate conjugate uptake and transport by the choroid plexus of mice[J].Pharm Res,2003,20(5):714-719.
    [31]Kader A, Pater A. Loading anticancer drugs into HDL as well as LDL has little affect on properties of complexes and enhances cytotoxicity to human carcinoma cells [J]. J Controlled Release,2002,80(1-3):29-44.
    [32]Herbst RS. Dose-comparative monotherapy trials of ZD1839 in previously treated non-small cell lung cancer patients[J].Semin Oncol,2003,30(1Suppl 1):30-8.
    [33]Xiong HQ, Abbruzzese JL.Epidermal growth factor receptor-targeted therapy for pancreatic cancer[J]. Semin Oncol,2002,29(5 Suppl 14):31-7
    [34]Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery[J]. Med Res REV 2002,22 (3):225-50
    [35]Wilson DS, Szostak JW. In vitro selection of functional nucleic acids. Annu Protein Eng Des Sel,1999,68:611-647.
    [36]Hosokawa S, Tagawa T, Niki H, et al. Efficacy of immunoliposomes on cancer models in a cell-surface-antigen-density-dependent manner[J]. Br J Cancer,2003,89 (8),1545-1551.
    [37]Garrett Q, Chatelier RC, Grieser HJ, et al. Effect of charged groups on the adsorption and penetration of proteins onto and into carboxymethylated poly(HEMA) hydrogels. Biomaterials,1998,19(23):2175-86.
    [38]Jones SK, Winter JG Experimental examination of a targeted hyperthermia system using inductively heated ferromagnetic microspheres in rabbit kidney. Phys Med Biol,2001,46 (2):385-398

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700