表面梯度化材料对内皮细胞黏附与迁移影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探讨表面梯度化材料对内皮细胞的黏附与迁移行为的影响,我们通过不同方式体外构建材料表面I型胶原蛋白梯度(蛋白密度梯度和图案化不同曲率和弧度梯度的蛋白基底),来研究内皮细胞在梯度表面的黏附状态和运动趋化性。实验一通过连续碱水解聚乳酸膜制备形成羧基密度,并共价偶联胶原蛋白形成相应的蛋白密度梯度。接触角测量仪和激光扫描共聚焦显微镜分别表征了- COOH密度梯度和胶原蛋白密度梯度,通过荧光显微镜可观测到明显的胶原蛋白梯度,以上结果证实了聚乳酸薄膜上通过连续碱水解方法制备胶原蛋白梯度的可行性。在低密度和中间密度的胶原蛋白梯度区域培养的内皮细胞表现出较强的沿着梯度方向的运动性(净迁移,趋化指数,迁移率和细胞轨迹证实),然而,内皮细胞在高浓度蛋白密度区域的运动与胶原蛋白梯度反向。结果表明,细胞运动受胶原蛋白梯度趋向,但必须是适宜的利于细胞黏附的蛋白密度。实验二基于仿生学原理,根据人体内不同种类和不同口径(从最细小的毛细血管到大动脉)的血管厚度和弯曲度不同设计出一系列弧度梯度(20μm,60μm,100μm弧度宽度),并运用微接触印刷技术制备出不同曲率半径的胶原蛋白基底,扫描电子显微镜和光学显微镜检验PDMS印章表面平整度,激光共聚焦显微镜检验基底蛋白黏附情况和均匀度,细胞骨架蛋白肌动蛋白和粘着斑蛋白染色观测细胞粘附状态,活细胞工作站对细胞6h运动情况进行录像,运用相关软件测定20,60,100μm弧度宽度梯度之间或自身不同曲率半径之间的细胞迁移速度和细胞迁移总位移与净位移比值。结果表明细胞的黏附状态与弧度宽度成正比;设计的曲率半径越小,迁移速度越快,运动性越强;在不同弧度宽度的材料表面细胞运动能力如下:100μm>20μm>60μm。本研究分析了内皮细胞在不同形式的胶原蛋白梯度上的一系列运动迁移参数,获得了内皮细胞黏附、运动迁移的最适宜的蛋白梯度基底,为进一步研究内皮细胞化学诱导运动性提供依据,为植入体在植入宿主后的微循环血管新生中的脉管重塑和血管再生提供新的思路,为组织工程血管支架材料的内皮化提供理论依据。
To investigate the effect of surface gradient biomaterials on endothelial cells adhesion and motility, we developed two novel approachs for the fabrication of type I collagen gradient (collagen density gradient and the gradient of micro-radian width with various curvatures) onto substrate in this study. The first experiment involved sequential alkali hydrolysis of PDLLA films to produce–COOH density gradient along substrates, followed by covalently immobilizing collagen onto hydrolyzed PDLLA films. This treatment resulted in a surface-density gradient of collagen onto PDLLA surfaces. Contact angle measurement and confocal laser scanning microscopy were employed to characterize the–COOH gradient and collagen gradient, respectively. The collagen gradient onto PDLLA films was clearly visible by fluorescence microscopy observation. All results confirmed the feasibility of the fabrication of collagen gradient onto PDLLA films via alkali hydrolysis approach. Endothelial cells cultured on the low surface-density and moderate surface-density of collagen gradient areas displayed a strong motility (net displacement, chemotactic index, and migration rate, cell trajectories) tendency in parallel to the gradient. However, endothelial cells grown on the high surface-density of collagen gradient areas demonstrated a reverse response of motility to collagen gradient clues. The result suggests that cell motility is regulated by collagen gradient, however, with appropriate surface-density. The second experiment involves the micropatterning technology. Based on the principle of bionics, we designed some new patterns (the width of the micro-radian pattern is 20μm, 60μm, 100μm respectively) which similar to different blood vessels (from capillary to artery). From the patterns we can obtain a collagen substrate microenvironment with various curvatures. Scanning electron microscopy was employed to characterize the quality of PMDS stamp. Confocal laser scanning microscopy (CLSM) was utilized to characterize the absorption of FITC conjugated collagen solution. The staining of F-action and vinculin showed cells’adhesion on the substrates surfaces. Live Cell Imaging System was used to take cell’s migration image recording of 6h. Software was used to analyze migration rate and cell’s migration distance / net displacement between 20, 60 and 100μm on the protein substrates. The result suggests that Cell adhesion status is proportional to the width of the curvature, the smaller radius of curvatures,the faster of the migration rate. Meanwhile, it can make the cell motility strengthen. Cell movement ability on different width of the micropattern is: 100μm>20μm >60μm.
     These studies analyzed a series of migration parameters about endothelial cell’s migration on various collagen protein gradient substrates, and obtained the optimal substrate for cell’s movement and adhesion. This study provides proper substrates for investigating chemical stimuli that induced cell directional motility. It is potentially important for controlled angiogenesis for implantation of tissue-engineered devices and will provide new ideas to vascular remodeling and angiogenesis.
引文
[1] Griffith L G, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002, 295: 1009-1014.
    [2] Demir R, Kayisli U A, Cayli S, et al. Sequential steps during vasculogenesis and angiogenesis in the very early human placeta. Placeta, 2006, 27(6-7):535-539.
    [3] Katherine M M, Gurmel S S, Krishna K B, et al. Thymosina1 stimulates endothelial cell migration, angiogenesis, and wound healing[J]. The Journal of Immunology, 1998, 160: 1001–1010.
    [4] Bischoff J. Approaches to studying cell adhesion molecules in angiogenesis [J].Trends in Cell Biology, 1995, 5(2):69-74.
    [5] Kaplan DL,Moon RT, It takes a village to grow a tissue. Nature Biotech, 2005, 23: 1 237-1239.
    [6] Li B, Ma Y X, Wang S, et al. A Technique for Preparing Protein Gradients on Polymeric Surfaces: Effects on PC12 Pheochromocytoma Cells. Biomaterials, 2005, 26:1487-1495.
    [7] Repl, M, et al. Hydrolysis Reaction Analysis of L- -Distearoylphosphatidylcholine Monolayer Catalyzed by Phospholipase A2 with Polarization-Modulated Infrared Reflection Absorption Spectroscopy. Langmuir, 2005, 21:1042-1050
    [8] Sara M, Seunghwan L, Stefan Z, et al. A simple, reproducible approach to the preparation of surface-chemical gradients [J]. Langmuir, 2003, 19:10459-10462.
    [9] Scott B K, Newell R W, Carl G S, et al. Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation[J]. Biomaterials, 2006, 27(20):3817-3824.
    [10] Liedberg B, Tengvall P. Molecular gradients of omega-substituted alkanethiols on gold- preparation and characterization [J]. Langmuir, 1995, 11: 3821-3827.
    [11] B. Liedberg, M. Wirde, et al. Molecular Gradients ofω-Substituted Alkanethiols on Gold Studied by X-ray Photoelectron Spectroscopy. Langmuir, 1997, 13:5329-5334.
    [12] Smith J T, Viglianti B L. Spreading diagrams for the optimization of quill pin printed microarray density. Langmuir, 2002, 18 (16):6289-6293.
    [13] Chaudhury M K, Whitesides G M. How to make water run uphill [J]. Science,1992,256:1539.
    [14] Kraus T, Stutz R, Balmer T E et al. Printing chemical gradients [J]. Langmuir, 2005, 21: 7796-7804.
    [15] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching, App l. Phys. Lett, 1993, 63: 2002-2004
    [16] Whitesides, G M, The origins and future of microfluidics [J]. Nature, 2006, 442: 368-373.
    [17] B. Mosadegh W, et al. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnology and Bioengineering, 2008, 100 (6): 1205-1213.
    [18] Irmeli Barkefors, Sébastien Le Jan et al. Endothelial cell migration in stable gradients of VEGFA and FGF2: Effects on chemotaxis and chemokinesis, 2008, 17:1-10. The Journal of Biological Chemistry, 2008, 283:13905-13912.
    [19] Xiefan Lin ,Brian P, Helmke. Micropatterned Structural Control Suppresses Mechanotaxis of Endothelial Cells. Biophysical Journal , 2008, 95: 3066–3078.
    [20] Nathaniel S, H wang, Shyni Varghese, Jennifer Elisseeff. Controlled differentiation of stem cells [J]. Advanced Drug Delivery Reviews, 2008, 60: 199-214.
    [21] Jason T Smith, James T Elkin, W Monty Reichert. Directed cell migration on fibronectin gradients: Effect of gradient slope. Experimental Cell Research, 2006, 312: 2424 -2432.
    [22] Rico C Gunawan, Jonathan Silvestre H. Cell Migration and Polarity on Microfabricated Gradients of Extracellular Matrix Proteins. Langmuir, 2006, 22:4250-4258.
    [23] Hsu S , Thakar R , Liepmann D, et al. Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces[J]. Biochem Biophys Res Commun, 2005, 337 (1):401-409.
    [24] Shamloo A, Ma N, Poo M, et al. Endothelial cell polarization and chemotaxis in a microfluidic device[J]. Lab Chip, 2008, 8:1292-1299.
    [25] Shur Jen Wang, Wajeeh Saadi, Differential effects of EGF gradient profiles on MDA-MB-231 breast cancer cell chemotaxis .Experimental Cell Research, 2004, 300: 180-189.
    [26] Barkefors I, Jan S L, Jakobsson L, et al. Endothelial cell migration instable gradients of vascular endothelial growth factor a and fibroblast growth factor 2: effects on chemotaxis and chemokinesis[J]. Biol. Chem, 2008, 283(20): 13905-13912.
    [27] Zhao X, Jain S, Larman H B, et al. Directed cell migration via chemoattractants released from degradable microspheres[J]. Biomaterials, 2005, 26 (24):5048-5063.
    [27] Ali I U,Hynes R. Effects of ETS glycoproteln on cell motility. Cell, 1978, 14(2):426-439.
    [28] Palecek S P, Loftus J C, et al. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness . Nature, 1997, 385: 537-540.
    [29] Bornens M, Thery M. Cell shape and cell division. Curr .Opin. Cell. Biol, 2006, 18: 648-657
    [30] Chen C S, Mrksich M, Huang S, Whitesides G M, Ingber D E. Geometric control of cell life and death. Science, 1997; 276:1425-8.
    [31] McBeath R, Nels on C M, Bhadriraju K, Chen C S . Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev. Cell, 2004, 6 (4): 483-495.
    [32] Folkman J, Moscona A. Role of cell shape in growth control. Nature, 1978, 273:345-349.
    [33] RiChoi S H, et al. Micrometer-scaled gradient surfaces generated using contact printing of octadecyltrichlorosilane. Langmuir, 2003(19):7427-7435.
    [34] Jason T Smith, John K, et al. Measurement of Cell Migration on Surface-Bound Fibronectin Gradients.Langmuir, 2004, 20: 8279-8286.
    [35] Pierchbacher M D, Rouslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309:30-33
    [36] Rouslahti E, Pierschbacher M D.New perspectives in cell adhesion: RGD and integrins. Science, 1987, 238:491-497
    [37] Small J V, Resch G P. The comings and goings of actin: coupling protrusion and retraction in cell motility. Curr. opin. Cell. biol, 2005, 17: 517-523
    [38] Whitesides Jeon N L, Chiu D T, Choi I S Stroo, Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000, 16 (22): 8311-8316
    [39] Yang Z P, Chilkoti A. Microstamping activated polymer surfaces. Adv. Mater, 2000, 6: 413-417.
    [40] Kam L, Shain W, Turner J N, Selective adhesion of astrocytes to surfaces modified with immobilized peptides. Biomaterials, 2001, 22:1049-1054
    [41] Jiang X Y, Bruzewicz D A, Wong A P, et al. Directing cell migration with asymmetric micropatterns. Proc. Natl. Acad. Sci. USA, 2005, 102: 975-978.
    [42] Dertinger S K, Jiang X Y, Li Z Y, et al. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl. Acad. Sci. USA, 2002, 99: 12542-12547.
    [41] Critchley D R. Focal adhesions the cytoskeletal connection [J]. CurrOpin Cell Biol , 2000,12(1):133-139.
    [42] Laurent Lamalice, et al. Endothelial Cell Migration during angiogenesis. Circ. Res, 2007, 100:782-794.
    [43] Zigmond S H, Ability of Polymorphonuelear leukoeytes to orient in gradients of chemotactiefaetors [J]. Cell Biol, 1977, 15:606-616.
    [44] Burridge K, et al. Focal adhesions, eontraetility, and signaling [J]. Annu Rev Cell Dev Biol, 1996, 12:518.
    [45] Ridely A J, Hall A. The small GTP-binding Protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors [J]. Cell, 1992, 10:389-399.
    [46] Beningo K A, et al. Naseent focal adhesions are responsible fort he generation of strongProPulsive forces in migrating fibroblasts [J]. Cell Biol, 2001, 153:881-888.
    [47] Chrzanowska-WOdnieka M, et al. Rho-stimulated contractility drives the formation of stress fibers and focal adhesion adhesions [J]. Cell Sci, 2003, 116:975-986
    [48] Wbrthylake R A, et al. Rho A is required for monocyte tail retraction during transendotheial migration [J]. Cell Biol, 2001, 154:147-160.
    [49] Huttenloeher A, et al. Regulation of cell migration by the ealeium-dependent Protease calpain[J]. Biol Chem, 1997, 172:719-722.
    [50] Clark E A, et al. Genomic analysis of metastasis reveals an essential role for RhoC [J].Nature, 2000, 406:532-535.
    [51] Ridley A J. Rho GTPases and cell migration [J]. Cell Sic, 2001,114:2713-2722.
    [52] Murphy F R, Issa R, Zhou X, et al.Y-27632, a ROCK inhibitor, on progression of rat liver fibrosis in association with inactivation of hepatic stellate cells [J]. Hepatol, 2001, 35: 474-481.
    [53] Kishida A, Iwata H, Tamada Y, Ikada Y. Cell behaviour on polymer surfaces grafted with nonionic andionic monomers. Biomaterials, 1991, 12: 786-92.
    [54] Lee J H, Jung H W, Kang I K, Lee H B. Cell behaviour on polymer surfaces with different functional groups. Biomaterials, 1994, 15:705–11.
    [55] Welle A, Gottwald E. UV based patterning of polymeric substrates for cell culture applications. Biomed Microdevices, 2002, 4:33–41.
    [56] Bet M R, Goissis G, Vargas S, Selistre-de-Araujo HS. Cell adhesion and cytotoxicity studies over polyanionic collagen surfaces with variable negative charge and wettability. Biomaterials, 2003, 24:131–7.
    [57] Folch A, Jo B H, Hurtado O, Beebe D, Toner M. Microfabricated elastomeric stendils for micropatterning cell cultures. J Biomed Mater Res, 2000, 52:346–53.
    [58] Lee H B, Kim M S, Cho Y H, Khang G. Preparation of gradient polymer surface and their pluripotent biomedical applications. Polymer (Korea), 2005,29: 423–32.
    [59] Pitt W G. Fabrication of a continuous wettability gradient by radio frequency plasma discharge. J Colloid Interface Sci, 1989, 133: 223–7.
    [60] Moon Suk Kima. Gilson Khang b, Hai Bang Lee, a gradient polymer surfaces for biomedical applications, Prog Polym Sci, 2008,33:138–164
    [61] K Loos, S B Kennedy, et al. Combinatorial approach to study enzyme/surface interactions, Langmuir, 2005, 21: 5237-5241.
    [62] B J Jeong, J H Lee, H B Lee, Preparation and characterization of comb-like PEO gradient surfaces. J. Colloid Interface Sci, 1996, 178: 757-763.
    [63] J H Lee, et al. Characterization of wettability gradient surfaces prepared by corona discharge treatment. J. Colloid Interface Sic, 1992, 151:563.
    [64] C L Hypolite, T L McLernon, et al. Formation of microscale gradients of protein using heterobifunctional photolinkers. Bioconjugate Chem, 1997, 8: 658.
    [65] X J Wang, H L Tu, et al. Length Scale Heterogeneity in Lateral Gradients of Poly (N-isopropylacrylamide) Polymer Atom Transfer Radical Polymerization Coupled with In Plane Electrochemical Potential Gradients. Langmuir, 2006, 22 (2): 817-823
    [66] Lam K H, Schakenraad J M, et al. The in?uence of surface morphology and wettability on the in?ammatory response against poly (L-lactic acid): a semi-quantitative study with mono clonal antibodies. J Biomed Mater Res, 1995, 29:929-42.
    [67] I K Kang, B K Kwon, et al. Immobilization of proteins on poly (methyl methacrylate) films. Biomaterials, 1993, 14:787-792.
    [68] Kaiyong Cai, Kangde Yao et al. Poly (d, l-lactic acid) surfaces modified by silk fibroin: effects on the culture of osteoblast in vitro, Biomaterials, 2002, 23: 1153-1160.
    [69] Brittain S, Paul K E, Zhao X M, et al. Soft lithography and microfabrication. Physics World,1998 ,5 ,31– 361
    [70] Xia Y N, Whitesides G M. Soft lithography, Annu. Rev. Mater. Sci, 1998, 28:1531-1841.
    [71] Xia Y, Mrksich M, Kim E, Whitesieds G M. Microcontact Printing of Octadecylsiloxane on the Surface of Silicon Dioxide and Its Application in Microfabrication. J. Am. Chem. Soc,1995, 117:3274-3275.
    [72] Graeter S V, Huang J H, Perschmann N, et al. Mimicking cellular environments by nanostructured soft interfaces. Nano Lett, 2007, 7: 1413-1418
    [73] Sun J G, Graeter S V, et al. Technique of surface modification of a cell-adhesion-resistant hydrogel by a cell-adhesion-available in organic microarray. Biomacromolecules, 2008, 9: 2569-2572
    [74] Yamamura S, Kishi H, et al. Single-cell microarray for analyzing cellular response. Anal. Chem, 2005, 77 (24): 8050-8056.
    [75]潘力佳,何平笙.软刻蚀-图形转移和微制造新工艺,微细加工技术, 2000, 2:68-73
    [76] Valerie Marin, Gilles Kaplanski, Endothelial cell culture: protocol to obtain and cultivate human umbilical endothelial cell.Journal of Immunological Methods, 2001, 254:183–190
    [77] Nachman R L, Jaffe E A. Endothelial cell culture:beginnings of modern vascular biology [J ] . Clin Invest, 2004, 114 (8) :1037-1040
    [78] Gupta B, Ghosh B. Curcuma longa inhibits TNF-alpha induced expression of adhesion molecules on human umbilical vein endothelial cells. Int J Immunopharmacol, 1999, 21(11):745-757
    [79] Jaffe E A,Nachman R L,Backer C G,et al.Culture of human endothelial cell derived from umbilical veins [J]. Clin Invest, 1973, 52:2745-2756
    [80] Lin S, Tang S, Hu J, et al. Culture and identification of human vascular endothelial cells[J]. Yan Ke Xue Bao, 2000, 16(2):131-134
    [81] Griffioen A W,Molema G. Angiogenes is: potentials for Pharmacologic interventi on in the treatment of cancer, cardiovascular disease and chronic inflammation [ J ]. Pharmacol Rev, 2000, 52 (2): 237- 267.
    [82] Kim S, Tudo r R S, et al. Cytokines modulate endothelial cell intracellular signal transduction required for VCAM-12 dependent lymphocyte transendothelial migration.Cytokine, 2001,10 (9):196
    [83] Ba rSagi D, Hall A. Ras and Rho GTPases: a family reunion [J]. Cell, 2000, 103 (2): 227- 238.
    [84] Nobes C D, HallA. Rho GTPases control polarity, protrution and adhesion during cell movement [J]. J Cell Biol, 1999, 144 (6): 1235-1244.
    [85] Yabin Zhu, Kerm Sin Chian Mary B, et al. Protein bonding on biodegradable poly(L-lactide-co-caprolactone) membrane for esophageal tissue engineering, Biomaterials, 2006,27:68-78
    [86] Jian Yang, Jianzhong Bei, Shenguo Wang.Enhanced cell affinity of poly (d,l-lactide) by combining plasmatreatment with collagen anchorage, Biomaterials, 2002, 23:2607–2614
    [87] Yamaguchi Y, Mann D M, et al. Negative regulation of transforming growth facyoe-βby the proteoglycan decorin[ J ] .Nature 1990,346:281
    [88] LeBaron R G, Athanasiou K A. Extracellular matrix cell adhesion peptides: functional applications in orthopedic materials. Tissue Engineering, 2000, 6(2): 85–103
    [89] Heemskerk J W M, Vuist W M J, Feijge M A H, et al. Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood, 1997, 90(7): 2615–2625
    [90] Park J Y, Gemmell C H, Davies J E. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials, 2001, 22(19): 2671–2682
    [91] Vartanian K B, Kirkpatrick S J, Hanson S R, et al. Endothelial cell cytoskeletal alignment independent of fluid shear stress on micropatterned surfaces. Biochem Biophy Res Commun, 2008, 371(4): 787-792.
    [92] Czirók A, Schlett K, Madarász E, et al. Exponential distribution of locomotion activity in cellcultures. Phys Rev Lett, 1998, 81: 3038-3041.
    [93] P A DiMilla, J A Stone, Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol, 1993,122: 729.
    [94] D A Lauffenburger, A F Horwitz. Cell migration: a physically integrated molecular process. Cell, 1996(84):359.
    [95] Lee M H, Brass D A, Morris R, Composto R J. Effect of biomaterial surface properties on fibronectin -α5β1 integrin interaction and cellular attachment. Biomaterials, 2005, 26: 1721-1730.
    [96] Falconnet D, Csucs G, Grandin H M, et al. engineering approaches to micropattern surfaces for cell assays. Biomaterials, 2006, 27 (16): 3044-3063
    [97] Yang S Y, Mendelsohn J D, Rubner M F. New class of ultrathin, highly cell-adhesion-resistant polyelectrolyte multilayers with micropatterning capabilities. Biomacromolecules, 2003, 4: 987-994
    [98] Théry M, Racine V, Piel M, et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA, 2006, 103: 19771-19776
    [99] Offenhausser A, Bocker-Meffert S, Decker T, et al. Microcontact printing of proteins for neuronal cell guidance. Soft Matter, 2007, 3: 290-298
    [100] Wang J H C, Yang G G, Li Z Z, et al. Fibroblast responses to cyclic mechanical stretching depend on cell orientation to the stretching direction. J Biomech, 2004, 37: 573-576
    [101] Shen J Y, Chan-Park M B E, Feng Z Q, et al. UV-embossed microchannel in biocompatible polymeric film: Application to control of cell shape and orientation of muscle cells. J Biomed Mater Res Part B, 2006, 77B: 423-430
    [102] Krzysztof F, Marek K, Swierniak. On fitting of mathematical modeling of cell signaling pathways using adjoint systems, MBAE, 2005, 2:3-8
    [103] Brock A, Whitesides G M, Ingber D E. Geometric determinants of directional cell motility revealed using microcontact printing. Langmuir 2003, 19: 1611-1617.
    [104] Song Li, Sangeeta Bhatia, et al. Effects of morphological patterning on endothelial cell migration. Biorheology, 2008, 38: 101-108.
    [105] Wilson C J, Clegg R E, Leavesley D I, et al. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng, 2005, 11(1-2): 1-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700