嗜热毛壳菌热稳定蛋白酶的纯化、基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白水解酶催化蛋白质中肽链的裂解,是一类在生理学和商业领域中具有广泛应用价值的酶。蛋白酶执行大量的不同的生理功能,负责包括在正常和非正常状态下复杂的病理、生理功能。它们也存在于致病生物体的生活史中,这就使它们成为一个潜在的发展治疗因子的对象,来治愈如癌症和艾滋病等可怕疾病。蛋白酶在食品和清洁剂工业中的应用具有悠久的历史。微生物来源的蛋白酶,由于具有培养简便,产量丰富等特点,适于工业化生产而得以广泛应用。其中,热稳定性蛋白酶的研究和开发具有重要的商业价值。
     嗜热毛壳菌(Chaetomium thermophilum)是一种广泛分布的,生长上限温度较高的嗜热真菌,从该菌中已分离了多种嗜热酶,但未见该菌嗜热蛋白酶的报道。本研究中C. thermophilum在以酪蛋白为唯一碳源的合成培养基中诱导产生了蛋白酶,通过硫酸铵沉淀、DEAE-Sepharose Fast Flow阴离子层析、Phenyl-Sepharose疏水层析等步骤获得了两种凝胶电泳均一的蛋白酶。SDS-PAGE测得所分离纯化酶蛋白的分子量分别约为33kD和63kDa。两种酶都可以被PMSF所抑制,但不能被iodoacetamide和EDTA抑制。PRO33和PRO63的最适反应pH分别为10.0和5.0。两种酶的最适反应温度均为65℃,在60℃以下较稳定,Ca2+对酶的的热稳定性具有显著的增强作用。
     根据真菌热稳定蛋白酶的同源保守序列设计兼并引物,通过RT-PCR及快速扩增cDNA末端(RACE)的方法,克隆了该蛋白酶的编码基因pro,全长cDNA为2007bp,包含一个由532个氨基酸组成的开放阅读框。该基因已在Genbank中注册,登录号为DQ839520,DNA序列的登陆号为EF100880。
     由核苷酸序列推导的相应氨基酸序列前15个氨基酸为信号肽序列,比较蛋白酶的催化区序列,发现与丝氨酸蛋白酶S8家族的枯草杆菌蛋白酶subtilisin的同源性很高,在催化区中有两个基序GHGTHV和GTSMASPH非常保守。这些保守基序与丝氨酸蛋白酶家族催化活性有关。
     将经EcoRⅠ和NotⅠ双酶切的pro基因和原核表达载体pET-22b(+)进行连接,构建成原核表达载体pET/pro,并转化大肠杆菌E. coli BL21。经IPTG诱导培养4~5h,目的蛋白得到大量表达,SDS-PAGE电泳检测,在约41kDa处有一条明显的蛋白带,蛋白大小与从该蛋白酶氨基酸序列估计的蛋白分子量相符;而空质粒pET-22b(+)转化BL21经诱导培养后无相应蛋白产生。可溶性分析结果显示,表达的蛋白以包涵体形式存在。
     pro基因和酵母分泌型表达载体pPIC9K双酶切后体外连接,构建酵母重组表达载体pPIC9K/pro并测序,保证正确的阅读框。将重组表达质粒pPIC9K/pro和pPIC9K空质粒分别用限制性内切酶SacⅠ(位于5’AOX1区内)线性化后,采用电击法转化Pichia pastoris GS115酵母感受态细胞,于MD/MM平板上筛选His+Mut+表型的酵母转化子。经过PCR检测及G418抗性筛选多拷贝整合子,进行甲醇诱导培养。通过检测各转化子每隔24h的蛋白表达情况来筛选高效表达目的蛋白酶的工程菌株。筛选到表达酶活性最高的菌株GS-PRO-16,甲醇诱导6d酶活性达到最高,达16.73 U/mL,酶蛋白表达量为0.77 mg/mL。检测目的蛋白的表达量及遗传稳定性,并测定表达蛋白酶的酶学性质。酵母工程菌株GS- PRO-16在YPD平板上划线,连续传代10次后,PCR检测呈阳性,重组蛋白酶的表达量基本保持稳定。表达蛋白酶PRO的最适反应温度和pH分别为60℃和8.0,该酶在60℃以下稳定;70℃的半衰期为60min;在pH值为5.0~12.0之间表达蛋白酶保持稳定的酶活性。
     C.thermophilum蛋白酶能在毕赤酵母中分泌出具生物活性的目的蛋白,而且表达产物同样具有原始菌株C. thermophilum蛋白酶的优良特性,这就预示了表达蛋白酶在工业和生物学领域的广阔应用前景。因此,期望能对该基因进行改造,或进一步优化表达条件,获得真正有工业应用价值的酵母工程菌株。
Protease was an important group of enzymes both in physiology and commerce fields. Microbial proteases dominate commercial applications. There has been an increasing interest in proteases from thermophiles, which were expected to produce thermostable proteases. Two thermostable extracellular proteases from culture supernatant of the thermophilic fungus Chaetomium thermophilum were purified to homogeneity by fractional ammonium sulphate precipitation, ion exchange chromatography on DEAE-Sepharose and Phenyl-Sepharose hydrophobic interaction chromatography. By SDS-PAGE, the molecular weight of the two purified enzymes was estimated to be 33 kDa and 63 kDa respectively. The two proteases were found to be inhibited by PMFS, while not by iodoacetamide and EDTA. The 33 kDa protease (PRO33) exhibited maximal activity at pH 10.0 and the 63 kDa protease (PRO63) at pH 5.0. The optimum temperature for the two proteases was 65oC. The PRO33 had a Km value of 6.6 mM and a Vmax value of 10.31μmol/L/min. The PRO63 was 17.6 mM and 9.08μmol/L/min with casein as substrate. They were thermostable at 60oC. The protease activity of PRO33 and PRO63 remained 67.2% and 17.31% respectively after incubation at 70oC for 1h. The thermal stability of the two enzymes was significantly enhanced by Ca2+. The residual activity of PRO33 and PRO63 at 70oC after 60 min was approximately 88.59% and 39.2% respectively when kept in the buffer containing Ca2+. These properties make them applicable for many biotechnological purposes.
     Degenerate primers designed on the conserved domain of other reported serine proteases, and a cDNA fragment encoding the protease gene was obtained through RT-PCR. The RACE was used to generate full-length cDNA clones. The full length of pro cDNA gene is 2007bp, which contained an ORF of 1596bp encoding 532 amino acids. The cDNA and DNA sequence of gene pro has been registered in Genbank with accession number DQ839520 and EF100880 respectively.
     The alignment results of putative amino acids sequence showed the catalytic domain of pro was high homology with the catalytic domains of the subtilisin serine proteases.
     The pro gene and expression vector pET-22b(+) were digested with EcoRⅠand NotⅠ, and ligation was carried out in vitro. The recombinant plasmid pET/pro was generated, and transformed into E. coli BL21. The recombinant protein was produced in large amount after IPTG induction, approximately 41kDa protein was determined by SDS-PAGE, and this size was coincident with the protein molecular weight from the putative amino acid sequence; no interest protein was produced by inducing with IPTG after the pET-22b(+) was transformed into BL21. The solubility analysis showed the recombinant protein was presented in a fusion form. The high induce temperature results in E. coli BL21 rapid growth and over expression of recombinant protein in host cell maybe the reason.
     The pro gene and expression vector pPIC9K were digested with EcoRⅠand NotⅠ, and ligation was carried out in vitro. The recombinant expression plasmid pPIC9K/pro was constructed and sequenced to confirm the correct reading frame. The constructed plasmid pPIC9K/pro was linearized with a restriction enzyme SacI (insertion at 5’AOX1), and transformed into Pichia pastoris GS115 competent cell by electroporation methods, and Screened for His+Mut+ transformants on MD and MM plates. The parent vector was linearized with the same restriction enzyme and transformed GS115 as a control. PCR analysis of P. pastoris integrants and G418 screening determined the multicopy integrants to induce by methanol. These integrants were used to analyze expression levels of interest protein every 24 hours. The engineering strain with highest expression level was called GS-PRO-16. The genetic and protease expression stability of recombinant P. pastoris GS-PRO-16 was tested and characterized.
     After streak culture for single colony of His+ transformant GS-PRO-16 on YPD plate for 10 generations, PCR analysis showed the interest gene was integrated in P. pastoris genome, and the expression level was also kept stable. The C. thermophilum protease was secreted into the culture medium by the yeast P. pastoris in a functionally activity form, and some specific properties of expressed protease were similar to those of the native strain C. thermophilum. It implied the expressed protease could be widely applied in the industry and biological fields. Therefore, we hope to reconstruct the pro gene and optimize the expression condition to obtain the yeast engineering strains suitable for industrial applications.
引文
1. 毕汝昌,储乃明. 1991. 枯草杆菌蛋白酶与蛋白质工程.生物化学与生物物理进展,18:329~334.
    2. 陈向东,彭珍荣,沈萍. 2003. 碱性蛋白酶高产菌株的选育.武汉大学学报(理学版),49:761~ 764.
    3. 方海红,胡好远,黄红英,张林普,吕正兵. 2002. 微生物碱性蛋白酶的研究进展,29:57~59.
    4. 韩婧. 2005. RACE 技术及其研究进展.沧州师范专科学校学报,21: 91~99.
    5. 韩雪清,刘湘涛,尹双. 2003. 毕赤酵母表达系统. 微生物学杂志, 3:35~40.
    6. 黄庆,潘皎,彭勇,李昕,张义正. 2004. 短小芽孢杆菌(Bacillus pumilus)脱毛蛋白酶基因的克隆与序列分析.高技术通讯,2: 1~35.
    7. 江盛梅, 沈萍. 1993.嗜麦芽假单胞菌的碱性蛋白酶基因在大肠杆菌中的克隆与表达. 生物工程学报,9: 266~270.
    8. 金城,杨寿钧,刘宏迪等. 1994.耐热中性蛋白酶产生条件及酶的亲和层析纯化. 微生物学报, 34: 285~292.
    9. 李关荣,鲁成,夏庆友,向仲怀.2003. cDNA 末端快速扩增技术(RACE)的优化与改良.生命科学研究,7: 189~197.
    10. 梁斌,邢述, 付学奇, 林祥. 2003. 角蛋白酶基因 kerB 的提取、克隆及表达.吉林大学学报,41: 365~368.
    11. 林影,卢荣德. 2000. 嗜热酶研究进展. 极端酶及其工业应用[J]. 工业微生物,30:51~ 53.
    12. 刘永亮, 童克忠. 1994.利用枯草杆菌碱性蛋白酶 E 基因的信号序列构建分泌表达载体.遗传学报,21:235~246.
    13. 欧阳立明,张惠展,张嗣同. 2000. 巴斯德毕赤酵母的基因表达系统研究进展. 生物化学与生物物理进展,27:151~154.
    14. 潘延云,张贺迎,周艳芬,武金霞,王延旭,吴宝东. 2002. 原生质体融合构建高产碱性蛋白酶工程菌.应用与环境生物学报,8(4):422~426.
    15. 彭毅,杨希才,康良仪. 2000. 影响甲醇酵母外源蛋白表达的因素. 生物技术通报,4:33~36.
    16. 孙超,金城,杨寿钧等. 1999. 嗜热脂肪芽孢杆菌HY-69耐热蛋白酶基因表达产物的纯化及性质研究[J]. 生物工程学报,150:80~ 87.
    17. 唐兵,周林峰,陈向东等. 1999. 嗜热脂肪芽孢杆菌高温蛋白酶的产生条件及酶学性质[J]. 微生物学报,40:188~ 193.
    18. 唐雪明,邵蔚蓝,沈微,王正祥,诸葛健,方惠英.2002.地衣芽孢杆菌2709和 6816碱性蛋白酶基因在大肠杆菌中的克隆、表达及序列分析.应用与环境生物学报, 8:209~214.
    19. 唐雪明.王正祥.邵蔚蓝等. 2002.碱性蛋白酶工程菌发酵条件及重组酶的纯化和性质的研究生物工程学报, 18:729~743.
    20. 王凡强,马美荣,王正祥等. 2000.微生物学通报,27:218~220.
    21. 王培之,王贤舜. 1993 .用遗传工程的方法构建一个分泌型高表达的枯草杆菌碱性蛋白酶 E(Subtilisin E)的枯草杆菌质粒-宿主系统. 中国生物化学与分子生物学报,9:208~210.
    22. 王贤舜,王培之. 1993. 用蛋白质工程的方法改良枯草杆菌蛋白酶 E 的热稳定性.生物化学与生物物理学报,25:51~57.
    23. 夏麟培,陈丙瑜. 1989.工业微生物,19:2819~2831.
    24. 向悟生,王瑞娟,洪义国,孙谧,郑家声,王跃军,张云波,郝建华. 2000. 黄海黄杆菌 YS-9412-130 低温碱性蛋白酶的基因克隆和序列测定.海洋水产研究,21:46~53.
    25. 徐恒平,张树政. 1997. 嗜极菌的极端酶. 生物工程进展,17:2~5.
    26. 许志茹. 2004. RACE 的简介.
    27. 杨庆云,江行娟,吴琳等. 1991. 嗜热脂肪芽孢杆菌中耐热蛋白酶基因的克隆. 生物工程学报,7:207~212.
    28. 杨胜远,陆兆新. 2004.微生物低温碱性蛋白酶的研究进展,30: 93~98.
    29. 朱俊华,陈静,李多川. 2002. 嗜热真菌Thermomyces lanuginosus热稳定蛋白酶的纯化及特性.山东农业大学学报(自然科学版),33:19~22.
    30. 朱欣华,谢芳,黄静,邢自力,吴自荣. 2003. 枯草杆菌碱性蛋白酶基因诱导表达载体的构建.微生物学报,30:21~25.
    31. Adinarayana K., Ellaiah P. 2002. Response surface optimization of the critical medium components for the production of alkaline protease by a newly isolated Bacillus sp. JPharm Pharm Sci., 5: 272~278.
    32. Adinarayana K., Ellaiah P. 2003.Production of alkaline protease by immobilized cells of alkalophilic Bacillus sp. J .Sci Indust Res (India), 62: 589~592.
    33. Adinarayana K., Ellaiah P., Prasad D.S. 2003. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE- 11 . RAPS Pharm Sci Tech, 4: 56.
    34. Adinarayana K., Ellaiah P., Prasad SD.2003. Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AmAssoc Pharma Sci Technol, 4: 56.
    35. Adinarayana K., Jyothi B., Ellaiah P. 2005. Production of alkaline protease with immobilized cells of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS PharmSciTech, 6: 391~397.
    36. Ahren D., Faedo M., Rajashekar B. and Tunlid A. 2005. Low genetic diversity among isolates of the nematode-trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol. Res, 108: 1205~1214.
    37. Ajoy B. 2005. Inhibitors of proprotein convertases. Journal of Molecular Medicine, 83: 844~848.
    38. Andreas S. 2004. A cut above the rest: the regulatory function of plant proteases. Planta, 220:183~189.
    39. Andreas W., Kathleen B., Marius K. L., Keith A, and Bruno M. 2002. Identification of Signal Peptide Peptidase, a Presenilin-Type Aspartic Protease. Science, 21 June 296: 2215~2218.
    40. Anwar A., Mohammed S. 2000. Alkaline protease from Spilosoma oblique: potential application in bio-formulations. Biotechno. l Appl Biochem, 31: 85~89.
    41. Anwar A., Saleemuddin M. 1998.Alkaline proteases: review. Biore.sourcc Tech, 64: 175~183.
    42. Arima K., Yu J. and Iwasaki S. 1970. Milk clotting enzyme from Mucor pusillus var. Lindt, Methods in Enzymology, 19: 446~459.
    43. Arnesen T., Gromyko D., Pendino F., Ryningen A., Varhaug J.E. and Lillehaug J.R. 2006. Induction of apoptosis in human cells by RNAi-mediated knockdown of hARD1 andNATH, components of the protein N-alpha-acetyltransferase complex. Oncogene, 25: 4350~4360.
    44. Arnorsdottir J.,Smaradottir R.B., Magnusson O.T., Thorbjarnardottir S.H., Eggertsson G.., Kristjansson M.M. 2002. Characterization of a cloned subtilisin-like serine proteinase from a Psychrotrophic Irbrio species. Eur J Biochem, 269: 5536~5546.
    45. Ashdown L.R.,Koehler J.M.1990. Production of hemolysin and other extracellular enzymes byclinical isolates of Pseudomonas pseudomallei. JClin Microbioh, 28: 2331~2334.
    46. Aunstrup K. 1980. In Microbial Enzymes and Bioconversions (ed. A.H.Rose), Academic Press: London, New York, Toronto, Syndey and San Francisco. Proteniases,50~114.
    47. Bajza Z., Vrucek V. 2001. Thermal and enzymatic recovering of proteins from untanned leather waste. Waste Manag, 21: 79~84.
    48. Baker D., Sohl J.L., Agard D.A. 1992. A protein-folding reaction under kinetic control. Nature, 356: 263~265.
    49. Barach J. T., Adams D. M. 1977. Thermostability at ultrahigh temperatures of thermolysin and a proteinase from a Psychotrophic pseudomonas[J]. Bochem Biophys Acta, 485: 417 ~427.
    50. Barrett A. J. 1994.Proteolytic enzymes: serine and cysteine peptidases Methods Enzymol, 244: 1~15.
    51. Barrett A.J., Rawlings N.D., O'Brien E.A. 2001. The MEROPS database as a protease information system. J.Struct Biol., 134: 95~102.
    52. Bayoudh A., Gharsallah N., Chamkha M., Dhouib A., Ammar S., Nasri M. 2000. Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MN1. J Industrial Microb and Biotech, 24: 291~295.
    53. Bayoudh A.,Gharsallah N.,Chamkha M.,Dhouib A.,Ammar S.,Nasri M. 2000. Purification and characterization of an alkaline protease from Pseudomonas aeruginosa MN1. Journal of Industrial Microbiology and Biotechnology, 24: 291-295.
    54. Bazarzhapov B.B., Lavrent'ev E.V., Dunaevskii I.E., Bilanenko E.N., Namsaraev B.B., 2006. Extracellular proteolytic eyzymes of microscopic fungi from thermal springs of the Barguzin Valley (Northern Baikal region). Russian Prikl Biokhim Mikrobiol. Mar-Apr,42: 209~212.
    55. Bazarzhapov B.B., Lavrent’eva E.V., Dunaevskii Y.E., Bilanenko E.N., Namsaraev B.B.2006. Extracellular proteolytic enzymes of microscopic fungi from thermal springs of the Barguzin Valley (Northern Baikal region). Applied Biochemistry and Microbiology, 42: 186~189.
    56. Beadell J.S., Clark D.S. 2001. Probing stability-activity relationship in the thermophilic protease from Thermoplasma acid philum by random mutagenesis[J]., Extremephiles, 5: 3~10.
    57. Beg Q.K., Saxena R.K., Gupta R. 2002. Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnol Bioeng, 78: 289~295.
    58. Benny chefetz. 1998. Purification and Characterization of laccase from Chaetomium thermophillium and its role in humifieation[J]. Appl Environ Micro, 64: 3175~3179.
    59. Bertin P.B., Lozzi S.P., Howell J.K., Restrepo-Cadavid G., Neves D., Teixeira A.R., de Sousa M.V., Norris S.J., Santana J.M. 2005. The thermophilic, homohexameric aminopeptidase of Borrelia burgdorferi is a member of the M29 family of metallopeptidases, 73:2253~2261.
    60. Blundell T. L., Cooper J. B. Sali A., Zhu Z.Y. 1991. Comparisons of the sequences, 3-D structures and mechanisms of pepsin-like and retroviral aspartic proteinases [J]. Adv. Exp. Med. Biol, 306: 443~453.
    61. Boguslawski G. and Boyer E.W. 1984. European patent Application EP 0104554.
    62. Bonants P.J., Fitters P.F., Thijs H., den Belder E., Waalwijk C. and Henfling J.W. 2005. A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs Microbiology, 141:775~784.
    63. Boyer P.D. 1971. The enzymes.3rd ed. Academic Press, Inc., New York, N.Y.
    64. Braxton S.,Wells J.A. 1992.Incorporation of a stabilizing Ca (2+)-binding loop into subtilisin BPN’[J]. Biochemistry, 31: 7796~7801.
    65. Bruce L. Z., Quintin I. B., Dana D. E., Carol M. B. 1990. Production and characterization of a thermostable protease produced by an asporogenous mutant of Bacillus stearothermophilus. Journal of Industrial Microbiology and Biotechnology, 5: 303~312.
    66. Bryan R.L., Nancy R.G. and Elizabeth M. A. 2005. Signaling: From Stem Cells to Dead Cells. Science 310: 65~69.
    67. Burlini N., Magnani P. 1992. A heatstable serine proteinase from the extreme therm ophilic archaebacterium Sulfolobus solfataricus [J]. Biochem Biophys Acta, 1122: 283~292.
    68. Caballero A., Thibodeaux B., Marquart M., Traidej M., O'Callaghan R. 2004. Pseudomonas keratitis: protease IV gene conservation, distribution, and production relative to virulence and other Pseudomonas proteases. Invest Ophthalmol Vis Sci., 45: 522~530.
    69. Cai Y., Yao S.P., Wu Q., Lin X.F. 2004. Michael addition of imidazole with acrylates catalyzed by alkaline protease from Bacillus subtilis in organic media. Biotcchnol Lett, 26: 525~528.
    70. Calik P., Bayram A., Ozdamar T.H. 2003. Regulatory effects of alanine group amino acids on serine alkaline protease production by recombinant Bacillus lichen iformIs. Biotechnol Appl Biochem, 37:165~171.
    71. Calik P., Bilir E., Ozcelik I.S., Calik G., Ozdamar T.H. 2004. Inorganic compounds have dual effect on recombinant protein production: influence of anions and canons on serine alkaline protease production. J Appl Microbiol, 96: 194~200.
    72. Cha M., Park J.R., Yoon K.Y. 2005. Purification and Characterization of an Alkaline Serine Protease Producing Angiotensin I-Converting Enzyme Inhibitory Peptide from Bacillus sp. SS103. J Med Food, 8: 462~468.
    73. Chakrabarti S.K., Matsumura N., Ranu R.S. 2000.Purification and Characterization of an Extracellular Alkaline Serine Protease from Aspergillus terreus (IJRA 6.2). Current Microbiology, 40: 239~244.
    74. Chapuis R. and Zuber H. 1970. Themophilic amino peptidases: Ap-I from Talaromyces duponti, Methods Enzymol, 19: 552~555.
    75. Characterization of an Alkaline Protease from Bacillus licheniformis. Biotechnol Lett., 27: 1901~1907.
    76. Chen J., Li D.C., Zhang Y.Q., Zhou Q.X. 2005. Purification and charaterization of a thermostable glucoamylase from Chaetomium thermophilum. J. Gen. Appl. Microbiol, 51:175~181.
    77. Chen X.G., Stabnikova O., Tay J.H., Wang J.Y., Tay S.T.L. 2004.Thermoactive extracellular proteases of Geobacillus caldoproteolyticus sp. nov., from sewage sludge. Extremophiles, 8: 489~498.
    78. Chiplonkar J.M., gangodkar S.V.,Wagh U.V.,Ghadge G.D., Rele M.V.,Srinivasan M.C. 1985 . Applications of alkaline protease from Conidiobolus in animal cell culture. Biotechnol Lett, 7: 665~668.
    79. Chitte R.R., Dey S. 2000. Potent fibrinolytic enzyme from a thermophilic Streptomyces megasporus strain SD5. Lett Appl Microbiol, 405~410.
    80. Clear J.J., Rayment F.B., Sreekrish K. 1991. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integration of the gene[J]. Bio Technology, 9: 455~460.
    81. Connaris H., Cowan D.A., Sharp R.J. 1991. Heterogeneity of proteases from the hypermophilic archaeobacterium Pyroccus furiosus. Journal of General Microbiology, 137:1193~1199.
    82. Coolbear T.,Whittaker J.M.,Danol R.M. 1992.The effect of metal ions on the activity and thermostability of the extracellular proteinase from altherm-ophilic Bacillus,strain EA.1[J]. Biochem J, 287: 3~6.
    83. Cooper J. B., Khan G., Taylor G., Yickle I. J.and T. L. Blundell. 1990. X-ray analyses of aspartic proteinases II. Three dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution. J. Mol. Biol, 214: 199~222.
    84. Cowan D.A., Daniel R.M. 1982. Purification and some properties of an extracellular protease (caldolysin) from an extreme thermophile. Biochm Biophys Acta, 705: 239~305.
    85. Cowan D.A., Smolenski K.A., Daniel R.M., Morgan H.W. 1987. An extremely thermostable extracellular proteinase from a strain of the archaebacterium Desulfurococcus growing at 88 oC, Biochem J, 247: 121~133.
    86. Cregg J.M. 1993. Bio Technology, 11: 905~910.
    87. Cregg J.M., Cereghino J.L., Shi J., Higgins D.R. 2000. Recombinant protein expression in Pichia pastoris. Mol Biotechnol, 16: 23~25.
    88. Cronlund A. and Woychik J.H. 1986. Effect of microbial rennets on meat protein fraction, J. Agric. Food Chem, 34: 502~505.
    89. David J.S., Williams L.C. 1996. Sequence of the gene encoding a highly thermostable neutral proteinase from Bacillus sp. Strain EA1: expression in Escherichia coli and characterization[J]. Biochimica et Biophysica Acta, 1308: 74~80.
    90. Di Pietro A., Huertas-Gonzalez M.D., Gutierrez-Corona J.F., Martinez-Cadena G., Meglecz E. and Roncero M.I. 2001. Molecular characterization of a subtilase from the vascular wilt fungus Fusarium oxysporum. Mol. Plant Microbe Interact, 14: 653~662.
    91. Domsch K.H., Gams W. and Anderson T.H.1980. Compendium of Soil Fungi. Acdemic Press: London.
    92. Eisen J.A., Coyne R.S., Wu M., Wu D., Thiagarajan M., Wortman J.R.,Badger J.H., 2006. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol, 4: 286~289.
    93. Emtage J.S., Angal S., Dole M.T., Harris T.J.R., Jenkins B., Lilley G. and Lower P.A. 1983. Synthesis of calf prochymosin(prorennin) in Escherichia coli, Proc. Natal.Acad Sci, 80: 3671~3675.
    94. Erikson K.E. and Petterson B. 1982. Purification and partial characterization of two acidic proteases from the white rot fungus Sprotrichum pulverulentum, Eur. J. Biochem, 124: 635~624.
    95. Escobar J. and Barnett S. 1995. Syntesis of Acid Protease from Mucor miehei: Integration of Production and Recovery. Process Bioch, 30: 695~700.
    96. Felse P.A.,Panda T. 2000. Production of microbial chitinase-A revisit. Bioprocess Engineering, 23: 127~134.
    97. Feng Y.Y., Yang W.B., Ong S.L., Hu J.Y., Ng W.J. 2001. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain. Appl Microbiol Biotechnol., 57: 153~160.
    98. Fernandez-Lahore H.M., Auday R.M., Fraile E.R., Biscoglio de Jimenez Bonino M, Pirpignani L., Machalinski C., Cascone O. 1999. Purification and characterization of an acid proteinase from mesophilic Mucor sp. solid-state cultures. J Pept Res, Jun, 53: 599~605.
    99. Foiani M., Nadjar-Boger E., Capone R., Sagee S., Hashimshoni T., Kassir Y. 1996. A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Molecular and General Genetics MGG, 253: 278~288.
    100.Fox J.W., Shannon J. D.and Bjarnason J. B. 1991. Proteinases and their inhibitors in biotechnology Enzymes in biomass conversion. ACS Symp, Ser. 460: 62~79.
    101.Frederick G. D., Rombouts P. and Buxton F. P. 1993. Cloning and characterization of pepC, a gene encoding a serine protease from Aspergillus niger. Gene, 125: 57~64.
    102.Fu Z., Hamid S.B., Razak C.N., Basri M., Salleh A.B., Rahman R.N. 2003. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease, Protein Expr Purif., 8: 63~68.
    103.Fujiwara K., Oseuk T.D. 1975. Affinity chromatography of alphachymotryps in subtilism and metalloendopeptidases on carbobenzoxy –L–phenylalanyl-triehtylenetetraminyl- sepharose. J Biochem, 77: 739~743.
    104.Fujiwara K., Tsuru D. 1977. Affinity chromatography of several proteolytic enzymes on carbobenzoxy-D-phenylalanyltriethylenetetramine-sepharose. Int J peptide protein Res, 9: 18~26.
    105.Fujiwara N., Masui A., Imanaka T. 1993. Purification and properties of the highly thermostable alkaline protease from an alkaliphilic and thermophilic Bacillus sp. J Biotechnol, 30: 245~256.
    106.Fuller R.S., Brake A. and Thorner J. 1989. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl. Acad. Sci. U.S.A, 86: 1434~1438.
    107.Ganesh K. C., Han-Seung J., Yoon K., Seung R.P., Chung S.C. 2004. Thermostable alkaline protease from a novel marine haloalkalophilic Bacillus clausii isolate. World J Microbiol Biotechnol, 20: 351~357.
    108.Gary S.K., Johri B.N. 1994. Rennet: current trends and future research. Food Rev. International, 10: 313~335.
    109.Gary S.K., Johri B.N. 1999. Thermophilic moulds in Biotechnology. Dordrecht, Boston and London: Kluwer Academic Publishers. Proteaolytic enzymes.
    110.Gilbert C. 2007. Activating En Passant. Science, 23 March 315: 1638.
    111.Gilbert C. 2007. Through the Side Door. Science, 4 May 316: 662~663.
    112.Godfrey T. and West S. 1996. Industrial enzymology, 2nd ed., p.3. Macmillan Publishers Inc., New York, N.Y.
    113.Godfrey T., West S. 1996. Industrial enzymology[M]. 2nd ed. New York: Macmillan Publishers Inc. 225~264.
    114.Gunze.1987. Japanese Patent Publication No.62158483.
    115.Gupta A., Roy L., Patel R.K., Singh S.P., Khare S.K. and Gupta M.N. 2005. One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp. J. Chromatogr A, 1075: 103~108.
    116.Gurr S. J., Unkles S. E.and Kinghorn J. R. 1987. The structure and organization of nuclear genes of Filamentous fungi. In: Kinghorn JR (ed) Gene Structure in Eukaryotic Microbes. IRL Press, Oxford, 93~139.
    117.Gusek T.W. and Kinsella J.E., 1987.Biochemical Journal, 246~511.
    118.Hartley B. S. 1960. Proteolytic enzymes. Annu. Rev. Biochem, 29:45~72.
    119.Haruo Ikemura, Takagi H. and Inouge M. 1987.The production of active subtilisin E in E.coli. J. Requirement of prosequence for Biol. Cheme, 262: 7859~7864.
    120.Hasbay I., ?gel Z.B. 2002. Production of neutral and alkaline extracellular proteases by the thermophilic fungus, Scytalidium thermophilum, grown on microcrystalline cellulose. Biotechnology Letters, 24: 1107~ 1110.
    121.Hashimoto H., Iwaasa T. and Yokotusha T. 1973. Some proterties of acid protease from the thermophilic fungus, Penicillium dupnti K1014. Appl. Microbiol, 25:578~583.
    122.Hasnain S., Adeli K., Storer A.C. 1992. Purification and characterization of an extracellular thio-containing serine proteinase from Thermomyces lanuginosus. Biochem. Cell Biol, 70:117~122.
    123.Hasslacher M., Schall M., Hayn M., Griengl H., Kohlwein S. 1997. Protein Expr Purif, 11: 61~71.
    124.Ho N.W., Chen Z., Brainard A.P. 1999. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xyloee from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol, 65: 163~192.
    125.Hu S.Y., Li W.F., Lan C., Liu J. 2005 . Expression of a recombinant anticoagulant C-type lectin-like protein ACFI in Pichia pastoris: Heterodimerization of two subunits is required for its function, Toxicon 46: 716~724.
    126.Hutadilok-Towatana N., Painupong A., Suntinanalert P. 1999. Purification and characterization of an extracellular protease from alkaliphilic and thermophilic Bacillus sp. PS719. J Biosci Bioeng, 87:581~587.
    127.Hyeung J., Byoung K., Yu P., Yu K. 2002. A novel subtilisin-like serine protease from Thermoanaerobacter yonseiensis KB-1: its cloning, expression, and biochemical properties. Extremophiles, 6: 233~243.
    128.Ikegaya K., Sugio S., Murakami K., Yamanouchi K. 2003. Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability. Biotechnol Bioeng., 81: 187~192.
    129.Ikemura H., Takagi H., Inouye M.J. 1987. In vitro processing of pro-subtilisin produced in Escherichia coli CJ7.J. Bio. Chem, 262:7859~7864.
    130.Imanaka T., Sasaki K., Takagi M.1986. A new way of enhancing the thermal stability of proteases. Nature, 324: 695~697.
    131.Inonye K.,Kuzuya K.,Tonomuna B. 1998. Sodium Chloride enhanes markedly the thermal stability of thermolysin as well as its catalytic activity[J]. Biochem Biophys Acta, 1388: 209 ~214.
    132.Isogai T., Fukagawa M., Kojo H., Kohsaka M., Aoki H. and Imanaka H. 1991. Cloning and nucleotide sequences of the complementary and genomic DNAs for the alkaline protease from Acremonium chrysogenum. Agric. Biol. Chem, 55: 471~477.
    133.Isono M., Tomoda K., Miyata. K. and Tsubaki K .1972. United States Patent No .3, 652~399.
    134.Jackson D.P. and Cotter D.A. 1984. Expression of proteolytic enzymes during Dictyostelium discoideum spore germination. Arch. Microbiol, 137: 205~208.
    135.Jacobs M., Elia M.,Uhlen M. 1985. Cloning, Sequence and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res, 13: 8913~8926.
    136.Jang J.W., Ko J.H., Kim E.K., Jang W.H., Kang J.H., 2001. Enhanced thermal stability ofan alkaline protease, AprP, isolated from a Pseudomonas sp. by mutation at an autoproteolysis site, Ser-331. Biotechnol Appl Biochem., 34: 81~84.
    137.Jeffrey M. 2005. Pharma Goes to Work.Science, 309: 721~727.
    138.Jensen B., Nebelong P., Olsen J., Reeslev M. 2002. Enzyme production in continuous cultivation by the thermophilic fungus, Thermomyces lanuginosus. Biotechnology Letters, 24: 41~45.
    139.Joan L.C., James M. C. 2000. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24: 45~66.
    140.Kalisz M. H. 1988. Microbial proteinases. Adv. Biochem. Eng. Biotechnol, 36: 17~55.
    141.Kao Corp.1986.Japanses Patent Publication No.61012282.
    142.Karavaeva N.N., Zakirov M.N. and Mukhiddinova N.G.1975. Partial purification and some properties of protease from Torula thermophila.Biochimiya, 40: 909~914.
    143.Karavaeva N.N., Zakirow M.N. and Mukhiddinova N.G. 1975. Partial purification and some properties of protease from Torula thermophila,Biochimiya, 40: 909~914.
    144.Keon J.P.R., Bailey A.M. and Hargreaves J.A. 2000. A group of expressed cDNA sequences from the wheat fungal leaf blotch pathogen, Mycosphaerella graminicola (Septoria tritici). Fungal Genet. Biol, 29: 118~133.
    145.Kim Jin M., Yang M.C. and Hyung J.S. 2005. Preparation of feather digest as fertilizer with Bacillus pumillus KHS-1. J. Microbiol Biotechnol, 15: 427~476.
    146.Kim S.B., Lee D.W., Cheigh C.I., Choe E.A., Lee S.J., Hong Y. H., Choi H.J., Pyun Y.R.2006.Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J Ind Microbiol Biotechnol, 33: 436~444.
    147.Kim S.B., Lee D.W., Cheigh C.I., Choe E.A., Lee S.J., Hong Y.H. 2006. Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean. Tempeh J Ind Microbiol Biotechnol, 10: 1~9.
    148.Kim S.B., Shin B.S., Choi S.K., Kim C.K. and Park S.H. 2001 .Involvement of acetylphosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis, 195: 179~183.
    149.Kim W., Choi K., Kim Y., Park H., Choi J., Lee Y, Oh H., Kwon I., Lee S. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol, Jul. 62: 2482~2488.
    150.Klein S.L., Strausberg R.L., Wagner L., Pontius J., Clifton S.W.and Richardson P. 2002. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Dev. Dyn, 225: 384~391.
    151.Kobayashi T. , Lu J., Li Z.j., Vo S. H., Atsushi K. , Yuji H., Ken T., Susumu I., Koki H. 2007. Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl Microbiol Biotechnol, 75: 71~80.
    152.Koide M. 1998. Microbioology and Molecular Reviews. Septem, p.591~635.
    153.Kolattukudy P.E., Lee J.D., Rogers L.M., Zimmerman P., Ceselski S., Fox B., Stein B. and Copelan E.A. 1993. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect. Immun, 61: 2357~2368.
    154.Koszelak S., Ng J., Day D.J., Ko T. P., Greenwood A. and McPherson A. 1997. The crystallographic structure of the subtilisin protease from Penicillium cyclopium. Biochemistry, 36: 6597~6604.
    155.Kranner I., Beckett R. 1998. Photobiont-mycobiont symbiotic associations: physiological aspects of the lichen symbiosis. In: Varma A ed. Microbes: For Health, Wealth and Sustainable Environment. New Delhi: Malhotra Publishing House.753~808.
    156.Kristjansson J.K. 1989. Thermophilic organisms as sources of themostable enzymes. Trends in Biotechnology, 7: 349~353.
    157.Krunkosky T.M., Maruo K., Potempa J., Jarrett C.L., Travis J. 2005. Inhibition of tumor necrosis factor-alpha-induced rantes secretion by alkaline protease in A549 cells. Am J Respir Cell Mol Biol, 33:483~489.
    158.Kullnig C.M., Mach R.L., Lorito M. 2000 Enzyme diffusion from Trichoderma atroviride to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech 42 gene expression before mycoparasites contact. Appl. Environ. Microbiol., 66: 2232~2234.
    159.Kumar C.G. 2002. Purification and characterization of a thermostable alkaline proteasefrom alkealiphilic Bacillus pumilus[J]. Lett Appl Micoobiol, 34: 13 ~17.
    160.Kuo L.C. and Shafer J. A. 1994. Retroviral proteases. Methods Enzymol, 241: 279~301.
    161.LaemmLi U.K. 1970. Clearage of structural proteins during the assembly of the head of becteriophage T4. Nature, 227:680~685.
    162.Larson M.K and Whitaker J.R. 1970. Endothia parasitica protease: Parameters affecting activity of the rennin-like enzyme, J.DairySci, 53:253~261.
    163.Lecadet M.M., Lescourret M. and Klier A. 1977. Characterization of an intracellular protease isolated from Bacillus thuringiensis sporulating cells and able to modify homologous RNA polymerase. Eur. J. Biochem, 79:329~338.
    164.Lee J.K., Kim Y.O., Kim H.K., Park Y.S., Oh T.K., 1996. Purification and characterization of a thermostable alkaline protease from Thermoactinomyces sp. E79 and the DNA sequence of the encoding gene. Biosci Biotechnol Biochem, May. 60:840~846.
    165.Lee Jong S., Hyung S. B. and Sang S.P. 2006. Purification and characterization of two novel Fibrinolytic proteases from mushroom, Fomitella fraxinea. J. Microbiol. Biotechnol, 16: 264~271.
    166.Leidal Kq., Munson K.L., Johnson M.C., Denning G.M. 2003.Metalloproteases from Pseudomonas aeruginosa degrade human RANTES, MCP-1,and ENA-78. J Interferon Cytokine Res, 23: 307~318.
    167.Leon D.K., Wilfried G.B.V., Roland J., Siezen Ruth M., Schwerdtfeger, Garabed A.J., 2002. Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles, 6:185~194.
    168.Leon D.K., Wilfried G.V., Roland J.S., Ruth M.S., Garabed A., John O., Willem M.V. 2002. Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles, 6: 185~194.
    169.Li A.N., Ding A.Y., Chen J., Liu S.A., Zhang M., And Li D.C. 2007. Purification and Characterization of Two Thermostable Proteases from the Thermophilic Fungus Chaetomium thermophilum. J. Microbiol. Biotechnol, 17: 624~631
    170.Li D.C., Lu M., Li Y.L., Lu J. 2003. Purification and characterization of an endocellulase form the thermophilic fungus Chaetomium thermophilum CT2. Enzyme Microb. Technol,33: 932~938.
    171.Li D.C., Yang Y.J., Shen C.Y. 1997. Protease Production by the thermophilic fungus Thermomyces lanuginosus. Mycol. Res, 101:18~22.
    172.Lieske B. 1994.Protein Hydrolysis - The Key to Meat Flavoring Systems. Food Reviews International, 3: 287~312.
    173.Lilie H., Schwarz E., Rudolph R. 1998. Advances in refolding of proteins produeed in E. coli. Curr. Opin. Biot., 9: 497~501
    174.Lin X.L., Tang J. 1990. Purification, characterization and gene cloning of Theropsin, a thermostable acid protease from Sulfolobus acidocaldarius. J. Biol. Chem, 265: 1490~1495.
    175.Lugli E.B., Allen A.G. and Wakefield A.E. 1997. A Pneumocystis carinii multi-gene family with homology to subtilisin-like serine proteases. Microbiology, 143: 2223~2236.
    176.Maheshwari R., Bharadwaj G., Bhat M.K. 2000. Thermophilic fungi: their physiology and enzymes. Microbiol. Mol. Biol. Rev, 64: 461~488.
    177.Malathi S., Chakraborty R. 1991. Production of alkaline protease by a new Aspergillus flavus fermentation conditions for use as a depilation agent. Appl Environ Microbiol, 57: 712~716.
    178.Manachini P.L., Fortina M.G., and Parini C. 1988. Applied Microbiological Biotechnology, 28: 409~417.
    179.Manavalan A., Kalaichelvan A., Kalyanasundaram V., Perumal A.P.T.K.2007. Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1 .World J Microbiol Biotechnol, 23: 475~481.
    180.Manro G.K., MeHale R.H., Saul D.J. 1995. A gene encoding a thermophilic alkaline serine protenase from thermus sp. Strain Rt41 A and its expession in escherichia coli[J]. Microbiology, 141: 1731~1738.
    181.Masui A., Yasuda M., Fujiwara N., Ishikawa H. 2004.Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film. Biotechnol Prod, 20: 1267~1269.
    182.Milagros M., Marta C., Florencia O., Gustavo D., Claudia O. 2001. Protease inhibitor activity is associated to a basic chitinase from potato but not to an acidic one. PotatoResearch,44: 187~195.
    183.Mishra R. and Maheshwari R. 1996. Amylases of the thermophilic fungus Thermomyces lanuginosus: Their purification, properties, action on starch and response to heat. J. Biosci, 2: 653~672.
    184.Mizuno K., Matsuo H. 1984. A novel protease from yeast with specificity towards paired basic residues. Nature, 309: 558~560.
    185.Nam G.W., Lee D.W., Lee H.S., Lee N.J., Kim B.C., Choe E.A., Hwang J.K., Suharton M.T., Pyun Y.R. 2002. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Archives of Microbiology, 178: 538 ~547.
    186.Narinx E., Baise E. and Gerday C. 1997. Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng, 10: 1271~1279.
    187.Nelson M.A., Kang S., Braun E.L., Crawford M.E., Dolan P.L., Leonard P.M., Mitchell J., Armijo A.M., Bean L., Blueyes E., Cushing T., Errett A., Fleharty M., Gorman M., Judson K., Miller R., Ortega J., Pavlova I., Perea J., Todisco S., Trujillo R., Valentine J., Wells A., Werner-Washburne M., Yazzie S. and Natvig D.O. 1997. Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genet. Biol, 21: 348~363.
    188.North M.J. 1982. Comparative biochemistry of the proteinases of eukaryotic microorganisms. Microbiol. Rev, 46: 308~340.
    189.Okamoto M., Yonejima Y., Tsujimoto Y., Suzuki Y., Watanabe K. 2001. A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl Microbiol Biotechnol, 57:103~108.
    190.Ong P. S. and Gaucher G. M. 1976. Production, purification and characterization of thermomycolase, the extracellular serine protease of thermophilic fungus Malbranchea pulchella var. sulfurea. Can. J. Microbiol, 22: 165~176.
    191.Ong P.S. and Gaucher G.M. 1973. Protease production by thermophilic fungi. Cannadian Journal of Microbiology, 19:129~133.
    192.Ottense M.and Rickert W. 1970.The isolication and partial characterization of an acid protease produced by Mucor miehei, Compt. Rend. Trav. Lab. Carlsberg, 30: 301~325.
    193.Outtrup H., Boye C.O.L. 1990. In Fogarty WM ed. Micruobial Enzymes and Biotechnolology, 2nd edn. London and New York, Elsevier Science Publishers. Microbial proteinases and biotechnology.
    194.Pan J., Huang Q., Zhang Y. 2004. Gene cloning and expression of an alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol, 49:165~169.
    195.Paoletti M., Castroviejo M., Begueret J.,Clave C. 2001. Identification and characterization of a gene encoding a subtilisin-like serine protease induced during the vegetative incompatibility reaction in Podospora anserine. Curr Genet, 39: 244~252.
    196.Pavlova I.N., Zholner L.G. 1994 .The Serine proteinase of thermophilic Bacillus [J]. Microbiol, 56: 8~16.
    197.Peek K., Veitch D.P., Prescott M., Daniel R.M., MacIver B., Bergquist P.L., 1993. Some characteristics of a proteinase from a thermophilic Bacillus sp. expressed in Escherichia coli: comparison with the native enzyme and its processing in E. coli and in vitro. Appl Environ Microbiol, Apr. 59: 1168~1175.
    198.Pel H.J., de Winde J.H., Archer D.B., Dyer P.S., Hofmann G., Schaap P.J., Turner G. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88 Nat. Biotechnol, 25: 221~231.
    199.Petrova D.H., Shishkov S.A., Vlahov S.S. 2006. Novel thermostable serine collagenase from Thermoactinomyces sp. 21E: purification and some properties. J Basic Microbiol, 46:275~285.
    200.Phadatare S.U., Deshpande V.V., Srivasan M.C., 1993. High activity alkaline protease from Conidiobolus coronatus (NCL86.8.20): Enzyme production and compatibility with commercial detergents. Enz. Microb. Technol., 15: 72~75.
    201.Phadatare S.U., Srinivasan M.C. and Deshpande M.V. 1989. Evidence for the involvement of serine protease in the conidial discharge of Conidiobolus coronatus. Arch. Microbiol, 153: 47~49.
    202.Phadatare S.U., Srinivasan M.C. and Deshpande V.V. 1993. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production andcompatibility with commercial detergents. Enzyme Microb. Technol, 15: 72~76.
    203.Piao Y., Ko N.T., Lim M.K. and Ko M.S. 2001. Construction of long-transcript enriched cDNA libraries from submicrogram amounts of total RNAs by a universal PCR amplification method Genome Res, 11: 1553~1558.
    204.Pickersgill R.W., Sumner I.G. and Goodenough P.W. 1990. Preliminary crystallographic data for protease a. Eur. J. Biochem, 190: 443~444.
    205.Pozo M.J., Baek J.M., Garcia J.M. and Kenerley C.M. 2004. Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet. Biol, 41: 336~348.
    206.Prakasham R.S., Subba Rao C.H., Sreenivas Rao R., Rajesham S., Sarma P.N., 2005. Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl Biochem Biotechnol, 120: 133~144.
    207.Prakasham R.S., Subba Rao C.H., Sreenivas Rao R., Sarma P.N., 2005. Alkaline protease production by an isolated Bacillus circulars under solid-state fermentation using agroindustrial waste: process parameters optimization. Biotechnol Prog, 21: 1380~1388.
    208.Purnelle B., Skala J., van Dyck L. and Goffeau A. 1994. Analysis of an 11.7 kb DNA fragment of chromosome XI reveals a new tRNA gene and four new open reading frames including a leucine zipper protein and a homologue to the yeast mitochondrial regulator ABF2. Yeast, 10: 125~130.
    209.Rahman R.N.Z.A., Razak C.N., Ampon K., Basri M., Yunus Saalleh A.B.1994. Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Appl Microbiol Biotechnol, 40: 822~827.
    210.Ramesh C.K., Sudesh K., Yadav V.V. 2007. Isolation of a Psychrotrophic Exiguobacterium sp. SKPB5 (MTCC 7803) and Characterization of Its Alkaline Protease. Current Microbiology, 54: 224~229.
    211.Ramesh K., Ganju S.K. 1989. Purification and characterization of two cellobiohydrolases from Chaetomium thermophile var. coprophile. Biochimica Bophysica Acta, 993: 266~274.
    212.Rao M.B. and Deshpande V.V. 1998. Purification and characterization of an extracellular protease from Flavobacterium arborescens. Anal. Biochem, 132: 41~49.
    213.Rawlings N.D. and Barrett A.J. 1993. Proteases and their applications in biotechnology. In Evolutionary families of peptidases. Biochem, 290: 205~218.
    214.Rawlings N.D., Barrett A.J. 1999. MEROPS:the Peptidase Database. Nucleic Acids Res, 27: 325~331.
    215.Rick W. 1974. In Bergmeyer HU ed. Methods of Enzymatic Analysis. Berlin, New York, and London: Academic Press. Chymotrypsin.
    216.Robert B.P., Sandra L.S., Lee H.G., Kim Y.S., Akihiko N., Fabrizio T., Bernardino G., Patrick C., Paula I. M., Rudy J.C., Marin G., Herbert B., James W.I., Pierluigi G., Mark A.S., George P. 2005. Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathologica, 110: 232~238.
    217.Roberts J.W., Roberts C.W., Mount D.W. 1977. Inactivation and proteolytic cleavage of phage repressor in vitro in an ATP-dependent reaction. Proc. Natl. Acad. Sci. USA, 74: 2283~2287.
    218.Rost B., Yachdav G. and Liu J. 2004. The PredictProtein Server. Nucleic Acids Research, 32: 321~326.
    219.Sabine R. and Garabed A. 2001. Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel hermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles, 5: 399~408.
    220.Sareen R., Bornscheuer U.T., Mishra P. 2005. Cloning, Functional Expression and characterization of an alkaline protease from Bacillus licheniformis. Biotechnology Letters, 27: 1949~1963.
    221.Sato S., Suzuki H., Widyastuti U., Hotta Y. and Tabata S. 1994. Identification and characterization of genes induced during sexual differentiation in Schizosaccharomyces pombe. Curr. Genet, 26: 31~37.
    222.Saul D.J., Williams L.C., Toogood H.S., Daniel R.M. and Bergquist P.L. 1996. Sequence of the gene encoding a highly thermostable neutral proteinase from Bacillus sp. Strain EA1: expression in Escherichia coli and characterization [J]. Biochimica et Biophysica Acta, 1308: 74~80.
    223.Shen H.D., Wang C.W., Lin W.L., Lai H.Y., Tam M.F., Chou H., Wang S.R. and Han S.H. 2001. cDNA cloning and immunologic characterization of Pen o 18, the vacuolar serineprotease major allergen of Penicillium oxalicum. J. Lab. Clin. Med, 137: 115~124.
    224.Shenolikar S., Stevenson K.J. 1982. Purification and partial characterization of a thiol proteinase from the thermophilic fungus Humicola lanuginosus. Biochem J, 205: 147~152.
    225.Sielecki A. R., Fujinaga M., Read R.J., James M.N. 1991. Refined structure of porcine pepsinog-en at 1.8Aring resolution J. Mol. Biol, 219: 671~692.
    226.Silen J. L., Agard D. A. 1989. The a-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature, 341: 462~464.
    227.Sobek H., Hecht H. J., Hoffman B., Aeble W. and Schomburg D. 1990. Crystal structure of an alkaline protease from Bacillus alkalophilus at 2.4 ? resolution. FEBS Lett, 274: 57~66.
    228.Srinavanasan M.C., Vartak H.G., Powar V.K. and Sutar I.I. 1983. Biotechnology Letter, 5: 285~288.
    229.St. Leger R. J., Frank D.C. and Roberts D.W. 1992. Molecular cloning and regulatory analysis of the cuticle-degrading-protease structural gene from the entomopathogenic funggus Metarhizium anisopliae. Eur J Biochem, 204: 991~1001.
    230.Stahl M.L. and Ferrari E. 1984. Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J. Bacteriol, 158: 411~418.
    231.Stella M. H. 2004. CELL BIOLOGY: Metallo protease, Migration, and Mitosis. Science, 306: 1862.
    232.Sternberg M. 1971.Crystalline milk clotting protease of Mucor pusillu and protease, J. Bacteriol, 95: 1407~1414.
    233.Studdert C.A., Herrera Seitz M.K., Plasencia Gil M.I., Sanchez J.J., de Castro R.E., 2001. Purification and biochemical characterization of the haloalkaliphilic archaeon Natronococcus occultus extracellular serine protease. J Basic Microbiol, 41: 375~383.
    234.Suarez M.B., Vizcaino J.A., Llobell A. and Monte E. 2007. Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr. Genet, 51: 331~342.
    235.Suzuki C. K., Rep M., VanDijl J.M., Suda K., Grivell L.A. and Schatz G. 1997. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci,22: 118~123.
    236.Swarna S., Per S. 2005. Degradation of Saccharomyces cervisiae Rck2 upon exposure of cells to high levels of zinc is dependent on Pep4. Molecular Genetics and Genomics, 273: 433~439.
    237.Syamal A., Maurya. 2000. Supramolecular compounds through coordination chemistry[J]. Angew Chem Int Ed, 40: 2022~2043.
    238.Takagi H., Takahashi T., Momose H. 1990 .Enhancement of the thermostability of Subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease. J BiolChem, 265: 6874~6878.
    239.Takahashi M., Sekine T., Kuba N. S., Nakamori M., Yasuda and Takagi H. 2004. The production of recombinant APRP, an alkaline protease derived from Bacillus pumilus TYO-67, by in vitro refolding of nro-enzyme fixed on a solid surface. J Biochem, 136: 549~556.
    240.Tang X.M., Lakay F.M., Shen W., Shao W.L., Wang Z.X., Prior B.A., Jian Zhuge. 2004. Cloning Andover-expression of an alkaline protease from Bacillus licheniformis. Biotechnology Letters, 26:975-979.
    241.Tang X.M., Wei S., Lakay F.M., Shao W.L., Fang H.Y., Prior B.A., Wang Z.X., Jian Zhuge. 2004. Purification and characyerisation of an alkaline protease used in tannery industry from Bacillus licheniformis. Biotechnology Letters, 26: 1421-1424.
    242.Thakur M.S., Karanth N.G. and Nand K. 1990. Production of fungal rennet by Mucor miehei using solid state fermentation. Applied Microbiology and Biotechnology, 32: 409~413.
    243.Van Melderen L., Thi M., Leechi P., Gottesman S., Couturier M. and Maurizi M. L. 1996. ATP-dependent degradation of Ccd A by Lon protease. J. Biol. Chem, 271: 27730~27738.
    244.Vasantha N., Thompson L.D., Rhodes C., Banner C.D.B., Nagle J., Filpula D. 1984. Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol, 159: 811~819.
    245.Walasek P., Honek J.F. 2005. Nonnatural amino acid incorporation into the methionine
    214 position of the metzincin Pseudomonas aeruginosa alkaline protease. BMC Biochem, 6: 21~27.
    246.Walker G.C. 1985. Inducible DNA repair systems. Annu Rev Biochem, 54:425~457.
    247.Wang J.Y., Cai Y., Gou J.Y., Mao Y.B., Xu Y.H., Jiang W.H. and Chen X.Y. 2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Environ. Microbiol, 70: 4989~4995.
    248.Ward O.P. 1983. Protease. In Fogarty W. M ed. Microbial Enzymes in Biotechnology. London: Applied Science Publisher.
    249.Watson M. E. 1984. Compilation of published signal sequences. Nucleic Acids Res, 12: 5145~5164.
    250.Wells J.A. and Estell D.A. 1998. Subtilisin--An Enzyme Designed to be Engineered. TIBS, 13: 291~297.
    251.Werten M.W., van den Bosch T.J., Wind R.D., Mooibroek H., Wolf F.A. 1999. High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast, 15:1087~1096.
    252.Wong R.L., Gutowski J.K., Katz M., Goldfarb R.H., Cohen S. 1987. Induction of DNA synthesis in isolated nuclei by cytoplasmic factors: inhibition by protease inhibitors. Proc. Natl. Acad .Sci. USA., 84: 241~245.
    253.Wu Shixuan and Geoffrey J. 2004. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Letchworth U.S. Department of Agriculture, USA BioTechniques, 36: 152~154.
    254.Xu H., Allison R., Kermode. 2003. Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds. Plant Molecular Biology, 52: 729~744.
    255.Yang Jinkui, Liang L.M., Zhang Y., Li J., Zhang L., Ye F.P., Gan Z.W., Zhang K.Q. 2007. Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Appl Microbiol Biotechnol, 75: 557~565.
    256.Yu C.J., Chen Y.M., Su S.N., Forouhar F., Lee S.H. and Chow L.P. 2002. Molecular and immunological characterization and IgE epitope mapping of Pen n 18, a major allergen of Penicillium notatum. Biochem, 363: 707~715.
    257.Yu C.J., Chiou S.H., Lai W.Y., Chiang B.L. and Chow L.P. 1999. Characterization of a novel allergen, a major IgE-binding protein from Aspergillus flavus, as an alkaline serine protease. Biochem. Biophys. Res. Commun, 261: 669~675.
    258.Yu J., Whitelaw C.A., Nierman W.C., Bhatnagar D., Cleveland T.E. 2004. Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of crops. FEMS Microbiol. Lett, 237: 333~340.
    259.Zaghloul T.I., Abdel Wahab A.E., Mostafa M.H. 2000. Enhanced alkaline protease production in addition to alpha-amylase via constructing a Bacillus subtilis strain. Appl Biochem Biotechnol., 84: 319~327.
    260.Zamolodchikova T.S., Sokolova E.A., Smirnova E.V. 2003.Graspases-a Special Group of Serine Proteases of the Chymotrypsin Family That Has Lost a Conserved Active Site Disulfide Bond .Biochemistry (Moscow), 68: 309~316.
    261.Zhang J.Y., Liu S.J., Li H.L., Wang J.Z. 2005. Microtubule-associated protein tau is a substrate of ATP/Mg2+-dependent proteasome protease system. Journal of Neural Transmission, 112: 547~555.
    262.Zhao M.L. and Zhang K.Q. 2005. Characterization of a neutral serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobothrys oligospora. Mycologia, 96: 16~22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700