水热法制备纳米金属氧化物和金属表面防腐蚀晶化膜
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水热法有可能实现在常规条件下不能进行的反应,在合成纳米材料方面具有颗粒小、均匀、无团聚、纯度高、晶型好、形状可控等特点并且在制备薄膜方面有广泛应用。本文用水热法合成了纳米氧化锆和氧化铝,研究了饱和CO_2体系在制备纳米氧化锆空心球方面的应用和pH值对γ-AlOOH形貌的影响。并对球形γ-AlOOH做了电化学方面的应用;利用水热法在钢铁表面上生成了一层水热晶化膜,提出了高温高压下的水热合成晶化膜保护机理,并对成膜后的铁片进行了电化学测试和盐水完全浸泡实验,讨论了样品的耐腐蚀性能。主要结果如下:
     (1)在雪碧中的饱和CO_2体系中制备纳米氧化锆时,雪碧中的蔗糖在水热环境中变为炭,严重影响了CO_2的气模作用。为了消除雪碧中其他成分尤其是蔗糖对实验结果的影响,采用NH4HCO3的水溶液来提供饱和CO_2的反应环境,最终在此反应体系中得到了空心纳米球结构,但团聚严重。讨论了不同反应溶剂和表面活性剂对样品形貌的影响,结果表明:在以NH4HCO3为产生CO_2源的条件下,只有在水介质中才可以得到空心结构的氧化锆,在这个过程中,水溶的CO_2微气泡的模板作用是主要的,而表面活性剂仅在水溶液中才起到一定的的模板作用。
     (2)对加入SUDEI作表面活性剂合成的空心结构γ-AlOOH进行了电化学测试。结果表明,SUDEI在水热过程中与γ-AlOOH产生了化学吸附的表面修饰,为Hb提供一个具有生物相容性的界面,促进了Hb在电极表面的直接电化学行为,加快了Hb的电子转移速率。用氢氧化钠调节反应介质的pH值,结果表明,pH值是影响γ-AlOOH形貌的重要因素。用AMP-95做反应溶剂,反应12h后得到了比较罕见的γ-AlOOH三次组装体。
     (3)通过水热结晶的方法在钢铁表面水热合成了一层黑色晶化膜,提出了在高温高压下的水热合成晶化膜保护机理,探讨了不同反应条件对成膜的影响,并对处理后的样品进行了电化学测试和耐腐蚀实验,结果表明,在300℃下水热反应12h是最佳的水热条件,延长反应时间和提高反应温度不利于晶化膜的生成,样品的电化学极化曲线测试表明经盐酸处理的铁片在300℃下水热反应12h后样品对腐蚀介质和O_2向金属表面扩散的阻碍作用更大。
Hydrothermal process has the possibility to achieve some reactions which may not be carried out in conventional condition. In the preparation of nanomaterials, hydrothermal process has the advantages of small particles, uniform, non-agglomeration, high purity, well crystallized and morphology controllable. Recently, application of hydrothermal process in preparation of film has attracted much attention. In this paper, zirconia andγ-AlOOH were synthesized by hydrothermal process. Application of saturated CO_2 system in the preparation of zirconia hollow spheres and influence of pH on the morphology ofγ-AlOOH ware discussed. And the application ofγ-AlOOH sphere in electrochemistry was researched. Crystallization membrane on iron was synthesized by hydrothermal process and the protection mechanism was proposed. Electrochemistry and saline soak test were carried out. The anti-corrosive performance of samples was discussed on this basis. The main results are concluded as follows:
     (1) Sucrose transforms to carbon that has a seriously affect on the formation of zirconia hollow spheres when the reaction carried out. In order to eliminate the affect of sucrose, NH4HCO3 solution was used to provide the environment of saturated CO_2 system. Zirconia hollow structure was finally prepared in this reaction system. The effects of reaction solvent and surfactant on the morphology of samples were discussed. The results indicated that hollow structured zirconia was only obtained when water as reaction medium. In this process, CO_2 plays an important role in the formation of hollow structure, and the effect of surfactant is secondary.
     (2) Hollow structuredγ-AlOOH was synthesized with urea as precipiting agent. The electrochemistry application ofγ-AlOOH was discussed. The result indicates that SUDEI has a chemical adsorption withγ-AlOOH. And SUDEI provides a biological compatible contact surface which promotes the electron transfer process of Hb. The pH was adjusted by NaOH solution. The result indicates that the pH plays a key role in the formation of morphology ofγ-AlOOH. Three assembly ofγ-AlOOH was prepared in AMP-95 after reacted for12h.
     (3) Crystallization membrane on iron was synthesized by a hydrothermal process. On this base, a crystallization membrane protection mechanism was proposed. The influence of different reaction conditions on crystallization membrane was discussed. The results of the electrochemistry and saline soak test indicate that the optimal reaction condition is to react 12h under 300℃. The extension reaction time and the enhancement reaction temperature does not favor to production of the crystallization membrane. Electrochemistry application of the samples shows that the iron treated by the optimal reaction condition has a larger hindering effect on corrosive medium and O_2.
引文
[1]施尔畏,夏长泰,王步国,等,水热法的应用与发展[J],无机材料学报, 1996, 11 (2): 193-206
    [2] Rabenau A., The role of hydrothermal synthesis in preparative chemistry [J], Angew. Chem. Int. Ed. Engl., 1985, 24 (12): 1026-1040
    [3]江名喜,杨天足,楚广,等,配合-水热氧化法合成锑掺杂二氧化锡纳米粉末[J],中南大学学报, 2006, 37 (2): 247-251
    [4]赖琼钰,卢集政,肖淑兴,郑纵和,水热氧化法制备γ-Mn2O3[J],应用化学, 1999, 16 (2): 56-59
    [5]贺春晖,唐建林,肖勇,刘应亮,水热沉淀法制备TiO_2空心球及光催化性能[J],暨南大学学报, 2009, 30 (3): 282-287
    [6]潘群雄,赵开铸,陈磊,以石英粉、生石灰为原料水热沉淀法制备高比表面积SiO_2 [J],中国非金属矿工业导刊, 2005, 3: 14-17
    [7]邓崇海,胡寒梅,丁明,韩成良,前驱体水热分解制备PbS树枝晶[J],硅酸盐通报, 2007, 26 (3): 452-455
    [8]王永在,纳米晶Mg-Al水滑石的水热合成及合成机理[J],无机材料学报, 2008, 23 (1): 93-98
    [9]王雪静,张甲敏,杨胜凯,杨风霞,偏高岭土水热合成NaY分子筛的机理研究[J], 2008, 24 (2): 235-240
    [10]刘中清,王一萌,傅军,何鸣元,静态水热晶化法高效合成MCM-22分子筛[J],催化学报, 2002, 23 (5): 439-442
    [11]秦利平,古映莹,刘雪颖,热液反应法在制备纳米粉体材料中的研究进展[J],大众科技, 2009, 6: 141-142
    [12] Bocanegra-Bernal M.H, Diaz de la T.S., Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics [J], J. Mat. Sci. 2002, 37: 4947-4971
    [13] Hannink R.H., Kelly P.M., Muddle B.C., Transformation toughening in zirconia-containing ceramics [J], J. Am. Ceram. Soc., 2002, 83(3): 461-487
    [14]李美俊,氧化锆和掺杂氧化锆物相及其变化的紫外拉曼光谱研究[D].博士论文. 2002
    [15]罗方承,吕文广,锆化合物材料应用现状及其展望[J],化工进展, 2002, 21(3):196-199
    [16] Haberko K., Characteristics and sintering behavior of zirconia ultrafine power [J], Ceramurgis Int., 1979, 5(4): 148-154
    [17]黄传勇,氧化锆超细粉的绿色合成及粉末性能表征[J],材料工程, 2000, 8: 21-24
    [18] Shi Z.G., Xu L.Y., Feng Y.Q., A new template for the synthesis of porous inorganic oxide monoliths [J], J. Non-Cry Solid, 2006, 352: 4003-4007
    [19] Jun I.K., Koh Y.H., Song J.H., et al, Improved compressive strength of reticulated porous zirconia using carbon coated polymeric sponge as novel template [J], Materials Letters, 2006, 60: 2507-2510
    [20] Satyajit S., Sudipta S., Rashmi V., et al, Effect of nanocrystallite morphology on the metastable tetragonal phase stabilization in zirconia [J], Nano. Letters, 2002, 2(9): 989-993
    [21] Christopher N.C., Brady J.C., Hsiang W.C., et al, Synthesis of yttria-stabilized zirconia by a non-alkoxide sol-gel route [J], Chem. Mater., 2005, 17: 3345-3351
    [22] Muccillo E.N.S., Souza E.C.C., Muccillo R., Synthesis of reactive neodymiadoped zirconia powders by the sol-gel technique [J], Journal of Alloys and Compounds, 2002, 344: 175-178
    [23]张海礁,杨觉明,陈平,等,共沉淀-超临界流体干燥法制备ZrO_2(Y2O3)纳米微粉[J],西安工业学院学报, 2004, 24(3): 276-279
    [24]顾华志,唐勋海,汪厚植,等,溶胶-凝胶法-超临界流体干燥法制备纳米3Y-ZrO_2[J],中国陶瓷, 2004, 40(3): 14-17
    [25] Guo R., Qi H., Chen Y., et.al, Reverse microemulsion region and composition optimization of the AEO9/alcohol/alkane/water system [J], Materials Research Bulletin, 2003, 38: 1501-1507
    [26] Xu J., Li G., Zhang Z.Q., et.al, A study of the microstructure of CTAB/1-butanol/octane/water system by PGSE-NMR, conductivity and cryo-TEM [J], Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001, 191: 269-278
    [27]谭强强,唐子龙,张中太,等,纳米四方多晶氧化锆粉末的超强碱共沉淀法制备及性能表征[J],稀有金属材料与工程, 2003, 32(12): 1025-1028
    [28]王焕英,宋秀芹,陈汝芬,以尿素为沉淀剂制备纳米氧化锆的研究[J],河北师范大学学报, 2004, 28(2): 162-165
    [29] Noh H.J., Seo D.S., Kim H., et al, Synthesis and crystallization of anisotropic shaped ZrO_2nanocrystalline powders by hydrothermal process [J], Materials Letters, 2002, 57: 2425-2431
    [30]邓淑华,温立哲,黄慧民,等,水热法制备纳米二氧化锆粉体[J],稀有金属, 2003, 27(4): 486-490
    [31]程虎民,马玉荣,廖复辉,等,水热均匀沉淀法合成中孔氧化锆[J],物理化学学报, 2003, 19(4): 326-328
    [32]Paul F. B., Advances in the design of toughened ceramics [J], Journal of the Ceramic Society of Japan, 1992, 99: 962-967
    [33]丛昱,梁东白,液相沉淀法在有机溶剂中制备ZrO_2超细粒子的研究[J],燃料化学学报, 1998, 26(3): 230-233
    [34]卓蓉晖, ZrO_2超细粉制备过程中粉体团聚的控制方法[J],江苏陶瓷, 2002, 35(3): 32-33
    [35]王零森,尹邦跃,张金生,等,一种制备ZrO_2纳米粉末的新方法[J],中国有色金属学报, 1998, 8(4): 617-620
    [36]陈代荣,徐如人,乙二醇甲醚-水溶液作介质水热合成四方相ZrO_2·3% Y2O3纳米晶[J],高等学校化学学报, 1998, 19(1): 1-4
    [37]谢玉群,超细ZrO_2粒子的制备[J],材料研究学报, 2000, 14: 45-48
    [38]刘恩辉,卢其斌,苏国钧,等,反相胶束法制备纳米ZrO_2粉体[J],功能材料, 2002, 33(3): 310-314
    [39]贾小燕,梁小元,高春光,等,介孔氧化锆的制备及其氮物理吸附表征[J],山西大学学报, 2006, 29(2): 165-167
    [40] Eiji T., Masaltiro Y., Shigeyuki S., Gormation of ultrafine tetragonal ZrO_2 powder under hydrothermal conditions [J], J. Am. Ceram. Soc., 1982, 66(1): 11-14
    [41] Eiji T., Masaltiro Y., Shigeyuki S., Hydrothermal preparation of ultrafine monoclinic ZrO_2 powder [J]. Communication of the Am. Ceram.Soc., 1981, 65(12): 181-184
    [42] Nishizawa H., Yamasaki N., Matuoka K., et al. Crystallization and transformation of zirconia under hydrothermal conditions [J]. J. Amer. Ceram. Soc., 1982, 65(7): 343-345
    [43] Yoshimura M., Somiya S., Hydrothermal synthesis of crystallized nanoparticles of rare earth doped zirconia and hafria [J], Mat. Chem. and Physics, 1999, 61: 1-5
    [44] Somiya S., Yoshimura M., Nakai Z., et al. Ceramic microstructural development of hydrothermal powder and ceramics [M]. In Microstructure, 1986: 465-468
    [45]曾汉民,高技术新材料要览[M],北京:中国科学技术出版社, 1993
    [46] Gupta T.K., Bechtold J.H., Kuznicki R.C., Stabilization of tetragonal phase in polycrystalline zirconia [J], J. Mater. Sci., 1977, 12: 2421-2426
    [47] Gupta T. K., Sintering of tetragonal zirconia and its characteristics [J], Sci. Sinering, 1978, 10(3): 205-216
    [48]仲剑初,二氧化锆制备技术进展及发展趋势[J],辽宁化工, 1996, 3: 4-7
    [49]郭景坤,关于先进结构陶瓷的研究[J],无机材料学报, 1999, 14(2): 193-200
    [50] Wakia F., Sakaguchi S., Matsuno Y., Superplasticity of yttria-stabilized tetragonal ZrO_2 polycrystals [J], Advanced Ceramic Materials, 1986, 98(1): 259-263
    [51]郭景坤,徐跃萍,纳米陶瓷及其进展[J],硅酸盐学报, 1992, 20(3): 286-291
    [52] Tekeli S, Erdogan M, Aktas B, Influence of A1203 addition on sintering and grain growth behaviour of 8mol%Y203-stabilised cubic zirconia [J], Ceramic International, 2004, 30: 2203-2209
    [53] Badwals P S, Ciacchi F.T, Rajendran S., et al, An investigation of conductivity, microstrueture and stability of electrolyte compositions in the system 9mo1%(Sc2O3-Y2O3)-ZrO_2(A12O3) [J], Solid StateIonics, 1998, (109): 167-186
    [54] Holger A., Stefan K., Sulfated zirconia nanoparticles synthesized in reverse microemulsion: preparation and catalyticpropertise [J], Langmuir, 2002, 18(20): 7428-7435
    [55]梁丽萍,党淑娥,高荫本,稳定化ZrO_2超微粉体的制备及其催化CO氧化反应性能[J],复旦学报(自然科学版), 2003, 42(3): 266-269
    [56] Liu X.M., Lu G.Q., Yan ZF., Nanocrystalline zirconia as catalyst support in methanol synthesis [J], Applied Catalysis A: General, 2005, 279: 241-245
    [57]毛东森,卢冠忠,陈庆龄,钛锆复合氧化物载体的制备、物化性质及在催化反应中的应用[J],催化学报, 2004, 25(6): 501-510
    [58] Ryoji T, Satoshi S., Addition of zirconia in Ni/SiO_2 catalyst for improvement of steam resistanc [J], Applied Catalysis A: General, 2004, 273: 211-215
    [59]吴宝华, SO_24-/ZrO_2超强酸催化合成乙酸异戊酯的研究[J],化学工程师, 2004, 107(18): 66-67
    [60] Bugosh R., Gnassi J,Tatian C., Preparation and characterization of fibrillar boehmite andγ-Al2O3 [J], Mater. Res. Bull., 1984, 19(11): 1489-1496
    [61] Zhu, H.Y., Riches, J.D., Barry, J.C.,γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant [J], Chem. Mater., 2002, 14: 2086-2093
    [62] Zhu H.Y., Gao X.P., Song D.Y, et al, Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles [J], J. Phys. Chem. B, 2004, 108: 4245-4247
    [63] Li Y.Y., Liu J.P., Jia Z.J., Fabrication of boehmite AlOOH nano-fibers by a simple hydrothermal process [J], Mater. Lett. 2006, 60: 3586-3590
    [64] Zhang J., Wei S.Y., Lin J., et al., Template-free preparation of bunches of aligned boehmite nanowires [J], J. Phys. Chem. B, 2006, 110: 21680-21683
    [65] Zhao Y.Y., Frost R.L., Martens W.N., Growth and surface properties of boehmite nanofibers and nanotubes at low temperatures using a hydrothermal synthesis route [J], Langmuir, 2007, 23 (19): 9850–9859
    [66] Zhang J., Liu S.J., Lin J., et al, Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures [J], J. Phys. Chem. B, 2006, 110:14249-14252
    [67] Zhu H. Y., Growth of boehmite nanofibers by assembling nanoparticles with surfactant micelles [J], J. Phys. Chem. B, 2004, 108: 4245-4247
    [68] Zhang J., Liu S. J., Lin J., et al, Self-assembly of flowerlike AlOOH (boehmite) 3D nanoarchitectures [J], J. Phys. Chem. B, 2006, 110: 4249-4252
    [69] Suresh C. K., Ed Megen, Swanand D. Patil, et al. Solution-based chemical synthesis of boehmite nanofibers and alumina nanorods [J], J. Phys. Chem. B, 2005, 109: 3868-3872
    [70] Li Y.Y., Liu J.P., Jia Z.J., Fabrication of boehmite AlOOH nanofibers by a simple hydrothermalprocess [J], Materials Letters, 2006, 60: 3586-3590
    [71] Randall W. H., Nanoparticle assembly of mesoporous AlOOH [J], Chem. Mater., 2003, 15: 78-82
    [72] Wu X.Y., Hu Z.S., Hydrothermal synthesis of core-shell structured boehmite ultra-fine powders [J]. Chinese Journal of Inorganic Chemistry, 2008, 24: 1-5
    [73]王建强,郭平均,乔明华,闫世润,范康年, Ru/AlOOH催化剂的制备、表征及其苯选择加氢反应的研究[J],化学学报, 2004, 62(18): 1765-1770
    [74]吴永祥,王桂华,何其庄,常压制备针状勃姆石(γ-AlOOH)超微粒子[J],上海师范大学学报, 1998, 27(4): 32-38
    [75]白丽娟,廖海达,马少妹,罗伟强,超细改性AlOOH在塑料中的应用研究[J],广西民族学院学报, 2003, 9(2): 30-39
    [76]梁成浩,金属腐蚀学导论[M],北京:机械工业出版社, 1999
    [77]梁世青,化学工业中的腐蚀与防护[M],北京:化工工业出版社, 2004
    [78] Feliu S., Barranaco V., Study of degration mechanisms of a protective lacquer film formulated with phosphating reagents applied on galvanized steel [J], Surface and Coating Technology, 2004,182 (2):251-252
    [79] Deys M.C., Bluxtein G., Romagnoli R., The influence of the anion type on the anticorrosive behavior of inorganic phosphates [J], Surface and Coating Technology, 2002,150(3):133-135
    [80] Bretherton N., An electrochemical investigate of the development of phosphate conversion coating [J], Corrosion Science, 1993, 35(9): 1297-1305
    [81] Usha B.N., Calciumas a Phosphating Additive: A nover view [J], Metal Finishing, 1995, 3: 40-45
    [82]黄晖,苗鸿雁,罗宏杰,等,水热法制备薄膜技术[J],硅酸盐通报, 2002, 49(6): 58
    [83]李慧勤,谈国强,安百江,等,水热法制备薄膜材料技术研究进展[J],中国陶瓷, 2007, 7: 21-24
    [84] Lange F.F., Chemical solution routes to single crystal thin films [J], Science, 1996, 273(16):903-909
    [85]黄晖,宫华,罗宏杰,等,水热沉淀法制备TiO_2纳米粉体影响因素的研究[J],中国陶瓷, 2002 , 38 (2) : 11-14
    [86] Hayashi M., Ishizawa N., Yoo S.E., et al, Preparation of barium titanate thin film on titanium2deposited glass substrate by hydrothermal-electrochemical method [J], J. Ceram. Soc. Jpn, 1990, 98(8): 930-933
    [87] Shimomura K., Tsurumi T., Ohba Y., et al., Preparation of lead zirconate titanate thin film by hydrothermal method [J], Jpn. J. Appl. Phy. Part 1, 1991, 30 (9B): 2174-2177
    [88] Chien A.T., Speck J.S., Lange F.F., et al. Low temperature/low pressure hydrothermal synthesis of barium titanate: powder and heteroepitaxial thin films [J], J. Mater. Res., 1995, 10 (7): 1784-1789
    [89] Shi E., Cho C. R., Jang M.S., et al. Formation mechanism of barium titanate thin film under hydro thermal conditions [J], J.Mater. Res., 1994, 9 (11): 2914- 2918
    [90] Tawano K., Nagao K., Hashimoto K., Preparation and proper ties of lanthanum leadzirconate titanate thin films by hydrothermal method [J], Intergrated Ferroelectrics, 1996, 12 (224):263-273
    [91]黄晖,罗宏杰,姚熹,水热法制备TiO_2薄膜的研究[J ],物理学报, 2002, 51(8) : 1881- 1886
    [92] Han K.S., Surimoro T.S., Shimura Y.M., Fabrication temperature and applied current density effects on the direct Fabrication of lithium nickel oxide thin Films electrodes in LiOH solution by the electrochemical-hydrothermal method [J], Solid Statelonic, 1999, 121 (1): 229- 233
    [93] Chen Q.W., Qian Y.T., Chen Z.Y., et al, Hydrothermal preparation of highly oriented polycrystalline ZnO thin films [J], Mater Lett, 1995 ,22 (2) : 93-95
    [94] Chen Q.W., Qian Y.T., Chen Z.Y., et al. Fabrication of ultra fine SnO_2 thin films by the hydrothermal method [J], Thin Solid Films, 1995, 264 (1): 25-27
    [95] Chen Q.W., Qian Y.T., Li X.G., et al. Hydrothermal deposition and characterization of ultra fine ZrO_2 thin films [J]. Nanostruct Master., 1996, 7(4): 467-471
    [96] Chen Q.W., Qian Y.T., Qian H., et al. Preparation ofα- Fe2O3 thin films by the hydrothermal method [J], Mater. Res. Bull., 1995, 30 (4): 443-446
    [97]陶颖,陈振华,祝宝军,水热电化学法制备LiCoO_2薄膜和粉末[J],材料科学与工程学报, 2005, 2(2): 177-180
    [98]黄艳,黄剑锋,曹丽云,等,水热法制备Sm2O3微晶薄膜[J],人工晶体学报, 2007, 36(3): 627-630
    [99] Holland B.T., Blanford C.F., Stein A., Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids [J], Science, 1998, 281: 538-539
    [100] Mercier L., Pinnavaia T., Acess in mesoporous materials : advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation [J], Advance Mater., 1997, 9: 500-503
    [101] Feng X., Fryxell G.E., Wang L. Q., et al. Functionalized monolayers on ordered mesoporous support [J], Science, 1997, 276: 923-926
    [102]刘源,钟炳,彭少逸,吴东,范文浩,超细二氧化锆的制备和表征[J],物理化学学报, 1995, 9(11): 781-784
    [103]陈光章,吴建华,腐蚀与控制[M],北京:化学工业出版社, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700