负载型改性纳米TiO_2光催化处理水中染料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2光催化剂在水环境染料污染物处理方面应用前景十分广阔。但在水处理过程中使用悬浮型纳米TiO_2颗粒存在二次利用后需要分离回收的问题,不但过程繁琐而且需要消耗大量的能量。所以利用一种简单易行的方法使TiO_2颗粒负载在载体上制备成一种薄膜,同时使其仍具有较高的光催化效率,是一个十分有前景的研究方向。
     首先,对用简单的电泳方法,在不锈钢板和玻璃板上负载纳米TiO_2颗粒制备的催化剂,进行光催化实验。通过在610nm处测量靛蓝三磺酸钾溶液的吸光度值,作图后比较反应的一级动力学常数k_1,发现同一催化剂光催化反应结果的重复性较差,催化剂存在老化现象。进而本实验提出一种再生效果明显的酸洗再生法来解决催化剂的老化问题。
     另外,理论上只有波长小于388nm的紫外光线,具有足够能量使TiO_2催化剂发生光催化反应。自然界的可见光中紫外光线只占不到10%,利用率非常低,而人工产生紫外光线需要消耗巨大能量。通过对负载型N掺杂TiO_2催化剂的光催化活性进行研究,发现在可见光的辐射下,N掺杂的TiO_2催化剂光催化效率要高于未掺杂的TiO_2催化剂;在紫外光的辐射下,两者的催化效率相似。并且通过比较负载在不同载体上的催化剂,发现负载在纸上(AHLSTROM公司生产)的催化剂比不锈钢板和玻璃板上的光催化活性高。
     同时,本实验把表面分子印迹技术应用到光催化降解水中混合染料(罗丹明B和柠檬黄)的实验中。首先对这种TiO_2印迹聚合物进行TEM、XRD、红外(FT-IR)和热重的表征,证明此种聚合物制备成功。它可以对水中的罗丹明B染料选择性降解,提高罗丹明B的降解速率。而非目标污染物柠檬黄的降解速率则明显降低,即此种聚合物能够对水中的罗丹明B进行特异性选择性识别。这种纳米TiO_2印迹聚合物制备方法简单易行,在处理水中染料方面具有较好的应用前景。
It has bright prospect to apply nano-TiO_2 photocatalysis technique indegradation of dye pollutants in water environment treatment. However, in thewater treatment process using suspended nano-TiO_2 particles poses the problemof separations and reuse, which is not only complicated but also requires a lot ofenergy. So using a simple method to immobilize the TiO_2 particles on the carrier,in condition that the TiO_2 particles still has high photocatalytic efficiency, is avery promising research direction. In this study we used a simple electrophoresismethod to load nano-TiO_2 particles on stainless steel and glass. Throughmeasuring the absorbance of the solution of Potassium Indigo trisulfonate at610nm, drawing out the response, and comparing the kinetic parameters, wefound that the same photocatalytic reaction results are in poor reproducibility andthese catalysts have the problem of aging. To solve this problem, we resorted to asignificant regeneration named acid regeneration.
     Theoretically ultraviolet light with the wavelength less than 388nm can onlybe used to Photocatalize the titanium dioxide photocatalysis. However in nature,the ultraviolet light take up only 10% of the sunlight. And the artificial ultravioletlight will consume large amounts of energy. This study showed that N-dopedTiO_2 can increase the efficiency of visible light. In this study, N-doped TiO_2 wasprepared by a simple thermal method, and thin layers of catalyst were depositedby electrophoresis method onto steel substrates. The N-doped TiO_2 film showedan enhanced photocatalytic response to the decomposition of the pollutant, undervisible light, in accordance with the photoelectrochemical characterizations. Inthis study, we compared the catalysts on different carriers, and found that thecatalyst on paper (AHLSTROM Company) has a high photocatalytic activity thanthat on the stainless steel panels and glass.
     At the same time, this study applied the surface molecular imprintingtechnique to reseach the experiments of photocatalytic degradation of mixed dye(Rhodamine B and tartrazine). First of all, we characterized this TiO_2-MIP: TEM,XRD, FT-IR and TG, the results of which proved that we successful preparedsuch polymers. It can selectively enhance the degradation rate of rhodamine B. Instead of the target pollutant, the degradation rate of Tartrazine was significantlylower. The method of preparing such nano-TiO_2 imprinted polymer is simple,which has good application prospects.
引文
1 D. F. Ollis, H. Ai-Ekabi. Photocatalytic purification and treatment of water andair [J]. Elsevier Science Publishers BV, Amsterdam, 1994, 3(2-3): N22~N23
    2 A. Fujishima, K. Honda. Electrochemical photolysis of water at a semiconductorelectrode[J]. Nature. 1972, 238: 37~38
    3 H. Gao, J. Zhou, D. Dai, S. Zhang. The advancement on Photocatalytic oxidationtechnology [J]. Shandong Chemical Industry. 2007, 36: 14~18
    4方晓明,张正国,陈清林.具可见光活性的氮掺杂二氧化钛光催化剂.化学进展[J]. 2007, 19(9): 1282~1290
    5 J.-M. Herrmann. Heterogeneous photocatalysis: fundamentals and applicationsto the removal of various types of aqueous pollutants [J]. Catalysis Today. 1999,53: 115~129
    6 D.M. Chen, Z.Y. Jiang, J.Q. Geng, et al. Carbon and nitrogen co-doped TiO2with enhanced visible light photocatalytic activity [J]. Industrial andEngineering Chemistry Research. 2007, 46(9): 2741~2746
    7 D. Bahnemann. Photocatalytic water treatment: solar energy applications [J].Solar Energy. 2004, 77: 445~459
    8 J. Blanco Galvez. Solar detoxification. United Nations Educational [J]. Scientificand Cultural Organization. 2003
    9 M. Gratzel, N. Serpone, E. Pelizzetti, et al. Photocatalysis: Fundamentals andapplications [J]. Wiley/Interscience. 1989: 123~157
    10 G. Rothenberger, J. Moser, M. Gratzel, et al. Charge carrier trapping andrecombination dynamics in small semiconductor particles [J]. Journal of theAmerican Chemical Society. 1985, 107: 8054~8059
    11 G. Colon, M. C. Hidalgo, J. A. Navio. Photocatalytic behaviour of sulphatedTiO2 for phenol degradation [J]. Applied Catalysis B: Environmental; 2003, 45:39~50
    12 C. Guillard, J. Disdier, C. Monnet, et al. Solar efficiency of a new depositedtitania photocatalyst: chlorophenol, pesticide and dye removal applications [J].Applied Catalysis B: Environmental. 2003, 46: 319~332
    13 J. Radjenovic, C. Sirtori, M. Petrovic, et al. Solar photocatalytic degradation ofpersistent pharmaceuticals at pilot-scale: Kinetics and characterization of majorintermediate products [J]. Applied Catalysis B: Environmental; 2009, 89:255~264
    14 F. Han, V. S. R. Kambala, M. Srinivasan, et al. Tailored titanium dioxidephotocatalysts for the degradation of organic dyes in wastewater treatment: areview [J]. Applied Catalysis A: General. 2009, 359: 25~40
    15 M. A. Rauf, S. S. Ashraf. Fundamental principles and application ofheterogeneous photocatalytic degradation of dyes in solution [J]. ChemicalEngineering Journal. 2009, en impression, 9 p
    16 C. Guillard, T.-H. Bui, C. Felix, et al. Microbiological disinfection of water andair by photocatalysis [J]. C. R. Chimie . 2008, 11: 107~113
    17张长沙.衬底对二氧化钛薄膜性能的影响及二氧化钛薄膜表面结构与其性能之间的关系.浙江大学硕士学位论文. 2006: 45
    18 P. Zeman, S. Takabayashi. Effect of total and oxygen partial pressures onstructure of photocatalytic TiO2 films sputerred on unheated substrate [J].Surface and Coatings Technology. 2002, 153: 93~99
    19 Y. Chen, D. D. Dionysiou. Correlation of structural properties and film thicknessto photocatalytic activity of thick TiO2 films coated on stainless steel [J].Applied Catalysis B: Environmental. 2006, 69: 24~33
    20 Z. Wang, L. Mao, J. Lin. Preparation of TiO2 nanocrystallites by hydrolysingwith gaseous water and their photocatalytic activity [J]. Journal ofPhotochemistry and Photobiology A: Chemistry. 2006, 177: 261~268
    21 J. A. Byrne, B.R. Eggins, N. M. D. Brown, et al. Immobilisation of TiO2 powderfor the treatment of polluted water [J]. Applied Catalysis B: Environmental.1998, 17: 25~36
    22 J. Shang, W. Li, Y. Zhu. Structure and photocatalytic characteristics of TiO2 Filmphotocatalyst coated on stainless steel webnet [J]. Journal of MolecularCatalysis A: Chemical. 2003, 202: 187~195
    23 A. M. Pedroza, R. Mosqeda, N. Alonso-Vante, et al. Sequential treatment viatrametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste waterresulting from the bleaching process during paper production [J]. Chemosphere.2006, 67: 793~801
    24 M. E. Madani, C. Guillard, N. Perol, et al. Photocatalytic degradation of diuronin aqueous solution in presence of two industrial titania catalysts, either assuspended powders or deposited on flexible industrial photoresistant papers [J].Applied Catalysis B: Environmental. 2006, 65: 70~76
    25 X.H. Wang, Z.H. Jiang, H.L. Li, et al. TiO2 ceramic films prepared by microplasmaoxidation method for photo degradation of rhodamine B [J]. MaterialsChemistry and Physics. 2003, 80: 39~43
    26 J. F. Li, L. Wan, J. Y. Feng. Study on the preparation of titania films forphotocatalytic application by micro-arc oxidation [J]. Solar Energy Materialsand Solar Cells. 2006, 90(15): 2449~2455
    27 L. Besra, M. Liu. A review on fundamentals and applications of electrophoreticdeposition [J]. Progress in Materials Science. 2007, 52(1): 1~61
    28 O. van der Biest, S. Put, G. Anné, et al. Electrophoretic deposition for coatingsand free standing objects [J]. Journal of Material Science. 2004, 39: 779~785
    29 A. Zaleska. Doped-TiO2: A review [J]. Recent Patents on Engineering. 2008,2(3): 157~164
    30 J. Zhang, Y. Wang, Z. Jin, et al. Visible-light photocatalytic behavior of twodifferent N-doped TiO2 [J]. Applied Surface Science. 2008, 254(15): 4462~4466
    31 M. K. Seery, R. George, P. Floris, et al. Silver doped titanium dioxidenanomaterials for enhanced visible light photocatalysis [J]. Journal ofPhotochemistry and Photobiology A: Chemistry. 2007, 189(2-3): 258~263
    32 J. Xu, Y. Ao, D. Fu, et al. Low-temperature preparation of F-doped TiO2 film andits photocatalytic activity under solar light [J]. Applied Surface Science. 2008,254(10):3033~3038
    33 J. Yu, H. Yu, C.H. Ao, et al. Preparation, characterization and photocatalyticactivity of in situ Fe-doped TiO2 thin films [J]. Thin Solid Films. 2006, 496(2):273~280
    34袁小红,徐筱杰,丘小惠.柯里拉京分子印迹聚合物的制备及其分子识别能力[J].药学学报. Acta Pharm aceutica Sinica. 2007, 42(11): 1218~1221
    35姜忠义,吴洪.分子印迹技术[M].北京:化学工业出版社, 2003: 8~10
    36彭友元.分子印迹技术的原理与应用进展[J].泉州师范学院学报(自然科学).2007, 04: 1009~8224
    37郝明燕,胡小玲,管萍等.分子印迹膜的制备及应用进展[J].化学通报. 2006第69卷06095
    38仰云峰,车爱馥,吴健等.表面分子印迹研究进展[J].化学通报. 2007, 70(5)
    39 T. Kodom, D. Blangis, B. Gombert, et al. Electrophoretically deposited TiO2 thinfilm onto tin oxide and steel substrates towards decontamination [J]. 17thInternational Conference Photochemical Conversion and Storage of SolarEnergy, Sydney Australie, 27 July-1 August 2008
    40 T. Kodom, A. S. Gago, B. Jiang, et al. Characterization of undoped and N-dopedTiO2 thin layers for water decontamination [J]. Journées d’Electrochimie JE09,Sinaia, Roumanie, 6-10 July 2009
    41 S. Villa. Comparaison de l’efficacitéde différents catalyseurs constitués de TiO2fixépour la dégradation d’une molécule modèle en solution aqueuse [J].Rapport de Master Recherche ? Chimie et Microbiologie de l’Eau ?. Universitéde Poitiers. 2008: 5~10
    42 M. Vautier, C. Guillard, J.-M. Herrmann. Photocatalytic degradation of dyes inwater: case study of indigo carmine [J]. Journal of catalysis. 2001, 201(1):46~59
    43 C. Hachem, F. Bocquillon, O. Zahraa, et al. Decolourization of textile industrywastewater by the photocatalytic degradation process [J]. Dyes and Pigments.2001, 49(2): 117~125
    44 Z. Zainal, L. K. Hui, M. Z. Hussein, Y. H. Taufiq-Yap, A. H. Abdullah, Ramli I.Removal of dyes using immobilized titanium dioxide illuminated by fluorescentlamps [J]. Journal of Hazardous Materials. 2005, 125(1-3): 113~120
    45 J.-M. Herrmann. Heteregeneous photocatalysis: state of the art and presentapplications [J]. Topics in Catalysis. 2005, 34(1-4): 49~65
    46 A. Laplanche. La photocatalyse, une technique prometteuse enémergence [J]. Larevue trimestrielle du réseau Ecrin. 2005, n60: 20~26
    47 O. Carp, C. L. Huisman, A. Reller. Photoinduced reactivity of titanium dioxide[J]. Progress in Solid State Chemistry. 2004, 32: 33~177
    48 N. Daneshvar, M. Rabbani, N. Modirshahla, et al. Kinetic modeling ofphotocatalytic degradation of Acid Red 27 in UV/TiO2 process [J]. Journal ofPhotochemistry and Photobiology A: Chemistry. 2004, 168: 39~45
    49朱丽华,沈先涛,唐和清.人工抗体型复合光催化剂及其制备方法[J].中国发明,专利申请号:200610019453.4
    50 X.T. Shen, L.H. Zhu, J. Li, et al. Synthesis of molecular imprinted polymercoated photocatalyst with highly selectivity [J]. 2007, 11: 1163~1165
    51 L.H. Zhu, X.T. Shen, J. Li, et al. Highly selective photocatalysts prepared bymolecular imprinting [J]. The 3rd International Symposium on Persistent ToxicSubstances, Beijing, China, 2006, 139~140
    52於煌,郑旭煦,殷钟意,房蓓蓓,刘键.可见光响应N掺杂TiO2的制备及光催化性能研究[J].化工新型材料. 2006, 34(11): 29~31
    53 Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science. 2001, 293(5528): 269~271

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700