FePt基薄膜的结构与磁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有面心四方结构的L10有序化FePt合金具有极高的单轴磁晶各向异性能Ku(-7×107erg/cc),并且化学性质稳定,在开发高密度垂直磁记录介质、垂直磁性隧道结等方面具有潜在的应用前景。应用中,自然生长的磁性颗粒存在颗粒尺寸不均、形状不规则及排列无序等问题。用微加工法制做人工阵列是解决问题的途径之一,但前提是要获得优质连续的薄膜。FePt合金形成L10相需要高温热处理,往往会破坏薄膜的连续。本文通过控制生长条件和热处理环境制备出高质量的连续L10-FePt薄膜。磁力显微镜已经成为获取亚微米尺度微粒子内部磁畴结构信息的有力工具。本文研究了FePt合金用于制作磁力显微镜的高性能磁各向同性探针所需要的Fe、Pt最佳原子比。在FePt合金中掺入少量Ag,有利于降低形成Z10-FePt合金的有序化温度。但是有关相分离的研究,还不充分。本文在FePt中掺入大量的Ag,形成FePt-Ag多层膜,经过高温热处理后,分析样品在磁性、表面形貌、晶体结构等方面的性质。
     用磁控溅射法在加热到400℃的MgO(001)单晶基片上沉积了总厚度为25 nm的[Fe(0.6nm)/Fe30.5Pt69.5(1.9 nm)]10多层连续薄膜,总成分配比为Fe50Pt50。然后对其在[500,900]℃温度范围进行真空热处理,分析了热处理温度对薄膜表面形貌、晶体结构以及磁特性的影响。结果表明,在加热基片上生长的FePt薄膜,层间已经发生扩散,但形成的是无序的Al相。经过700℃以上的高温热处理,薄膜转变为具有(001)织构的L10相,易磁化轴沿垂直于膜面的方向,有序度大于0.85,单轴磁晶各向异性能约2.7×107 erg/cc。利用扩散后残存的周期性微弱成分起伏,可以使薄膜在800℃以下保持形貌连续。用原子力显微镜对薄膜表面进行观察证实,在780℃进行热处理,薄膜的表面最平整。这种优质的连续薄膜可以应用于微加工制作超高密度垂直磁记录阵列介质。
     用电子束蒸发沉积法在加热到100℃的MgO(001)基板上生长了50 nm厚的FexPt100-x取向薄膜,原子比成分范围为x=[10,85]。在500℃进行保温2 h的原位热处理后,分析样品的结构和沿不同晶向施加磁场时的磁性行为。结果表明,随着x的增加,易磁化轴的方向在沿平行于膜面方向和垂直于膜面方向之间反复变化,取决于内秉的磁晶各向异性与外秉的形状各向异性之间的竞争。当x=60时,由于薄膜发生不完全的A1→L10相转变,形成了A1软磁相与L10硬磁相的复合体,样品沿平行和垂直于膜面方向磁化的矫顽力都达到5 kOe以上沿膜面方向磁化时,矫顽力高于软磁相的磁晶各向异性场,并且正负向磁化的剩余磁化强度明显不相等。采用三磁畴软磁相模型,结合硬磁/软磁交换耦合作用,对此进行了解释。这种硬磁/软磁复合材料适合于用来制作磁力显微镜的各向同性高矫顽力探针。
     用磁控溅射法在加热到100℃的石英基片上依次沉积5 nm的MgO下底层和[FePt(dnm)/Ag(3 nm)]n多层膜,d=1,2,3,4;n=9,5,3,2;d×n≈9.对样品在600℃进行30 min的热处理后,所有样品的面内和垂直矫顽力均在10 kOe左右。MgO下底层能够诱导FePt取向生长,形成(001)织构和(100)织构共存的L10相。当d≤2时,薄膜发生明显的相分离。相分离有助于减小FePt颗粒的尺寸。
Due to its extremely large uniaxial magnetic anisotropy (Ku=~7×10-7ergs/cc), small grain size and high chemical stability, the L10-FePt film with face-centered tetragonal (001) texture has attracted great attention for the potential application in perpendicular recording media and magnetic tunnel junction. However, a subsequent anneal to form the L10 phase often result in undesirable dispersive grain size, irregular grain shape and random grain alignment. In this thesis, a kind of heat resisting continuous L10-FePt films suitable for microfabrication of arrays and a kind of hard/soft magnetic FexPt100-x composite with potential application to manufacture the cantilever for magnetic force microscope with high isotropic coercivity were prepared. The phase separation in FePt-Ag nanocomposites was also researched to understand the effect on the morphology. The surface morphology, magnetic properties and lattice structure were anylized.
     By magnetron sputtering, [Fe(0.6 nm)/Fe3o.5Pt69.5(1.9 nm)]10 continuous multilayer films with nominal composition of Fe5oPt5o and total thickness of 25 nm were deposited on MgO(001) substrates heated to 400℃, and then subjected to a vacuum annealing at temperatures in the range of Ta=[500,900]℃. The morphology, crystallography as well as magnetic property dependences of Ta were investigated by scanning electron microscope, atomic force microscope, X-ray diffraction and vibrating sample magnetometer. Heating the substrate during sputtering resulted in interlayer diffusion, and the as-deposited multilayer film showed the soft magnetic behaviors of FePt alloy with disordered A1 phase. Annealed at Ta%≥700℃, the film became the ordered L10 phase with significant (001) orientation; the ordering parameter was more than 0.85; the magnetocrystalline anisotropic energy exceeded 2.7×107 erg/cc. Due to the residual subtle periodical compositional fluctuation in the film, the ordering could nucleate interior the film and the Pt-enrichment boundaries were sufficiently suppressed. The continuity of morphology maintained at Ta≤800℃. The observation by atomic force microscope indicated that the film annealed at Ta=780℃had the flattest surface with sparse swells lower than 3 nm. This kind of heat-resisting continuous film would fit the need for microfabrication of patterned arrays of L10 FePt for applications such as the perpendicular magnetic recording media.
     FexPt100-x films (50 nm thick) with x=[10,85] in atomic percent were deposited by electron beam onto MgO (001) substrates heated to 100℃. And then the samples were annealed at 500℃ for 2 h. The crystalline structures and anisotropic magnetic properties were investigated. The direction of easy magnetization axis switches between horizontal direction and vertical direction with the increase of x, inducted by the intrinsic magnetocrystalline anisotropy and extrinsic shape anisotropy. At x=60, a composite of disordered A1 phase and ordered L10 phase can be obtained due to the unfinished A1→L10 transformation. Both the horizontal coercivity and the vertical coercivity exceed 5 kOe. The horizontal coercivity is higher than the magnetocrystalline anisotropic field of soft A1 phase, and the horizontal coercive loop is asymmetric. The mechanism is discussed by a tri-domain model for the hard-soft exchange coupling system. This kind of hard/soft magnetic composite has the potential application to manufacture the cantilever for magnetic force microscope with high isotropic coercivity.
     By magnetron sputtering, MgO (5 nm) underlayer and [(FePt(d nm)/Ag(3 nm)]n multilayer (d= 1,2,3,4; n= 9,5,3,2; the total thick of FePt film was d×n≈9; the total thick of Ag was 3n) were subsequently deposited onto quartz substrate heated to 100℃, and subjected to an anneal at 600℃for 30 min in vacuum. The vertical and horizontal coercivity is approximately 10 kOe, and the overlap of (002) peak and (200) peak is appeared in all samples. The addition of Ag can prevent the formation of L10-FePt, despite the fact that the MgO underlayer could induce the growth of (001) orientation. The film was phase-separated abruptly at d≤2. The phase separation significantly reduced the size of FePt grain. The Ag addition can decrease the exchange-coupling interaction among FePt grains.
引文
[1]章吉良.磁记录原理与技术.上海:上海交通大学出版社,1990.
    [2]都有为,罗河烈.磁记录材料.北京:电子工业出版社,1992.
    [3]田民波.磁性材料.北京:清华大学出版社,2001.
    [4]Weller D, Moser A, Folks L, et al. High Ku Materials Approach to 100 Gbits/in2. IEEE Trans Magn,2000,36:10-15.
    [5]Iwasaki S, Nakamura Y. An analysis for the magnetization mode for high density magnetic recording. IEEE Trans Magn,1977,13(5):1272.
    [6]Iwasaki S, Ouchi K. CoCr recording films with perpendicular magnetic anisotropy. IEEE Trans Magn,1978,14(5):849.
    [7]Charap S H, Lu P L, He Y. Thermal stability of recorded information at high densities. IEEE Trans Magn,1997,33:978-983.
    [8]Weller D, Moser A. Thermal effect limits in ultrahigh-density magnetic recording. IEEE Trans Magn,1999,35:4423-4439.
    [9]奥汉德利R C著.周永恰等译.现代磁性材料原理和应用.北京:化学工业出版社,2002.
    [10]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003:215-221.
    [11]Beardsley I A, Zhu J G. Significance of dM measurements in thin film media. IEEE Trans Magn,1991,27(6):5037.
    [12]Mayo P I, Grady K O, Kelly P E, et al. A magnetic evaluation of interation and noise characteristics of CoNiCr thin films. J Appl Phys,1991,69(8):4733.
    [13]Bottoni G, Candolfo D, Cecchetti A, et al. Magnetostatic interations on films for perpendicular recording media. J Appl Phys,1999,85(8):4729.
    [14]王亦忠,张茂才,乔祥,等.各向同性纳米结构FePt薄膜的结构与磁性.物理学报,2000,49:1600.
    [15]Mcheney M E, Laglin D E. Nano-Scale materials development for future magnetic application, Acta Mater,2000 (48):223-226.
    [16]Nakamula Y. Perpendicular magnetic recording process and prospects. J Magn Magn Mater, 1999, (200):634-636.
    [17]Grady K O, Laidler H. The limit to magnetic recording media considerations. J Magn Magn Mater,1999,200:616-618.
    [18]Kawamae O, Yasukawa T, Hoshizawa T, et al. Adaptive signal processing method using PRML for high density optical disks. International Symposium on Optical Memory and Optical Data Storage Topical Meeting,2002:108-110.
    [19]Minh P T L, Thuy N P, Chen N T N. Thickness dependence of the phase transformation in FePt alloy thin films. J Magn Magn Mater,2004,277:187-191.
    [20]白建民.超高密度磁记录介质用磁性薄膜的研究.兰州:兰州大学,2002.
    [21]单荣.铁磁、反铁磁双层膜中矫顽力及磁性薄膜中垂直各向异性的研究.上海:复旦大学,2005.
    [22]Sangki Jeong. Structure and magnetic properties of polycrystalline FePt and CoPt thin films for high density recording media, Carnegie Mellon University,2002.
    [23]Garcia-Sanchez F, Chubykalo-Fesenko O, Mryasov O, et al. Exchange spring structures and coercivity reduction in FePt/FeRh bilayers:A comparison of multiscale and micromagnetic caculations. Appl Phys Lett,2005,87:122501.
    [24]Harada K, Honda N, Microstructural study on Co-Cr based perpendicular magnetic recording media using electrochemical method. IEIC Technical Report,2000,100:21-28.
    [25]Maeda Y, Takei K, Rogers D J. Compositional microstructures in Co-Cr films for magnetic recording. J Magn Magn Mater,1994,134:315-322.
    [26]Carcia P F. Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-film layered structures. J Appl Phys,2009,63:5066-5073.
    [27]Hashimoto S, Ochiai Y, Aso K. Perpendicular magnetic anisotropy and magnetostriction of sputtered Co/Pd and Co/Pt multilayered films. J Appl Phys,2009,66:4909-4916.
    [28]Farrow R F C, Weller D, Marks R F, et al. Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films. J Appl Phys,2009,79:5967-5969.
    [29]Momose S, Kodama H, Uzumaki T, et al. Magnetic properties of magnetically isolated L10-FePt nanoparticles. Appl Phys Lett,2004,85:1748-1750.
    [30]Rong C B, Li D, Nandwana V, et al. Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Advanced Materials,2006,18:2984-2988.
    [31]Morisako A, Matsumoto, Naoe M. Read write characteristics of hexagonal barium ferrite sputtered prepared by post deposition annealing. IEEE Trans Magn,1998,34:1630-1632.
    [32]Noma K, Matsushita N, Nakagawa S, et al. Effects of composition control on crystallographic and magnetic characteristics of Ba ferrite films sputtered with the mixture of Xe, Kr Ar and O2 for recording media. J Appl Phys,1997,81:4377.
    [33]Albrecht M, Hu G, Guhr I L, et al. Magnetic multilayers on nanospheres. Nat Mater,2005,4: 203.
    [34]Victora R H, Shen X. Composite media for perpendicular magnetic recording. IEEE Trans Magn,2005,41(2):537.
    [35]Thiele J U, Maat S, Fullerton E E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl Phys Lett,2003,83(17):2859.
    [36]Guslienko K Yu, Chubykalo-Fesenko O, Mryasov O, et al. Magnetic reversal via perpendicular exchange spring in FePt/FeRh bilayer films. Phys Rev B,2004,70(10): 104405.
    [37]Luo C P, Sellmyer D J, Structure and magnetic properties of FePt:SiO2 granular thin films. Appl Phys Lett,1999,75:3162-3164.
    [38]Laudemir C V, Miguel J J, Self-assembled FePt nanocrystals with large coercivity: Reduction of the fcc-to-L10 ordering temperature. J Am Chem Soc,2006,128:11062-11066.
    [39]Zhou W L, He J B, Fang J Y, et al., Self-assembly of FePt nanoparticles into nanorings. J Appl Phys,2003,93:7340-7342.
    [40]Massalski T B. Binary alloy phase diagrams. Ohio:American Society for Metals,1986:1096
    [41]Liu J P, Luo C P, Liu Y, Sellmyer D J. High energy products in rapidly annealed nanoscale Fe/Pt multilayers. Appl Phys Lett,1998,72:483-485.
    [42]Heitsch A T, Lee D C, Korgel B A. Antiferromagnetic single domain L12 FePt3 nanocrystals. J Phys Chem C,2010,114:2512-2518.
    [43]Shima T, Takanashi K, Takahashi Y K, Hono K. Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films. Appl Phys Lett,2004,85:2571-2573.
    [44]Sun S H. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater,2006,18:393-403.
    [45]Skomski R. Nanomagnetics. J Phys:Condens Matter,2003,15:R841-R896.
    [46]Takahashi Y K, Koyama T, Ohnuma M, et al. Size dependence of ordering in FePt nanoparticles. J Appl Phys,2004,95(5):2690.
    [47]Sun S H, Anders S, Thomson T, et al. Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B,2003,107:5419-5425.
    [48]Luciano E, Howard M, et al. A synthetic route to size-controlled fcc and fct FePt nanoparticles. J Am Chem Soc,2005,127:10140-10141.
    [49]Matsui I. Preparation of FePt magnetic nanoparticle films by plasma chemical vapor deposition for ultrahigh density data storage media. Jpn J Appl Phys,2006,45:8302-8307.
    [50]Held G A, Zeng H, Sun S H. Magnetics of ultrathin FePt nanoparticle films. J Appl Phys, 2004,95:1481-1484.
    [51]Kang S S, Harrell W J, Nikles D E. Reduction of the fcc to L10 ordering temperature for self-assembled FePt nanoparticles containing Ag. Nano Letters,2002,2:1033-1036.
    [52]Zhu Y, Cai J W. Low-temperature ordering of FePt thin films by a thin AuCu underlayer. Appl Phys Lett,2005,87:032504.
    [53]Wiedwald U, Klimmer A, Kern B, et al. Lowering of the ordering temperature of FePt nanoparticles by He+ ion irradiation. Appl Phys Lett,2007,90:062508.
    [54]Wierman K W, Platt C L, Howard J K. Impact of stoichiometry on L10 ordering in FePt and FePtCu thin fims. J Magn Magn Mater,2004,278:214.
    [55]Ristau R A, Barmak K, Lewis L H, et al. On the relationship of high coercivity and L10 ordered phase in CoPt and FePt thin films. J Appl Phys,1999,86:4527(1-7).
    [56]Takahashi Y, Matsubara E, Kawazoe Y, et al. Reconstruction of atomic images from multiple-energy x-ray holograms of FePt films by the scattering pattern matrix method. Appl Phys Lett,2005,87:234104(1-3).
    [57]Shima T, Takanashi K, Takahashi Y K, et al. High coercivity and magnetic domain observation in epitaxially grown particulate FePt thin films. J Magn Magn Mater,2003,266: 171-177.
    [58]Zhang Y, Wan J, Skumryev V, et al. Microstructural characterization of L10 FePt/MgO nanoparticles with perpendicular anisotropy. Appl Phys Lett,2004,85:5343-5345.
    [59]Sun S H, Murray C B, Weller D, et al. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science,2000,287:1989-1992.
    [60]Shima T, Moriguchi T, Mitani S, et al. Low-temperature fabrication of L10 ordered FePt alloy by alternate monatomic layer deposition. Appl Phys Lett,2002,80:288-290.
    [61]Maeda T, Kai T, Kikitsu A, et al. Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu. Appl Phys Lett,2002,80:2147-2149.
    [62]Ko H S, Perumal A, Shin S C. Fine control of L10 ofdering and grain growth kinetics by C doping in FePt films. Appl Phys Lett,2003,82:2311-2313.
    [63]Kang K, Zhang Z G, Papusoi C, et al. (001) oriented FePt-Ag composite nanogranular films on amorphous substrate. Appl Phys Lett,2003,82:3284-3286.
    [64]Takahashi Y K, Ohnuma M, Hono K. Orderng process of sputtered FePt films. J Appl Phys, 2003,93:7580-7582.
    [65]Chou S Y. Patterned magnetic nanostructures and quantized magnetic disks. Proc IEEE, 1997,85:652-671.
    [66]Koike K, Matsuyama H, Hirayama Y, et al. Magnetic block array for patterned magnetic media. Appl Phys Lett,2001,78:784-786.
    [67]McClelland G M, Hart M W, Rettner C T, et al. Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold. Appl Phys Lett,2002,81:1483-1485.
    [68]Lodder J C, Method for preparing patterned media for high-density recording. J Magn Magn Mater,2004,272-276:1692-1697.
    [69]Terris B D, Weller D, Folks L, et al. Patterning magnetic films by ion beam irradiation. J Appl Phys,2000,87(9):700.
    [70]Kikuchi N, Okamoto S, Kitakami O, et al. Sensitive detection of irreversible switching in a single FePt nanosized dot. Appl Phys Lett,2003,82:4313-4315.
    [71]Okamoto S, Kikuchi N, Kitakami O, et al. Magnetization reversal process in FePt L10 nanoparticles. Scr Mater,2005,53:395-401.
    [72]Okamoto S, Kikuchi N, Kato T, et al. Magnetization behavior of nanomagnets for patterned media application. J Magn Magn Mater,2008,320:2874-2879.
    [73]Kikuchi N, Okamoto S, and Kitakami O. The critical size between single domain and multidomain in L10-FePt particles. J Appl Phys,2008,103:07D511(1-3).
    [74]Sun X C, Kang S S, Harrell J W, et al. Synthesis, chemical ordering, and magnetic properties of FePtCu nanoparticle films. J Appl Phys,2003,93:7337-7339.
    [75]Kang S S, Jia Z Y, Nikles D E, et al. Synthesis, self-assembly, and magnetic properties of FePt1-xAux nanoparticles. IEEE Trans Magn,2003,39:2753-2757.
    [76]Platt C L, Wierman K W, Svedberg E B, et al. L10 ordering and microstructure of FePt thin films with Cu,Ag, and Au additive. J Appl Phys,2002,92:6104-6109.
    [77]Nishimura K, Takahashi K, Uchida H, et al. Effects of third elements (Ag, B, Cu, Ir) addition and high Ar gas pressure on L10 FePt films. J Magn Magn Mater,2004,272-276:2189-2190.
    [78]Hsu Y N, Jeong S, Laughlin D E, et al. Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films. J Appl Phys,2001,89:7068-7070.
    [79]Zhao Z L, Inaba K, Ito Y et al. Crystallography ordering studies of the L10 phase transformation of FePt thin film with Ag top layer. J Appl Phys,2004,95:7154-7156.
    [80]Zhao Z L, Ding J, Inaba K, et al. Promotion of L10 ordered phase transformation by the Ag top aayer on FePt thin films. Appl Phys Lett,2003,83:2196-2198.
    [81]Xu Y F, Chen J S, Wang J P. In situ ordering of FePt thin films with face-centered-tetragonal (001) texture on Cr100-xRux underlayer at low substrate temperature. Appl Phys Lett,2002,80: 3325-3327.
    [82]Wang H Y, Ma X K, He Y J, et al. Enhancement in ordering of FePt films by magnetic field annealing. Appl Phys Lett,2004,85:2304-2306.
    [83]Wang H Y, Mao W H, Sun W B, et al. High coercivity and small grains of FePt films annealed in high magnetic fields. J Phys D-Appl Phys,2006,39:1749-1753.
    [84]董凯锋,程伟明,程晓敏,等.L10有序FePt磁记录薄膜研究进展,信息记录材料,2007,3:52.
    [85]Takahashi Y K, Ohnuma M, Hono K. Effect of Cu on the structure and magnetic properties of FePt sputtered film. J Magn Magn Mater,2002,246:259-265.
    [86]Chen S K, Yuan F T, Chin T S, et al. Effect of interfacial diffusion on microstructure and magnetic properties of Cu/FePt bilayer thin films. J Appl Phys,2005,97:073902.
    [87]Xu X H, Wu H S, Wang F, et al. The effect of Ag and Cu underlayer on the L10 ordering FePt thin films. Appl Surf Sci,2004,233:1-4.
    [88]Li B H, Feng C, Yang T, et al. Approach to enhance of coercivity in perpnedicular FePt/Ag nanoparticle films, J Appl Phys,2006,99:016102.
    [89]Perumal A, Ko H-S, and Shin S-C. Perpendicular thin films of carbon-doped FePt for ultrahigh-density magnetic recording media. IEEE Trans Magn,2003,39:2320-2322.
    [90]You C Y, Takahashi Y K, and Hono K. Particulate structure of FePt thin films enhanced by Au and Ag alloy. J Appl Phys,2006,100:056105.
    [91]Bian B, Laughin D E. Fabrication and nanostructure of oriented FePt particles, J Appl Phys, 2000,87:6962-6964.
    [92]Zhao Z L, Ding J, Chen J S, et al. The effects of pinning layer on the magnetic properties of FePt perpendicular media. J Magn Magn Mater,2004,272:2186-2188.
    [93]O'Connor C J, Sima J A, Kumbhar A. Magnetic properties of FePtx/Au and CoPtx/Au core-shel nanoparticles. J Magn Magn Mater,2001,226:1915-1917.
    [94]Xu X H, Wu H S, Li X L, et al. Structure and magnetic properties of FePt and FePt/C thin films by post-annealing. Phys B,2004,348:436-439.
    [95]Gibson G A and Schultz S. Magnetic force microscope study of the micromagnetics of submicrometer magnetic particles. J Appl Phys,1993,73:6961-6966.
    [96]Martin Y and Wickramasinghe H K. Magnetic imaging by "force microscopy" with 1000 A resolution. Appl Phys Lett,1987,50:1455-1457.
    [97]Saenz J J, Garcia N, Grutter P, et al. Observation of magnetic forces by the atomic force microscope. J Appl Phys,1987,62:4293-4295.
    [98]Rugar D, Mamin H J, Guethner P, et al. Magnetic force microscopy:General principles and application to longitudinal recording media. J Appl Phys,1990,68:1169-1183.
    [99]Amos N, Ikkawi R, Haddon R, et al. Controlling multidomain states to enable sub-10-nm magnetic force microscopy. Appl Phys Lett,2008,93:203116(1-3).
    [100]Babcock K, Elings V, Dugas M, Loper S. Optimization of thin-film tips for magnetic force microscopy. IEEE Trans Magn,1994,30:4503-4505.
    [101]Yoshida N, Yasutake M, Arie T, et al. Quantitative analysis of the magnetic properties of metal-capped carbon nanotube probe. Jpn J Appl Phys,2002,41:5013-5016.
    [102]Arie T, Nishijima H, Akita S, et al. Carbon-nanotube probe equipped magnetic force microscope. J Vac Sci Technol B,2000,18:104-106.
    [103]Deng Z, Yenilmez E, Leu J, et al. Metal-coated carbon nanotube tips for magnetic force microscopy. Appl Phys Lett,2004,85:6263-6265.
    [104]Saito H, Miyazaki K, Ishio S. In situ magnetic hysteresis measurement of magnetic tips in magnetic force microscope. J Magn Magn Mater,2002,240:73-75.
    [105]Saito H, Sunahara R, Rheem Y, Ishio S.Low-noise magnetic force microscopy with high resolution by tip cooling. IEEE Trans Magn,2005,41:4394-4396.
    [106]Amos N, Lavrenov A, Fernandez R, et al. High-resolution and high-coercivity FePtL10 magnetic force microscopy nanoprobes to study next-generation magnetic recording media. J Appl Phys,2009,105:07D526(1-3).
    [107]#12
    [108]Luo C P, Liou S H, Gao L, et al. Nanostructured FePt:B2O3 thin films with perpendicular magnetic anisotropy. Appl Phys Lett,2000,77:2225-2227.
    [109]Breitling A, Goll D. Hard magnetic L10 FePt thin film and nanopatterns. J Magn Magn Mater, 2008,320:1449-1456.
    [110]Ohring M. Materials science of thin films:deposition and structure, second edition, Academic Press,1999.
    [111]吴自勤,王冰著.薄膜生长.科学出版社,2001.
    [112]郑伟涛.薄膜材料与薄膜技术.化学工业出版社,2004,47.
    [113]杨邦朝,王文生.薄膜物理与技术.电子科技大学出版社,1994.
    [114]唐伟忠著.薄膜材料制备原理、技术及应用(第2版).冶金工业出版社,2003:40-41
    [115]麻莳立男著,陈昌存译.薄膜技术基础.电子工业出版社,1988.
    [116]Bin L and David E L. Microstructure of Longitudinal Media. The physics of ultrahigh-density magnetic recording, springer series in surface sciences vol.41, Springer-Verlag, Berlin,2002.
    [117]Okamoto S, Kitakami O and Shimada Y. Crystal distortion and the magnetic moment of epitaxially grown a"-Fe16N2. J Magn Magn Mater,2000,208:102-114.
    [118]Thiele J U, Folks L, Toney M F et al. Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001)L10 films. J Appl Phys,1998,84:5686(1-7).
    [119]Chen J S, Lim B C, Hu J F, et al. High coercivity L10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature. Appl Phys Lett,2007,90: 042508(1-3).
    [120]莫小静,向晖,郑远平,等.在Mgo(001)基板上生长连续的L10-FePt纳米薄膜.中国科学G辑,2011,41:78-85.
    [121]Seki T, Shima T, Yakushiji K, et al. Dot size dependence of magnetic properties in microfabricated L10-FePt (001) and L10-FePt (110) dot arrays. J Appl Phys,2006,100: 043915-043922.
    [122]Seki T, Shima T, Yakushiji K, et al. Improvement of hard magnetic properties in microfabricated L10-FePt dot arrays upon post-annealing. IEEE Trans Magn,2005,41:3604-3606.
    [123]Li G Q, Saito H, Ishio S, et al. Asymmetric initial magnetization process of elongated particles in nucleation-type L10 FePt films. J Magn Magn Mater,2007,315:126-131.
    [124]Mo X J, Xiang H, Li G Q, et al. Magnetic properties of perpendicularly orientated L10 FePt nanoparticles. Chin Sci Bull,2010,55:680-686.
    [125]Li G Q, Takahoshi H, Ito H, et al. Morphology and domain pattern of L10 FePt films. J Appl Phys,2003,94:5672-5677.
    [126]Li G Q, Takahoshi H, Ito H, et al. Mechanism of magnetization process of island-like L10 FePt films. J Magn Magn Mater,2005,287:219-223.
    [127]Okamoto S, Kikuchi N, Kitakami O, et al. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films. Phys Rev B,2002,66: 024413(1-3)
    [128]Seki T, Shima T, Takanashi K, et al. L10 ordering of off-stoichiometric FePt (001) thin films at reduced temperature. Appl Phys Lett,2003,82:2461-2463.
    [129]Perumal A, Takahashi Y K, Seki T O, et al. Particulate structure of L10 ordered ultrathin FePt films for perpendicular recording. Appl Phys Lett,2008,92:132508(1-3).
    [130]Nguyen H L, Howard L E M, Stinton G W, et al. Synthesis of size-controlled fcc and fct FePt nanoparticles. Chem Mater,2006,18:6414-6424.
    [131]Kuo C -M, Kuo P C, Wu H-C. Microstructure and magnetic properties of Fe100-xPtx alloy films. J Appl Phys,1999,85:2264-2269.
    [132]Li G Q, Saito H, Ishio S, et al. Anomalous magnetization processes and non-symmetrical domain wall displacements in L10 FePt particulate films. J Magn Magn Mater,2006,303: 14-19
    [133]Kneller E F and Hawig R. The exchange-spring magnet:a new material principle for permanent magnets. IEEE Trans Magn,1991,27:3588-3600.
    [134]Jiang J S, Pearson J E, Liu Z Y, et al. Improving exchange-spring nanocomposite permanent magnets. Appl Phys Lett,2004,85:5293-5295.
    [135]Nomura K, Akiba E. H2 Absobing-desorbing characterization of the Ti-V-Fe alloy system. Journal of Alloys and Compounds,1995,231:513-517.
    [136]Okada M, Kuriiwa T, Tamura T, et al. Ti-V-Cr BCC alloys with high protium content. J Alloys and Compounds,2002,330-332; 511-516.
    [137]Akiba E, Iba H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics,1998,6:461-470.
    [138]Lynch J F, Maeland A J, Libowitz G G. Lattice parameter variation and thermodynamics of dihydride formation formation in the vanadium rich VTiFe/H2 system. Zeitschrift Fur Physikalische Chemic,1985,145:51-59.
    [139]Yang T, Ahmad E, Suzuki T. FePt-Ag nanocomposite film with perpendicular magnetic anisotropy, J Appl Phys,2002,91:6860-6862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700