气相抽提法(SVE)去除污染土壤中挥发性有机物(VOCs)的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤气相抽提技术(Soil Vapor Extraction ,SVE)是一种广泛应用于去除土壤中挥发性有机物(VOCs)的原位修复技术。通过模拟SVE通风处理苯单一污染土壤及甲苯、乙苯、正丙苯和苯、甲苯、乙苯混合污染的黄棕壤,研究了不同通风流量、不同土壤含水率、间歇通风、不同土柱直径、不同土壤粒径和不同污染物种类等因素对模拟了SVE通风效率的影响。结果表明,当土壤污染物只有苯这一种时,通风流量仅需0.03 L·min~(-1)即可在10h内进入拖尾期,去除率达到99%以上;当柱径14 cm、土壤粒径为10目,最佳通风流量为0.15 L·min~(-1),最佳含水率约17.98%条件下,甲苯、乙苯、正丙苯的去除率分别为:99.84%、99.45%、98.25%,总挥发性有机物(Total VOCs,TVOCs)去除率达到了99.30%,且优于间歇通风;含水率为6.01%、24.73%时,TVOCs的去除率仅为63.03%、89.03%,表明含水率过高或过低都不利于VOCs的去除;相同土壤装填量,不同柱径,通风流量0.15L·min~(-1)条件下,柱底面积/装土高度(S/H)越大,去除率越高;土壤粒径由10目变为20-40目后,土壤密实度增加,非水相液体(Non-aqueous Phase Liquids, NAPLs)与气相间的传质系数降低,SVE效率降低;另一组实验研究了通风流量为0.1L·min~(-1)、0.2L·min~(-1)和0.3L·min~(-1)条件下对黄棕壤中苯、甲苯、乙苯的去除效率,结果表明,苯、甲苯、乙苯分别在12h、18h、24h内都进入拖尾期,TVOCs去除率分别达到99.52%和99.55%,通风流量为0.1L·min~(-1)时就能很好地去除土壤中的污染物。比较通风流量为0.15L·min~(-1)和0.10L·min~(-1)时的通风效率后分析可知苯环上碳原子数越多,沸点升高,饱和蒸气压降低,使得挥发性减弱,且饱和蒸气压低的正丙苯对土壤中甲苯、乙苯脱附和挥发的阻碍作用明显,导致甲苯、乙苯、正丙苯污染的土壤更难净化,故VOCs的分子结构和性质也是影响污染物去除效率的重要因素。
As an in situ remediation technology, soil vapor extraction (SVE) has been widely used to remove volatile organic compounds (VOCs) from soil. In order to find the optimum conditions of removing volatile organic compounds (VOCs) from soil by soil vapor extraction (SVE) technology. Through simulated the ventilation process of SVE, some parameters such as the different continuous ventilation, the different soil water content and intermittent aeration,the diameters of soil columns, soil particle size and different types of pollutants have been studied on restoring yellow brown soil contaminated by benzene and two groups of toluene, ethylbenzene, n-Propylbenzene and benzene, toluene, ethylbenzene. The results showed that when the soil contaminants only one kind of benzene, it was get into tailing stage within 10h and the removal efficiency of benzene was more than 99% at 0.03 L·min~(-1) ventilation flow rate ;the ventilation flow rate and soil water content were two important factors on SVE, and they both had the best values.When the column diameter was 14cm, the soil particle size of 10 mesh, continuous up-flow rate of 0.15L·min~(-1) and water content about 17.98%, the removal efficiency of toluene, ethylbenzene, n-Propylbenzene and TVOCs amounts to 99.84%,99.45%,98.25% and 99.30%, The repairing effect is best and superior to intermittent ventilation. When soil water content is 6.01% 24.73% the removal efficiency of TVOCs only amounts to 63.03% and when soil water content is 24.73% the removal efficiency of TVOCs only amounts to 89.03%. The results showed that water content which is too high or too low is disadvantageous to the removal of VOCs.The other results showed that the larger bottom area /soil height (S/H) , the better efficient when different column diameter and the same weight of soil loading; soil particle size is 20-40 mesh, soil density increased, non-aqueous phase liquids ( NAPLs) and gas phase mass transfer coefficient decreased, SVE efficiency will be reduced; Another group of experiments study on the removal efficiency of benzene, toluene, ethylbenzene in yellow brown soil when the ventilation flow rate are 0.1L·min~(-1) and 0.2L·min~(-1). The results showed that benzene, toluene, ethylbenzene are get into tailing stage within 12h ,18h and 24h respectively, and the removal efficiency of TVOCs amounts to 99.52% and 99.55%. The pollutants can be removed very well When the ventilation flow rate is 0.1L·min~(-1). After compared with the efficiency of ventilation flow of 0.15L·min~(-1) and 0.10L·min~(-1) knows that the longer branched chain on benzene ring, the higher boiling point, the lower saturated vapor pressure and the less volatile, furthermore, toluene and ethylbenzene are desorbed and hindered significantly by n-Propylbenzene which is lowest saturated vapor pressure and make toluene, ethylbenzene and n-Propylbenzene polluted soil more difficult to purify. Molecular structure and property are the important factors which also affect the pollutants removal efficiency.
引文
[1]刘培桐主编,环境学概论[M],高等教育出版社.1995.109
    [2]张胜田,林玉锁,华小梅,等.中国污染场地管理面临的问题及对策[J].环境科学与管理. 2007, 32(6):5-7, 29
    [3]段云霞.生物通风(BV)法去除土壤中石油污染物的研究[D].2004
    [4]吴健,沈根祥,黄沈发.挥发性有机物污染土壤工程修复技术研究进展[J].土壤通报,2005, 36,(3):430-436
    [5]戴树珪,主编.环境化学[M].北京:高等教育出版社,2005.224
    [6]周礼恺等,石油烃和分类物质在土壤中的生物降解与土壤酶活性[J].应用生态学报,1990, 1(2):149-155
    [7]齐永强,土壤中石油类污染物去除机理实验研究[D],北京师范大学,2002
    [8]Bossert, I. and Bartha, R. Plant growth in soil with history of oily sludge disposal.Soil science, 1985, 14(1): 75-77.
    [9] Liu, D. Fate of petroleum hydrocarbons in sewage sludge after land disposal. Bull. Environ. contam . Toxicol. , 1980, 25:612-622.
    [10]吴健,沈根祥,黄沈发,等.挥发性有机物污染土壤工程修复技术研究进展[J].土壤通报,2005, 36(3):430-436
    [11]新京报.北京地铁5号线掘出有毒气体,工期影响尚难定论[EB/OL]. http //news.tom.com/1002/3291/200451- 875492.html.2004-05-01.
    [12] National Environmental Protection Council (NEPC).Guideline on health risk assessment methodology [EB/OL]. http:// www.ephc.gov.au,1999.
    [13] Bouma J, Hordijk L, Stein A.Soil remediation: A systems approach. J.P.Okk, 1998
    [14]安淼,周琪.土壤污染生物修复的影响因素[J].土壤与环境,2002,11(4): 397~400
    [15]秦毅民,隋智慧,魏有权,等.应用生物修复技术处理污染土壤[J].石油与天然气化工,2002,31(6): 333-335
    [16] Congress of United states.Comprehensive environmental response,compensation and liability act[EB/OL].http://www.epa.gov, 1980.
    [17] U.S. EPA.National of landhazadous substance pollution contingency Plan [EB/OL]. Final Rule,50 Federal Register 47912,Washington DC.http://www.epa.gov, 1985.
    [18] U.S. EPA.National oil and hazardous substance pollution contingency plan [EB/OL]. ProposedRule, 53 Federal Register 5l394, Washington DC. http:/www .epa.gov, 1988.
    [19] U.S. EPA.Risk assessment guidance for superfund: Human health evaluation manual [EB/OL].http://www .epa.gov, 1989.
    [20] U.S. EPA.Guidance for conducting remedial investigation and feasibility studies under CERCLA [EB/OL].Office of Emergency and Remedial Response,Washington DC.htp://www.epa.gov, 1988.
    [21] U .5 .EPA.Guidelines for exposure Assessment [EB/OL].Federal Register Washington DC.http://www.epa.gov, 1992, 57(107):22888-22938.
    [22] U .5 .EPA.Soil screen guidance[R].Ofice of solid Waste and Emergency Response,Washington DC.http://www.epa.gov, 1996.
    [23] COLIN C F.Assessing risk from contaminated sites: Policy and Practice in l6 European countries [J].Land Contamination and Reclamation, 1999, 7(2):33-54.
    [24] National Environmental Protection Council (NEPC).Guldeline 0n health risk assessment methodology[EB/OL].http://www .epa.gov.au, 1999.
    [25]陈鸿汉,湛宏伟,何江涛,等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,18(1):216-222.
    [26] Bouma J, Hordijk L, Stein A.Soil remediation: A systems approach.J.P.Okk, 1998
    [27]刘志全,石利利.英国的污染土地风险管理与修复技术[J].环境保护,2003, 69-73
    [28]陈怀满,郑春荣,周东美,等.关于中国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报,2004, 23(6):1224-1245.
    [29]Fox R D, et a1. Thermal treatment for the removal of PCBs and other organics for soil [J].Evironmental progress, 1991, 10(1).
    [30]蓝俊康.污染场地修复技术的种类[J].四川环境,2006, 25(3): 91-94,100
    [31] Ram N M.Bass D H,et a1.A decision framework for selecting remediation technologies at hydrocarbon-contaminated sites[J]. Soil Contamination.1993, 2(2): 167-189.
    [32] Chem H T, and Bozzelli J W. Thermal desorption of organic contaminants from sand and soil using a continuous feed rotary kiln [J]. Hazardous Industrial Wastes, 1993, 26: 417-424.
    [33]Crosby R A.Thermal desorption unit for removing chemical contaminants from soil [P]. U. S. Patent 5, 515, 286, 1996.
    [34]D A Jones,T P Lelyveld,et a1.Microwave heating applications in environmental engineering:a review[J].Resources Conservation and Reycling, 2002, 34: 75-90.
    [35]Chen Feiyan,S O Pehkonen,Madhumita B Ray. Kinetics and mechanisms of UV-photedegradation of chlorinated organics in the gas phase [J]. Water Research,2002, 36: 4203-42l4.
    [36]Takeda N.Torimoto T.Effect of inert supports for titanium dioxide loading on enhancement of photedecomposition rate of gaseous propionaldehyde[J]. Journal of Physical Chemistry, 1995, 99: 986-998.
    [37]Vorontsov A V,Savinov E N.Quantitative studies on the heterogeneous gas-phase photooxidation of CO and simple VOCs by air over TiO2[J].Catalysis Today,1997, 39(1): 20-26.
    [38]Salvader P.Catalytic role of lattice defect in the photoassisted oxidation of water at n-TiO2 rufle[J].Journal of Physical Chemistry, 1992, 96: 10349-10353.
    [39]Qingdong Huang,Chia-Swe Hong.TiO2 photocatalytic degradation of PCBs in soil-water systems containing fluoro sufactant[J].Chemosphere, 2000, 41:871-879.
    [40]Fox M.Heterogeneous photocatalysis [J]. Chemistry Review, 1993, 93: 341-357.
    [41]Staford U.Radiolytic and Ti02-assisted photoeatalytic degradation of 4-chlorophenol:A comparative study[J].Journal of Physical Chemistry, 1994, 98: 6343-6351.
    [42]Eve Riser-Roberts Remediation of petroleum contaminated soils:biological,physical,and chemical processes[M].Florida:CRCpress LLC, 1998, 358.
    [43]Jafvert C T.Surfaetants/Cosolvent[R].Ground-Water Remediation Tehnologies Analysis Center,1996,Document TE-96-02.
    [44] Chang M C,Huang C R,Shu H Y.Efects of sufactants on extraction of phenanthrene in spiked sand[J].Chemosphere, 2000, 41(8): 1295-1300.
    [45] Wu Q,Marshall W D. Approaches to the remediation of polychlorinated biphenyl(PCB) contaminated soil-a laboratory study[J].Journal of Environmental monitoring,2001, 3(3): 281-287.
    [46] Zbeng Z.Obbard J P.Removal of polycyclic aromatic hydrocarbons from soil using sufactant and white rot fungus phanerochaete chrysosporium [J].Journal of Chemical technology and Biotehnology,2000, 15: 1183-1189.
    [47]Pritchard P H,Costa C F. EPA's Alaska oil spill bioremediation project [J]. Environ Sci Technol, 1991, 25: 372-379.
    [48]Atlas RM. Microbial degradation of petroleum hydrocarbons:An environmentalperspective[J]. Microbiol Rev, 1986, 45: 180-209.
    [49]Conner A T. Case study on soil venting [J]. Pollu Eng, 1989, 20(8): 74-78.
    [50]Morgan P,Watkinson R J. Factors limiting the supply and efficiency of nutrient and oxygen supplements for the in situ biotreatment of contaminated soil and groundwater[J]. Wat Research, 1992, 26(1): 73-78.
    [51]Mormile M R,Liu S,Suflita J M .Anaerobic biodegradation of gasoline oxygenates:extrapolation of information to multiple sites and redox conditions[J].Environ Sci Tech,1994, 28(9): 1727-1732.
    [52]Baehr A L,Hoag G E,Marley M C. Removing Volatile Contaminants from the Unsaturated Zone by Inducing Advective Air-Phase Transport[J].Journal of Contaminant Hydrology,1989, (4): 1-26.
    [53]Cho H J,Jaffe P R .The Volatilization of Organic Compounds in Unsaturated Porous Media during Infiltration[J].Journal of Contaminant Hydrology, 1990,(6): 387-410.
    [54]Gierke J S,Hutzler N J,McKenzie D B.Vapor Transport in Unsaturated Soil Columns:Implications for Vapor Extraction[J].Water Resources Research, 1992,28(2): 323-335.
    [55]孙铁珩,李培军,周启星,等著.土壤污染形成机理与修复技术[M].北京:科学出版社,2005.255
    [56]赵留辉,马娟,杨建涛,浅析石油污染土壤的处理技术[J],甘肃科技;2003, 19 (10):36-37
    [57]夏春林.有机污染土壤的通风去污技术[J].环境科学学报,1995, (15): 246-249.
    [58] USEPA Report.Best management practices (BMP) for soils treatment technologies. EPA530-R-97-007, 1997.
    [59] KEARL P M,NIC E.Vapor extraction experiments with laboratory soil columns:implications for field programs[J]. Waste Management,1991,11(4): 231-239.
    [60] Romiz P S, W E Showalter, S R Booth. Cost effectiveness of in situ bioremediation at Savanna river. In: Bioremediation of Chlorinated Solvents. Ohio: Batelle Press, 1995, 331-345
    [61] Frank U.Remediation of low permeability subsurface formations by fracturing enhancement of soil vapor extraction.J.Hazard. Mater ., 1995, 40:191-201.
    [62] James J.Soil clean-up by in-situ aeration.XIV.Efect of random permeability variations on soil vapor extraction clean up times.Sep.Sci. Tech., 1994, 29: 701-725
    [63] Ding Y.Volatile contaminant extraction enhanced by pneumatic fracturing.Practice Periodical of Hazardous, Toxic,and Radioactive Waste Management, 1999,19: 69-76
    [64] J Fall E. W. In-situ hydrocarbon extraction: A case study. Hazardous Waste Contaminant,1989,1: 1-7
    [65] J Wilson D. J. Soil clean up by in-situ aeration. XIV. Solution and difusion in mass-transport-limited operation and caculation of Darcy’s constant. Sep. Sci. Tech., 1994, 29: ll33-1163
    [66] Poulsen T.G. Moldrup P. Yamaguchi T et al. VOC vapor sorption in soil: soil type dependent model and implications for vapor extraction [J]. Environ. Eng., 1998, 124 (2): 146-155
    [67] Parker J C,R J Lenhard,T Kuppusarny. A parametric model for constitutive properties governing multiphase flow in porous media . Water Resour.Res., 1987,(23): 618-624.
    [68] Stephanatos B. N. Modeling the transport of gasoline vapors by an advective diffusive unsaturated zone mode1. Proceeding of the NW WA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water:Prevention, Detection,and Restoration. Houston, TX, USA: National Water Well ASSOC., 1989, 591-611
    [69] Morgan P .Microbiological methods for the clean up of soil and groundwater contaminated with halogenated organic compounds, Fems Microbiology Reviews, 1989, 63:277-300
    [70] Ficsher U,R Sehulin,M Keller.Experimental and numerical investigation of soil vapor extraction . Water Recur. Res., 1996, (32): 3413-3427.
    [71] Bohn H L. Vapor extraction rates for decontaminating soils.Pollution Engineering,1997, (29),52-56.
    [72]贺晓珍,周友亚,汪莉,等.土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J].环境工程学报, 2008 ,2(5): 679-683
    [73] Wilkins M D, Abriola L M, Pennell K D. An experimental investigation of rate-limited nonaqueous phase liquid volatilization in unsaturated porous media: steady state mass transfer [J].Water Resour. Res., 1995, 31 (9) :2159-2172
    [74]J.A.迪安编,尚久方等译.兰氏化学手册[M].北京:科学出版社,1991.
    [75]D A Jones ,T P Lelyveld,et a1.Microwave heating applications in environmental engineering:a review[J].Resources,Conservation and Recycling,2002, 34: 75-90.
    [76] Poppendieck D.G.,R.C.Loehr,M.T.Webster.Predicting hydrocarbon removal from thermally enhanced soil vapor extraction system: Laboratory studies . J. Hazard.Mater.,1999, B69: 81- 93
    [77] Price S. L. Radio frequency heating for soil remediation. J. Air& Waste ManagementAssociation, 1999, 49: 136- 145
    [78]李金惠,马海斌,夏新,等.有机污染土壤通风去污技术研究进展[J].环境朽染治理技术与设备, 2001,2(4):39-48
    [79]Johnson.P C,et al.A practical approach to the design, operation,and monitoring of in-situ soil venting system. Ground Water Monitoring Review, 1990, 10(2): 150- 178
    [80]Bennedsen,M B Vacuum VOCs from soil Pollution Engineering, 1987,19(2): 66-69
    [81] Crow W L et al.API publication.1410, 1985:176
    [82]李婕,羌宁.挥发性有机物(VOCs)活性炭吸附回收技术综述[J].四川环境, 2007, 26(6): 101-105
    [83] Dibblej T , Bartha R .Effect of environmental parameters on biodegradation of oil sludge, Appl. Environ. Microbio1. 1979.37:72 9-739
    [84] Suzame L. Bioremediation in Canada: research direction. In Bioremediation: Principles and Practice-Fundamen-tals and Applications. Pennsylvania, Technomic Publishing Company, Inc., 1998.164-186
    [85]隋红,李鑫钢,黄国强等,土壤有机污染的原位修复技术[J],环境污染治理技术与设备, 2003, 4(8):41-45
    [86]R Semer,K R Reddy.Mechanisms controlling toluene removal from saturated soils during in situ air sparging[J].Journal of Hazardous Materials, 1998, 57: 209-230.
    [87]孙铁珩,李培军,周启星,等著.土壤污染形成机理与修复技术[M].北京:科学出版社, 2005.250
    [88] Baehr.A.L , Hoag, G. E, Marley,M. C 1988. Removing Volatile Contaminants from the Unsaturated Zone by Inducing Advective Air-Phase Transport.Journal of Contaminant Hydrology, 4:1-2.
    [89]Texas Research Institute. Interim report.API Publication 4245, 1980:98
    [90] Agrelot J C et al.Proceedings of NWWA Conference, 1984:3466
    [91] Fall E W, Pickens W E.In-situ hydrocarbon extraction. A case study done by Converse Environmental Consultants, Califonia, 1988, 1988
    [92] Crow W L et al.API publication.1410, 1985:17
    [93] Oma K H,Buelt J L Parr 3,Proc of Hazardous materials conference,Mar./Apt., 1989:111
    [94] Hilberts B et al. Proc Contaminated Soil.First Int TNO Conf 0n Contaminated Soils, The NetherLands Organization for Appl Sci Res, 1985: 679
    [95] Jobnson P C et al ,Ground water.1990. 2831: 413
    [96] Lingmeni S.DhirV K.ASCE J of Envir Eng . 1992. 118(2):135
    [97]何炜,陈鸿汉,刘菲,等.土壤气相抽提去除土壤中汽油烃污染物柱试验研究[J].环境污染与防治, 2007,3,29(3): 186-189
    [98]贺晓珍,周友亚,汪莉,等.土壤气相抽提法去除红壤中挥发性有机污染物的影响因素研究[J].环境工程学报, 2008,2(5): 679-683
    [99]杨乐巍,沈铁孟,肖锋等.含有非水相液体(苯)的土壤气相抽提体系传质实验研[J].土壤学报, 2008,45(6),1076-1050.
    [100]陈家军,田亮,李玮等.土壤柴油污染修复的抽气提取去除实验研究[J].环境工程学报, 2008, 2(10):1417-1420
    [101]王喜,陈鸿汉,刘菲,等.依据挥发性污染物浓度变化划分土壤气相抽提过程的研究[J].农业环境科学学报, 2009, 28(5): 903-907
    [102]中国科学院南京土壤研究所.土壤理化性质[M].上海:上海科学技术出版社,1978.470
    [103]鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.289
    [104]黄国强,姜斌,李鑫钢,等.VOCs在土壤孔隙中扩散模型的适用性[J].天津大学学报,2004, 37(11): 945-948.
    [105] KASLUSKY S F,UDELL K S. Co-injection of air and steam of the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions[J]. Journal of Contaminant Hydrology, 2005, 77; 325-347.
    [106]彭胜,陈家军,王红旗,等.挥发性有机污染物在土壤中的运移机制与模型[J].土壤学报, 2001, 38(3): 315-323.
    [107] Fall E. W. In-situ hydrocarbon extraction:A case study.Hazard.Waste Contain ., 1989, 1:1-7
    [108] Wilson D.J.Soil clean up by in-situ aeration XVI.Solution and diffusion in mass-transport-limited operation and calculation of Darcy’s constant[J]. Sep. Sci. Techno1., 1994, 29: 1133-1163
    [109] Poulsen T.G. Moldrup P. Yamaguchi T et al. VOC vapor sorption in soil : soil type dependent model and implications for vapor extraction[J]. Environ. Eng., 1998, 124 (2): 146-155
    [110] Stephanatos B. N. Modeling the transport of gasoline vapors by an advective diffusive unsaturated zone mode1.Proceeding of the NW WA/API Conference on PetroleumHydrocarbons and Organic Chemicals in Ground Water:Prevention, Detection,and Restoration. Houston, TX, USA: National Water Well ASSOC., 1989, 591-611
    [111] Gomez-lahoz,C., et al. Soil clean up by in-situ aeration. XV. Effects of variable air rates in diffusion-limited operation[J].Separation Science and Technology, 1994, 29(8):943-969
    [112] Gomez-lahoz,C., et al. Biodegradation phenomena during soil vapor extraction: Sensitivity studies for single substrate systems[J]. Separation Science and Technology,1994,29(5):557-578
    [113] Gomez-lahoz,C., et al. Biodegradation phenomena during soil vapor extraction .Ⅲ. Sensitivity studies for two substrates [J]. Separation Science and Technology.1994, 29(10):1275-1291
    [114] KASLUSKY S F,UDELL K S. Co-injection of air and steam of the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions [J]. Journal of Contaminant Hydrology, 2005, 77; 325-347
    [115]北京大学化学系.化学工程基础[M].北京:高等教育出版社,2003.23
    [116]孙铁珩,李培军,周启星,等,著.土壤污染形成机理与修复技术[M].科学出版社,2005. 256
    [117]戴树珪,主编.环境化学[M].北京:高等教育出版社,2005. 224
    [118] Wilkins M D, Abriola L M, Pennell K D . An experimental investigation of rate-limited non-aqueous phase liquid volatilization in unsaturated porous media: steady state mass transfer [J].Water Resour. Res., 1995, 31(9) : 2159-2172
    [119]陈迪云,彭燕.憎水有机物在水/土壤.沉积物体系中吸附与解吸[J].化工时刊, 2001,4:11-15
    [120] J.A.Dean,魏俊方,编.兰氏化学手册[M].北京:科学出版社, 1999. 1654 ,1663-1683
    [121]北京大学化学系,编.化学工程基础[M].北京:高等教育出版社, 2003. 156

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700