稀土元素添加对镍磷镀层微观结构及耐蚀性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文研究了添加纳米稀土CeO_2对酸性Ni-P化学镀层微观结构及耐蚀性能的影响。在前期试验研究化学镀的基础上,在低碳钢基体表面制备Ni-P/CeO_2复合镀层。借助超声波震荡分散CeO_2纳米颗粒;环境扫描电镜(E-SEM)对镀层晶粒微观形貌及浸泡试验的腐蚀形貌进行观察;透射电镜(TEM)对镀层晶粒结构观察;能谱(EDS)测定添加稀土对镀层化学成分的影响;X射线衍射仪(X-ray)对镀层晶体结构进行表征;恒电位仪进行电化学极化曲线(Tafel曲线)测定等。
     试验结果表明:稀土纳米颗粒CeO_2合理加入量为(18~25)g·L-1,通过充分搅拌震荡,分散效果达到最佳。添加稀土能有效地提高镀层P含量(12%以上)。利用透射电子显微镜(TEM)对晶粒微观结构进行观察,借助X射线衍射仪对晶体结构分析,发现:添加稀土元素后晶体择优生长状况发生了改变,晶态结构也发生变化;Ni-P镀层呈部分非晶态并伴随Ni纳米晶,而Ni-P/CeO_2复合镀层则完全是非晶态,添加稀土后,晶胞结构变得更加圆整致密,晶粒更细小且达纳米级。主要因为稀土与Ni-P镀层复合共沉积,提高了沉积电位和界面能,阻碍Ni沉积,相比之下,却使P形核数目增多,保证镀层形成非晶态所需P的含量。腐蚀试验观察表明:添加稀土后,镀层孔隙率降低,由原来局部点蚀变成均匀化腐蚀且腐蚀程度降低。在酸性镀液沉积过程中,部分离子Cen+(n=3,4)吸附在金属与液相双电层之间,阻碍晶粒Ni沉积,而提高P含量。恒电位仪进行Tafel极化曲线测定,发现:添加稀土前后镀层虽都呈负电位,但添加稀土后,复合镀层电位正移,腐蚀电流密度降低1个数量级。由电化学原理可知,腐蚀电位正移,电流密度变小,耐蚀性得到提高。
     此外,还研究了镀后时效热处理对镀层晶体结构、显微硬度等方面影响。研究发现: 450℃2.5h时效热处理过程中,两种镀层均发生了Ni的纳米晶化和Ni_3P相的沉淀析出,而Ni-P/CeO_2复合镀层中还伴随产生NiCe_2O_4尖晶石相、纳米CeO_2等相析出,并优先偏析钉扎在晶界、微孔等缺陷处。经过时效处理后,晶粒间缺陷得到有效填充和充分扩散,从而有效提高了致密度,显微硬度高达1000HV。主要由于在时效时,纳米稀土颗粒伴随Ni、P复合共沉积,填充在晶界等缺陷处,净化晶界,降低P、S等杂质元素活性;在晶界、孔隙等处生成致密氧化物Ce_xO_y,弥散强化作用,降低孔隙率,有效地提高致密度和耐蚀性。
Electroless Ni-P and its rare-earth nano-CeO_2 doped coatings were co-deposited in acidic condition, and its microstructure and properties were studied and compared, especially for coating’s anti-corrosion. Under optimal experimental prescription, electroless composite coatings Ni-P/CeO_2 were co-deposited on low carbon steel substrate surface. Ultrasonic made nano-CeO_2 particle dispersed effectively. Environmental scanning electron microscopy (E-SEM) with energy dispersive spectrum (EDS) was used to examine the coating’s surface morphology and internal chemical content,respectively. Transmission electronic microscopy (TEM) was used to analyze the microstructure. The crystal microstructure of Ni-P/CeO_2 coatings was characterized by X-ray diffraction (XRD). Constant potential rectifier was used to determinate electric polarization curves.
     The results show that the Optimal quantity of CeO_2 additive should retain (18~25)g·L~(-1). Only this, nano-CeO_2 particle can get dispersed sufficiently and effectively. Rare-earth CeO_2 increase the P content(wt(P)≥12%). TEM& XRD helps to find that Ni-P coatings have partial amorphous structure mixed with Ni-nano-crystals, while the Ni-P/CeO_2 coatings had perfect amorphous.And grain preferred orientation growth has changed to make grain refiner, which is mostly because it co-deposites with rare earth CeO_2, increase potential and interfacial energy with metallic surfaces, increase the number and velocity of crystal nucleus .However, the rate of crystalline grain growth become lower. Corrosion test manifests that rare earth additive CeO_2 makes porosity lower, the corrosion morphology of coatings has change from corrosive pitting to be general corrosion, the anti-corrosion property and passivity improve in Ni-P/CeO_2 coatings. It is less liable to undergo localized corrosion and has a slower corroding rate. During the co-deposition process in acidic bath, some Cen+(n=3,4) iron might be absorbed to the metal/solution electrical doubled layer and hinder deposition. Ni-P/CeO_2 coatings has perfect amorphous structure, which is probably due to hinder crystal-typed deposition of nickel while promote deposition of phosphorous. Electric polarization curves are determined by constant potential rectifier has used to study anti-corrosion resistance, the results show that potential ennoblement and corrosion current drop 1 order of magnitude. The polarization curves slightly move to positive direction and decrease corrosion current density. According to the electrochemistry theory, the corrosion property is improved.
     Besides, the thesis also studys the effect upon heating about microstructure, microhardness and so on. It finds that Ni3P precipitation and Ni crystallization take place at 450℃2.5h heat treatment. In addition, Ni-P/CeO2 coatings have sintered phase of NiCe2O4 spinels, precipitated phase CeO2 is priority produced at grain boundaries, micropore and other defects. So, Ni-P/CeO2 composite coatings can get diffused sufficiently and effectively, increase grain density microhardness and can reach 1000HV. The main reason is that the nano rare-earth power CeO2 addictive pad a defect among dislocation, grain boundary and porosity in chemical deposition to hinder dislocation glide, decrease activity of P,S impurity elements, which due to rare-earth CeO2 nano-particle addictive co-deposite with Ni,P. During the process, it spreads with substrate sufficiencily, dense structure oxides CexOy produce in dislocation gap. These help to lower porosity, increase grain densification and anti-corrosion.
引文
[1]胡传.表面处理技术手册[J].北京工业大学出版社,2001,7(6):281-289.
    [2]王红美,徐滨士,马世宁.防腐蚀表面工程技术[J].化学工业出版社,2003,1(2):160-163.
    [3]陈智.过渡元素化学[M].北京:原子能出版社,1990,3(6):154-155
    [4] Wantae Kim,Inkook Bae,Soochun Chae.Mechanochemical decomposition of monazite to assist the extraction of rare earth elements[J].Journal of Alloys and Compounds,2009 ,1(2):486-500
    [5]郭忠诚.稀土对复合镀工艺及镀层性能的影响[J].金属学报,1996,5(12):50-58
    [6]章磊,宣天鹏,黄芹华.铈对化学镀Co-Ni-P合金工艺的影响[J].电镀与精饰,2002,24 (1) :5-9
    [7]严密,张小星.镱对镍磷合金化学镀组织和抗腐蚀性能的影响[J].稀有金属,2005,3 (29):285-288
    [8]JIANG Lilong,YE Binghuo ,WEI Kemei. Effects of CeO2 on structure and properties of Ni-Mn-K/bauxite catalysts for water-gas shift reaction[J]. JOURNAL OF RARE EARTHS,2008,3(26):352-358
    [9]朱云丽宣天鹏王卫荣.稀土铈对化学镀Co-Fe-B合金工艺的影响[J].电镀与环保,2005,25(4) :23-25
    [10]靳兰芳,李金桂,吴再思,等.防腐蚀表面工程技术[J].化学工业出版社,2003,1(2):160-163.
    [11] Gu Baoshan ,Liu Jianhua. Corrosion Inhibition Mechanism of Rare Earth Metal on LC4Al Alloy with Spilt Cell Technique[J]. JOURNAL OF RARE EARTHS,2006,24(1):34-39
    [12]李宁,袁国伟,黎德育.化学镀镍磷合金理论与技术[J].哈尔滨工业大学出版社,2000,5(1):3-6.
    [13]王红美,徐滨士,马世宁.纳米Al2O3微粒增强镍基复合镀层的制备及微观力学性能[J].材料热处理学报,2005,26(1):812-851
    [14]王柳斌.稀土对于化学复合镀Ni-P-PTFE工艺以及镀层性能的影响[J].机械工程材料,2008,3(2):10-30
    [15]靳惠明,董伟,李美栓,等.碱性化学镀Ni-P/CeO2复合镀层及其耐蚀性研究[J].表面技术,2000,5(29):4-6
    [16]俞宏英,孙冬柏,张延东,等.基材表面条件与镍磷合金镀层耐蚀性[J].材料保护,1995,28(1): 9-11.
    [17]刘定福.化学镀Ni- P合金耐蚀性的影响因素[J].电镀与环保,1999,19(2):15-18.
    [18]孙榆芳,杨德均,朱祖芳.络合剂种类对化学镀Ni-P镀层阳极极化特性的影响[J].表面技术,1997,26(4):11-13.
    [19]沈伟.络合剂对镍磷合金化学镀层耐蚀性的影响[J].材料保护,1989,22(9):9-12
    [20]关凯书,史岩,张美华,等.稳定剂对镍磷化学镀层表面形貌及耐蚀性的影响[J].机械工程材料,1999,l23(15):8-10.
    [21] Yu-Jun Xue ,Xian-Zhao Jia,Yan-Wei Zhou,et al. Tribological performance of Ni–CeO2 composite coatings by electrodeposition[J]. Surface & Coatings Technology,2006,8(200):5677– 5681
    [22] Abtew M,Selvaduray G. Lead-free solders in microelectronics[J]. Mater Sci Eng,2000,2(7):95-141.
    [23] Tu K N,Zeng K. Tin-lead (Sn-Pb) solder reaction in flip chip technology[J]. Mater Sci Eng,2000,3(4): 51-58.
    [24] Lin D,Wang G X,Srivatsan T S, Al-Hajri M, Petraroli M.The influence of copper nanopowders on microstructure and hardness of lead-tin solder[J]. Mater Letter,2002,3(3):3-8.
    [25] Nai S M,Wei J,Gupta M. Effect of carbon nanotubes on the shear strength and electrical resistivity of a lead-free solder[J]. Electron Mater, 2008,5(37):515-522.
    [26]靳兰芳,李金桂,吴再思.化学镀Ni- P镀层的组织形貌与耐蚀性[J].金属热处理,1995,1(12):20-22.
    [27] Frear D R. The mechanical behavior of interconnect materials for electronicpackaging[J]. Electron Mater,1996,2(48):49–53.
    [28] Lifschitz I M, Slezov V V. Kinetics of diffusive decomposition of supersaturatedsolid solutions[J]. Soviet Phys JETP, 1959,3(35):331–9.
    [29] Lin D C,Wang G X,Srivatsana T S,et al. Influence of titanium dioxide nanopowder addition on microstructural development and hardness of tin-lead solder. Mater Letter ,2003,6(57):319-328.
    [30] Nai S M,Wei J,Gupta M. Lead-free solder reinforced with multiwalled carbon nanotubes[J]. Thin Solid Film, 2006,2(35):1518-1523
    [31] Ruidong Xu,Junli Wang,Lifang He,et al.Study on the characteristics of Ni-W-P composite coatings containing nano-SiO2 and nano-CeO2 particles[J].Surface & Coatings Technology,2008,202 :1574-1579
    [32] JIN Huiming,JIANG Shihang,ZHANG Linnan .Structural characterization and corrosive property of Ni-P/CeO2 composite coating[J]. JOURNAL OF RARE EARTHS,2009,1(2):109-114
    [33] V.D. Papachristos,C.N. Panagopoulos,U. Wahlstrom,et al. Effect of annealing on the structure and hardness of Ni–P–W multilayered alloy coatings produced by pulse plating[J].Materials Science and Engineering A,2000,4(279):217–230
    [34] Frear D R,Shibli S M,Dilimon V S.Effect of phosphorous content and TiO2 reinforcement on Ni-P electroless plates for hydrogen evolution reaction[J]. Internation Journal of Hydrogen Energy ,2007,32(3):1649-1653.
    [35]夏钰.酸性化学镀镍沉积速度的研究[J].材料保护,1996,29(1):4- 6.
    [36]樊玉光,高护生,王金刚,等.热处理对化学镀Ni-P镀层耐蚀性的影响[J].西安石油学院学报,1996,11(1):40-42.
    [37]徐向荣,黄拿灿,杨少敏.稀土表面改性在改善高温抗氧化和耐蚀性方面的应用[J].热处理技术与装备,2006,3(27):15-20
    [38]白永刚,王引真,宋玉强.高温热处理对高磷Ni-P化学镀层耐蚀性的影响[J].表面技术,2003,32(2):26-28.
    [39] Y.H. Cheng,Y. Zou,L. Cheng,et al. Effect of the microstructure on the properties of Ni–P deposits on heat transfer surface[J].Surface & Coatings Technology,2009,2(3):1559–1564
    [40] Guo F.Composite lead-free electronic solders. Mater Sci: Mater Electron,2007,1(18):129–45.
    [41] Frear D R,Shibli S M,Dilimon V S.Effect of phosphorous content and TiO2 reinforcement on Ni-P electroless plates for hydrogen evolution reaction[J]. Internation Journal of Hydrogen Energy,2007,32(3):1649-1653.
    [42] Guo Z,Keong K G,Sha W.Crystallization and phase transformation behavior of electroless nickel phosphorous deposits and their engineering properties.Surface Engineering,2003,18(2):329-332.
    [43] JEONG D H,ERB U,AUST K T,et al.The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni-P coatings.Scripta Materialia,2003,48(8):1067-1072.
    [44] WANG N,WANG Z,AUST K T,et al. Room temperaturecreep behavior of nanocrystalline nickel produced by an electrodeposition technique[J]. Mater Sci Eng A,1997,237(2):150?158.
    [45] Min Ryou,Byoung-Soo,Lee Myung-Ho Kim . Influence of Aging Treatment on the Mechanical and Electrical Properties of Cu-0.5%Be Alloy[J].JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY ,2008,24(1):25-29
    [46]朱龙章,张弘伟.稀土添加剂镀镍耐蚀性的研究[J].电镀与环保,2001,3(1):23-24
    [47]潘秉锁,杨洋,杨凯华.稀土添加剂对镀镍液性能的影响[J].材料保护,2005,4(9):3-8
    [48]李吉生,郭爱武,邢谦,等.共沉淀分离-ICP-MS快速测定卤水中稀土元素[J].光谱试验室,2009,26(6):10-18
    [49]杨胜奇,张弘伟.稀土添加剂镀镍耐蚀性的研究[J].电镀与环保,2001,2(1):23-24
    [50]黄清安,王银平,吴俊.稀土金属和合金电沉积的研究现状[J].材料保护,2001,4(1):51-53
    [51] Shao G,Qin X,Wang H.Influence of RE element on Ni-P coelectroless depostion process[J].Materials chemistry and Physis,2003,80(3):334-339
    [52]梁志杰.现代表面镀覆技术[J].国防工业出版社,2005,1(3):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700