冷喷枪喷管内部流场模拟及其结构优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业生产的迅速发展,机器对机械产品零部件表面性能的要求越来越高,同时由磨损与和腐蚀而引起的能源材料消耗也难以估量。采用有效的表面工程技术加强和修复各种零件表面是有效的措施,能够节约成本、提高零件使用寿命、减少环境污染等。冷喷涂技术是一项既经济又实用的喷涂技术,它用于材料的表面涂覆,可以改善和提高材料的表面特性,最终能提高产品表面的质量。冷喷涂实现了低温状态下的金属涂层沉积,该工艺对粉末颗粒无热影响,形成的涂层残余应力低,无氧化,涂层性质没有发生变化。
     本文对冷喷涂技术中最关键部分—冷喷涂喷枪内部流场采用商用FLUENT软件进行了数值模拟,在对结果进行比较分析的基础上,又研究了喷枪内部结构参数对气固两相流的特性的影响。
     结果表明:影响喷管内流场的参数的有入口气体压力、入口气体温度、颗粒粒径以及喷管内部结构形貌等。入口气体压力和温度越高,则出口压力和温度越高;粒径越大,颗粒加速性能越差;喷管收敛半角在42°时气固两相流所获得的速度增量最大;扩张角越小,喷管出口速度的粒子速度越大;喷枪出口形状影响着有效喷涂面积的大小;增大扩张段后的直管长度能使粒子出口速度更高等。
     本文对喷管内部结构进行了一定程度的优化,通过对比优化前和优化后的喷管数值模拟结果,得出结论:优化后喷管所获得的出口速度是所有模拟结果中最高的。
With the rapidly development of modern industrial production, the surface of machine parts and components of mechanical products have become increasingly demanding performance. At the same time, the consumption of energy materials which caused by the corrosion and wear is immeasurable. Using the effective surface engineering technologies to strengthen and repair the surface of the part is a good way .the advantage is that it can save costs, inprove part service life and reduce environmental pollution etc.Cold spray technology is very economic and practical. It is used for surface coating materials, which can improve and enhance the surface properties of materials. And the ultimate aim is improving the quality of the product surface. The cold spray technology achieved the deposition of metal coatings under the low temperature. The process has no heat-affected to the powder particles, the coatings has low residual stress and no oxidation, and does not change the materials nature.
     In this thesis, a commercial fluent software is used to simulate the internal flow field of spray gun which is the most critical parts in cold spray technology.Compared with the results based on the analysis, studied the internal structure parameters of the spray on the characteristics of gas-solid flow.
     The results show that:the parameters which influence the internal flow field are inlet gas pressure, inlet gas temperature, particle size and morphology of the internal structure of the nozzle. The higher the inlet gas pressure and temperature are, the higher the outlet pressure and temperature are; the big the particle size is, the worse the particle acceleration is; When the nozzle convergence half-angle is 42°, the speed incremental which obtained by the two-phase flow is maximum; The smaller expansion half-angle is, the bigger the nozzle exit particle velocity is; the export shape of the spray gun effective the size of the spray area; Increasing the length of straight pipe after the expansion segment can export a higher particle velocity. The internal structure of the nozzle is optimized to a certain degree. By comparing the simulation in the nozzle before and after optimization, get the results:the exit velocity of nozzle after optimization is the highest among all the simulation results.
引文
[1]傅积和,孙玉林.焊接数据资料手册[M].北京:机械工业出版社,1994.818-838.
    [2]徐滨士,朱绍华,刘世参.材料表面工程[M].哈尔滨工业大学出版社,2005.135-142.
    [3]梁秀兵,徐滨士.先进的冷喷涂技术[J].中国设备工程,2001,(12):19-21.
    [4]张秋平.冷喷涂技术[J].飞航导弹,2003,(9):55-57.
    [5]熊天英.国内外冷喷涂领域的最新进展[J].机械工人.2003,(9):10-12.
    [6]侯根良,王汉功,杨晖等.冷喷涂技术制备纳米涂层[J].兵器材料科学与工程,2003,26(2):49-51.
    [7]李文亚,李长久,王豫跃等.冷喷涂Cu粒子参量对其碰撞变形行为的影响[J].金属学报,2005,41(3):282-286.
    [8]王以飞,王晓放,黄钟岳等.冷喷涂工艺中射流过程的数值模拟研究[J].表面技术,2003,32(1):28-30.
    [9]王晓放等,黄钟岳,王德其等.新型材料改性方法—常温超音速冷喷涂制备功能涂层[J].机械工程材料,2002,26(5);30-32,46
    [10]T. Stoltenhoff, H. Kreye, H. J. Richter. An analysis of the Cold Spray Process and Its Coatings [J]. Journal of Thermal Spray Technology,2002,11(4):542-550.
    [11]S. V. Klinkov, V. F. Kosarev, M. Rein. Cold spray deposition:significance of particle impact phenomena. Aero. Sci. Technol.9(2005) 582-591.
    [12]H. Assadi, F.Gartner, T. Stoltenhoff, H. Kreye. Bonding mechanism in cold gas spraying. Acta Mater.51(2003) 4379-4394.
    [13]J. Voyer, T. Stoltenhoff, H. Kreye. Development of Cold Gas Sprayed Coatings[C]. Orlando, Florida, USA:2003 International Themal Sprar Conference,2003:71—78.
    [14]M. Grujicic, J. R. Saylor, D. E. Beasley, W. S. DeRosset, D. Helfritch. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl. Surf. Sci.219(2003) 211-227.
    [15]C. Borchers, F. Gartner, H. Kreye. Microstructures and key properties of cold-sprayed and thermally spray copper coatings. Surf.Coat. Technol.200(2006)4947-4960.
    [16]J. Carthikeyan. Cold Spray Technology:International status and USA efforts. ASB Industries, Inc.2004.
    [17]V. Shukla, G S. Elliott, B. H. Kear. Hyperkinetic deposition of nanopowders by supersonic rectangular jet impingement. Scripta mater.44(2001) 2179-2182.
    [18]K. Balani, T. Laha, A. Agarwal, J. Carthikeyan, N. Munroe. Effect of carrier gases on Micro-structural and electrochemical behavior of cold- sprayed 1100 aluminum coating. Surf. Coat. Technol.195(2005)272-279.
    [19]李文亚,李长久,王洪涛,等.关于冷喷涂粒子临界速度[C].上海:第十一次全国焊接会议,2005:287-289
    [20]R. S. Lima, J. Carthikeyan, C. M. Kay, J. Lindemann, C. C. Bemdt. Microstructural characteristics of cold-sprayed nano-structured WC-Co coatings. Thin Solid Films 416(2002) 129-135.
    [21]Z. B. Zhao, B. A. Gillispie, J. R. Smith. Coating deposition by the kinetic spray process. Surf. Coat. Technol.200(2005) 4746-4754.
    [22]王以飞,王晓放,黄钟岳等.冷喷涂材料改性研究中超音速冲击射流流场数值分析[J].大连理工大学学报,2004,44(3):398-401.
    [23]H. J. Kirn, C. H. Lee, S. Y, Hwang. Fabrication of WC-Co coatings by cold spray deposition. Surf. Coat. Technol.191(2005)335-340.
    [24]H. J. Kirn, C. H. Lee, S. Y. Hwang. Super hard nano WC-12% Co coating by cold spray deposition. Mater. Sci. Eng. A391(2005) 243-248.
    [25 C. Borchers, F. Gartner, T. Stoltenhoff. Microstructural and macroscopic properties of cold sprayed copper coatings[J]. Appl. Phys.93(2003)10064-10070.
    [26]丁丽,王晓放,孙涛等.冷喷涂材料改性技术中粒子与基板结合过程的研究[J].机械工程材料,2004,28(10):27-29.
    [27]毕金成,李隆键.崔文智等.冷喷涂过程中气固两相流的数值模拟[J].重庆大学学报自然科学版,2005,28(4):45-49.
    [28]鞠霞,谭欣星,王新华.冷喷涂超音速自由射流流场数值分析[J].焊接,2008,416(2):20-23.
    [29]C. J. Li, W. Y. Li. Deposition characteristics of titanium coating in cold spraying. Surf. Coat. Technol.167(2003)278-283.
    [30]鞠霞,谭新星,王新华.冷喷涂超音速自由射流流场分析[J].焊接,2008,(2):20-22.
    [31]WenYa Li, HanLin Liao, G. Douchy, et al. Optimal design of a cold spray nozzle bynumerical analysis of partical velocity and experimental validation with316L stainless steel powder[J]. Materials and Deaign,2006,256:708-713.
    [32]Li W Y, Zhang C,Wang H T, et al.Significant influences of metalreactivity and oxid films at particle surfaces on coating micorstructure in cold spray [J]. Appl Surf Sci,2007,253:3357-3365
    [33]C. Borchers, F. Gartner, T. Stoltenhoff, H. Kreye. Microstructural bonding features of cold sprayed face centered cubic metals. J. Appl. Phys.96(2004) 4288-4292.
    [34]L. Ajdelsztajn, B. Jodo in, G E. Kirn, J. Schoenung. Cold spray deposition of nanocrystalline aluminum alloys. Metall. Mater. Trans. A36(2005) 657-666.
    [35]H. Choi, S. Yoon, G Kirn, H. Jo, C. Lee. Phase evolutions of bulk amorphous Ni Ti ZrSiSn feedstock during thermal and kinetic spraying processes. Scripta Mater.53(2005) 125-130.
    [36]R. E. Blose, B. H. Walker, R. M. Walker, S. H. Froes. New opportnnities to use cold spray process for applying additive features to titanium alloys. Metal Powder Report.61(2006)30-37.
    [37]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004,116-119.
    [38]S. V. Spalding传热与流体流动的数值计算.北京科学出版社.1984.
    [39]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004,1-308.
    [40]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展2000(2)
    [41]Fluent技术基础及应用实例[M].北京:清华大学出版社,2007.
    [42]吴江航,韩庆书.计算流体力学的理论、方法及应用[M].北京科学出版社,1988.
    [43]郭烈锦.两相与多相流动力学[M].西安:西安交通大学出版社,2002,594-595.
    [44]林建忠,阮晓东,陈邦国等.流体力学[M].北京:清华大学出版社,2005,72-91.
    [45]潘锦珊.气体动力学基础[M].北京:国防工业出版社,1980.103-117.
    [46]陶文铨.计算流体力学与传热学.中国建筑工业出版社.1991.
    [47]张兆顺等.流体力学.清华大学出版社.1999.
    [48]郭烈锦.两相与多相流体动力学.西安交通大学出版社.2002.5-10.
    [48]周力行.湍流气粒两相流动和燃烧的理论和数值模拟[M].北京:科学出版社,1994.
    [49]赵承庆,姜毅.气体射流动力学.北京理工大学出版社.1997.74-75.
    [50]方丁酉.两相流动力学[M].长沙:国防科技大学出版社,1988.
    [51]方丁酉.喷喉圆柱段对发动机性能的影响[J].固体火箭技术.1989,(1).
    [52]何景轩.喷管喉部型面对发动机效率的影响[J].固体火箭技术,1995,(2)
    [53]Ahmad R A. Discharge coefficients for axisymmetric super-sonic nozzles[R].AIAA 99-0673.
    [54]R. S. Lima, A. Kucuk, C. C. Bemdt. Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. J. Mater. Sci. Lett.21(2002) 1687-1689..
    [55]W. Y. Li, H. L. Liao, C. J. Li, G. Li, C. Coddet, X. F. Wang. On high velocity impact of micro-sized metallic particles in cold spraying. Appl. Surf. Sci.253(2006) 2852-2862.
    [56]A. Tokarev. Structure of aluminum powder coatings prepared by cold gas dynamic spraying. Met. Sci. Heat.Treat.38(1996) 136-139.
    [57]B. Jodoin. Cold spray nozzle mach number limitation. J. Therm. Spray Technol.11(2002) 496-507.
    [58]T. Stoltenhoff, H. Kreye, H. J. Richter. An analysis of the cold spray process and its coatings. J. Therm. Spray Technol.11(2002) 542-550.
    [59]A. P. Alkhimov, V. F. Kosarey, S. V. Klinkow. The features of cold spray nozzle design, J. Therm. Spray Technol.10(2001) 375-381.
    [60]J. Vlcek, L. Gimeno, H. Huber. A systematic approach to material eligibility for the cold spray process. J. Therm. Spray Technol.14(2005) 125-133.
    [61]H. Y. Lee, S. H. Jung, S. Y. Lee, K. H. Ko. Alloying of cold-sprayed Al-Ni composite coatings by post-annealing. Appl. Surf. Sci.2006, in press, corrected proof.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700