绿僵菌和蝗虫中具有降解昆虫体壁功能蛋白酶基因的分离、克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业害虫是造成农作物减产的主要原因,同时也给林业和牧业造成了巨大的灾害。飞蝗是一种洲际性农业重大害虫,在我国,以东亚飞蝗[Locusta migratoria manilensis (Meyen)]分布面积广,危害最为严重。因而加强对飞蝗等农业害虫的研究和灾害的综合防治,已成为关系我国经济发展和社会稳定的重要因素。
     长期以来,化学农药在害虫的防治中起着主导作用,这将直接导致三大环境问题:(1)污染环境,残毒积累,最终危害人类健康;(2)害虫抗药性直线上升,使化学农药用量不断增加,导致恶性循环;(3)杀伤天敌,破坏生态平衡,从而致使害虫再猖獗和次要害虫上升为主要害虫。为了降低环境污染,减少或禁用化学农药势在必行,开发高效、稳定的生物农药已成为当务之急。微生物杀虫剂具有无公害、无残留、害虫不易产生抗性等优点,日益受到人们的广泛关注。而杀虫真菌是昆虫病原微生物(细菌、真菌和病毒)中最大的一个类群,具有直接穿透寄主体壁和持续控制等优点,是其它微生物杀虫剂不可比拟的。绿僵菌是一种非常有效防治蝗虫的杀虫真菌,但是同其它杀虫真菌一样,存在着致死时间长等不足,影响其广泛应用。昆虫的体壁是抵御真菌侵染的第一道物理屏障,因而杀虫真菌穿透寄主体壁的成功率和速度是影响其杀虫时间的重要因素之一。杀虫真菌依靠酶解作用和机械压力穿透寄主体壁,在侵染过程中产生一系列的酶来降解昆虫表皮,其中蛋白酶起着主要作用。因而,来源于昆虫病原真菌的这类蛋白酶基因,已成为利用基因工程手段,构建高效杀虫真菌的重要毒力因子。
     同时,除了昆虫病原真菌能产生降解昆虫体壁的蛋白酶外,昆虫自身也能产生降解自身表皮的蛋白酶。在昆虫蜕皮过程中,昆虫会分泌大量蜕液,其中包含以蛋白酶为主的一系列水解酶,来降解老表皮,并回收利用促进新表皮的合成。因此,本研究以昆虫病原真菌绿僵菌和东亚飞蝗为材料,分离、克隆具有壳降解功能的蛋白酶基因,并进行相关的功能验证、分析。为发展高效、安全的基因工程杀虫真菌提供毒力基因和前期的基础研究工作,这对于发展真菌杀虫剂及提高我国真菌农药产业的核心竞争力都具有重要的意义。同时,昆虫蜕液中的壳降解蛋白酶,与昆虫的蜕皮具有重要的关系,这类蛋白酶的缺损,将导致昆虫不能蜕皮,并最终导致死亡,是潜在的杀虫靶标。因此,研究昆虫壳降解蛋白酶基因及功能,对于研究昆虫的蜕皮生理发育过程,以及以这类蛋白酶为靶标,建立新型、高效、安全的杀虫剂筛选模型都具有重要的意义。主要研究结果如下:
     (1)根据已报道的绿僵菌PR1A基因保守序列设计引物,从绿僵菌CQMa102中克隆PR1A基因,其DNA序列、mRNA序列和编码蛋白的GenBank登录号分别为:AY839935,EF627449和ABR20899。其DNA序列全长1571 bp,cDNA序列全长1319 bp,其中包含一个1173 bp的开放阅读框和一个146 bp的3’端非编码区,开放阅读框编码一个含390个氨基酸序列的蛋白。根据同源序列比对以及序列分析结果,表明PR1A属于类枯草杆菌丝氨酸蛋白酶(subtilisin-like serine protease,SLSP)家族。通过与来源于丝状真菌、酵母、细菌、蓝细菌、无脊椎动物及脊椎动物的16种SLSP构建同源树和系统发育树分析,表明CQMa102 PR1A与丝状真菌的SLSP具有非常高的同源性和很近的进化关系,而且与绿僵菌Metarhizium anisopliae var. acridum strain ARSEF 324 PR1A同源性高达99%。同时,我们用CQMa102 PR1A基因构建毕赤酵母分泌表达载体,并成功实现在毕赤酵母P. pastoris KM71中的分泌表达。用KM71原始菌株和pPIC9K空载体转化菌株作为对照,对重组菌株KM71/pPIC9K-PR1A表达产物进行分析。SDS-PAGE和Western blot都显示,在目标位置26 kDa大小附近新增加一条带,且与来源于绿僵菌的天然蛋白大小相同。另外,表达产物具有显著的对PR1特异底物活性、总蛋白酶活性以及对蝗虫壳蛋白的降解活性。这些研究结果表明,我们成功克隆到CQMa102 PR1A基因,且通过功能表达证明该基因编码蛋白具有降解蝗虫壳蛋白的功能。
     (2)对来源于昆虫的类胰蛋白酶和丝氨酸蛋白酶氨基酸序列进行比对分析,根据保守区域设计两对嵌套简并引物。选取东亚飞蝗五龄幼虫MFP活性增加最快时期的虫体提取mRNA,进行反转录,用所设计的简并引物进行PCR扩增,克隆到一种新的蜕液蛋白酶基因,命名为Lm-TSP,其cDNA序列及推导的氨基酸序列GenBank登录号分别为:EF081255和ABN13876。cDNA序列全长1587 bp,其中包含一个735 bp的开放阅读框和一个852 bp的3’端非编码区,开放阅读框编码一个含244个氨基酸序列的蛋白。根据同源性搜索比对以及序列分析,表明Lm-TSP属于类胰蛋白酶丝氨酸蛋白酶(trypsin-like serine protease,TLSP)家族。通过与来源于昆虫、蛛形纲动物、哺乳动物和细菌的14种TLSP构建同源树和系统发育树分析,表明Lm-TSP与来源于昆虫的TLSP有较高的同源性和很近的进化关系,而且与来源于昆虫赤拟谷盗(Tribolium castaneum)的TLSP同源性高达82%。RNAi研究结果表明,Lm-TSP基因的沉默将引起东亚飞蝗从四龄幼虫到五龄幼虫,和从五龄幼虫到成虫蜕皮功能的丧失,这说明Lm-TSP在东亚飞蝗蜕皮过程中起着重要作用。而且Lm-TSP基因的沉默同时会引起蜕液中总蛋白酶活性、特异蛋白酶活性和壳蛋白降解活性的急剧降低,继而引起对昆虫老表皮降解功能的缺失,最终导致昆虫不能蜕皮而死亡。这些结果表明Lm-TSP与东亚飞蝗蜕皮过程相关,是与昆虫蜕皮功能相关的第一个蛋白酶基因。
     (3)建立起了比较完善的东亚飞蝗幼虫RNAi(larvae RNAi)体系。
The migratory locust is a widespread agriculture pest in China with a comparatively broad geographic distribution that includes both temperate and tropical climatic zones. It can cause signicant damage to pastures and crops and is a major threat for food safety, social stability and economic development. So we should strengthen on the research and pest control of agriculture pest.
     For a long time, the use of chemical insecticides for the control of insect pests was proven very effective at increasing agriculture and forestry productivities. However, the abuse of poisonous chemical substances directly led to three main environmental problems (residue, resistance and resurgence). To reduce environmental pollution, the usage of chemical pesticide should be reduced. Our immediate concern is to develop efficient, stable and safe bio-pesticides. Microbial pesticides have many advantages such as: safety, no-residue, hard to appear resistances and so on, and therefore are applied extensively. Entomopathogenic fungi are a big group of entomopathogenic microorganisms (bacteria, fungi and virus). Unlike entomopathogenic bacteria and viruses that invade insects though the alimentary canal, fungi can actively penetrate the host cuticle. Metarhizium anisopliae is an effective fungus for locust control. However, like other enfomopathogenic fungi, Metarhizium anisopliae needs a long time to kill pest insects, which impedes its wide application. To the invading fungus, insect cuticle represents the first barrier to penetration. In common with other entomopathogenic fungi the initial stage of infection involves penetration of the insect cuticle, so the success rate and speed of cuticle-penetration have a great effect on time of pest killing. Mechanical pressure plays a role in this process but of major importance is enzymatic degradation of cuticle within the immediate vicinity of infection hyphae. Cuticle-degrading proteases play a great role in the cuticle-degrading activity. Thus, this kind of proteases has been used as virus factors for developing high effective fungi pesticide by genetic engineering.
     Moreover, we found that besides entomopathogenic fungi, insects could also generate proteases to degrade their own cuticle. During the molting process, degradation and recycling of the old cuticle are brought about by enzymes present in the molting fluid filling the space between the old cuticle and the new cuticle. So, this study took entomopathogenic fungi Metarhizium anisopliae and Locusta migratoria as research targets, isolated and cloned cuticle-degrading protease genes and then verified their functions. This research could provide virus genes and basic work for developing high effective fungi pesticide by genetic engineering, which would speed the process of industrialization of fungi pesticides and promote their core competitive capability. Furthermore, cuticle-degrading proteases in the molting fluid of insects play an important role in molting. Silencing these proteases caused molt defects and finally led to death in locust. So this study is very important for the research on ecdysis of locust and for the development of novel, high effective and safe pesticides by taking these kinds of proteases as screening target. The main results are as follows:
     (1) PR1A gene was cloned from Metarhizium anisopliae strain CQMa102 using primers designed according conserved region of other Metarhizium anisopliae PR1A genes. The DNA, cDNA and and its deduced protein sequences were deposited in GenBank (accession numbers AY839935, EF627449 and ABR20899, respectively). The DNA sequences were 1571 bp. The 1319-bp cDNA sequence contained an 1173-bp single open reading frame encoded a protein of 390 amino acids and a 146-bp 3’untranslated region. Analysis of the amino acid sequences by computer using the NCBI database and BLAST revealed that PR1A belonged to subtilisin-like serine protease family. Amino acid sequences of PR1A from CQMa102 with other 16 subtilisin-like proteases from filamentous fungi, yeast, bacteria, cyanobacteria, vertebrate and invertebrate were used for the multiple sequence alignment, homology tree and phylogenetic tree. The results showed that PR1A had significant homology and close relationship with subtilisin-like proteases from filamentous fungi, and had the closest relationship to the protein from Metarhizium anisopliae var. acridum strain ARSEF 324 with 99% identity. Furthermore, the gene was cloned into and secretively expressed in Pichia pastoris KM71 under the control of the AOX1 promoter. Compared with controls, the product of PR1A recombinant (KM71/pPIC9k-PR1A) added a new band at about 26 kDa by SDS-PAGE and Weatern blot, and was good accordance with the nature peotein from CQMa102. The recombinant protein showed significant specific protease activity, total protease activity and cuticle-degrading activity. From these results, we could conclude that we cloned PR1A gene from Metarhizium anisopliae strain CQMa102 and its encoded protein had cuticle-degrading function.
     (2) Trypsin-like proteases and serine proteases from insects were used for multi-sequence alignment. Two pairs of degenerate primers were designed according to the conserved region. For RT-PCR cloning experiments, mRNA was prepared from locusts at the time when the molting fluid protease activity increased sharply. We cloned a novel molting fluid protease gene from Locusta migratoria manilensis,designated as Lm-TSP. The cDNA and its deduced protein sequences were deposited in GenBank (accession numbers EF081255 and ABN13876, respectively). The 1587-bp cDNA sequence contained a 735-bp single open reading frame encoded a protein of 244 amino acids and an 852-bp 3’untranslated region. Analysis of the amino acid sequences by computer using the NCBI database and BLAST revealed that Lm-TSP belonged to trypsin-like serine protease family. Amino acid sequences of Lm-TSP with other 14 trypsin-like serine proteases from insects, arachnid, mammals and bacteria were used for the multiple sequence alignment, homology tree and phylogenetic tree. The results showed that Lm-TSP had significant homology and close relationship with trypsin-like serine proteases from insects, and had the closest relationship to the protein from Tribolium castaneum with 82% identity. Furthermore, RNA interference (RNAi) studies showed that the silencing of Lm-TSP caused dramatic reduction in specific protease activity and cuticle degrading activity of the molting fluid, and caused cuticle degrading defects as a consequence, which led to molt defect from the fifth instar larvae (L5) to adult and molt defect from the fourth instar larvae (L4) to L5 and finally led to death. The results described herein suggested that Lm-TSP plays a critical role in controlling L. migratoria manilensis ecdysis
     (3) A relative mature larvae RNAi system of Locusta migratoria was established.
引文
[1] Bidochka M. J. Monitoring the fate of biocontrol fungi. In T. M. Butt, C. Jackson, and N. Morgan, (eds.), fungal biocontrol agents: progress, problems and potential. CAB International, Wallingford, United Kingdom. 2001, 193-218.
    [2] 蒋琳,马承铸. 生物农药研究进展. 上海农业学报. 2000,16:73-77.
    [3] 李增智,樊美珍. 真菌生物技术与真菌杀虫剂的发展. 见:喻子牛主编. 微生物农药及其产业化. 北京:科学出版社. 2000,115-121.
    [4] 林华峰. 虫生真菌研究进展. 安徽农业大学学报. 1998,25(3):251-254.
    [5] Prior C., Lomer C.J., Herren H., Paraso A., Kooyman C., Smit J.J. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers. In: Biological Control of Locusts and Grasshoppers. CAB International, Wallingford. 1992, 8-18.
    [6] Hajek A.E., St Leger R.J. Interaction between fungal pathogens and insect hosts. Annual Review of Entomology. 1994, 39: 293-322.
    [7] Clarkson J.M., Charnley A.k. New insight into the mechanisms of fungal pathogenesis in insect. Trends in Microbiology. 1996, 4: 197-203.
    [8] Gllespie I.P., Bateman R., Charnley A.K. Role of cuticle-derading protease in the virulence of Metarhizium spp. For the desert locust, Schistocerca gregaria. Journal of Invertebrate Pathology. 1998, 71:128-137.
    [9] St. Leger R.J. The role of cuticle-degrading protease in fungal pathogenesis of insect. Canadian Journal of Botany-revue Canadienne De Botanique. 1995, 73 (Suppl): S1119-S1125.
    [10] Stephen C.J., Charnley A.k., Cooper R.M. Purification and partial characterization of a novel trypsin-like cysteine protease from Metarhizium anisopliae. FEMS Microbiology Letters. 1993, 113: 189-196.
    [11] 王海川, 尤民生. 绿僵菌对昆虫的入侵机理. 微生物学通报. 1999,26(1):71-73.
    [12] Zimmermann G. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pesticide Science. 1993, 37: 375-379.
    [13] Tanada Y., Kaya H.K. Insect pathology. Academic Press, Inc. New York. 1993, 1-80.
    [14] Boucias D.G., Pendiand J.C., Latge J.P. Nonspecific factors involved on attachment of entomopathogenic deuteromycetes in host insect cuticle. Applied and Environmental Microbiology. 1988, 54: 1795-1805.
    [15] Fargues R.S., Maurette M.T., Oliveros E., Riviere E., Latters A. Chemical and photochemicalreactivity in micelar media and microemulsions VII-Effect of the interface on the reactivity of excited states. Tetrahedron. 1984, 40: 2381-2384.
    [16] Boucias D.G., Pendland J.C. The galactose binding lectin from the beet armyworm, Spodoptera exigua: Distribution and site of synthesis. Insect Biochemistry and Molecular Biology. 1993, 23: 233-242.
    [17] St. Leger R.J., Roberts D.W., Staples R.C. A model to explain differentiation of appressoria by germlings of Metarhizium anisopliae. Journal of Invertebrate Pathology. 1991, 57: 299-310.
    [18] St. Leger R.J., Butt T.M., Staples R.C., Roberts D.W. Second messenger involvement in differentiation of the Entomopathogenic fungus Metarhizium anisopliae. Journal of General Microbiology. 1990, 136: 1779-1789.
    [19] 樊美珍, 李增智. 营养物和培养条件对虫生真菌附着胞形成的影响. 安徽农业大学学报. 1994, 21(2): 123-130.
    [20] 李文华,王中康,殷幼平,等. 理化因子对白僵菌附着胞形成的影响. 重庆大学学报(自然科学版). 2004,27(2):102-106.
    [21] Anderson S.O., Rafn K., Krogh T.N., Hojrup P., Roepstorff P. Comparison of larval and pupal cuticular proteins in Tenebriomolitor. Insect Biochemistry and Molecular Biology. 1995, 25: 177-187.
    [22] Csikos G., Molnar K., Borhegyi N.H., Talian G.C., Sass M. Insect cuticle, an in vivo model of protein trafficking. Journal of Cell Science. 1999, 112: 2113-2124.
    [23] Charnley A.K. Physiological aspects of destructive pathogenesis in insects by fungi: A speculative review. In: Invertebrate-microbial interactions (Aderson J.M., Walton D.W.A., Eds). Cambridge University Press. London. 1984, 229-270.
    [24] Bidochka Michael J., Khachatourians Geogre G. Purification and properties of an extrecellular protease produced by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology. 1987, 53: 1679-1684.
    [25] St. Leger R.J., Charnley A.K.,Cooper R.M. Cuticle-degrading enzymes of entomopathogenic fungi: Mechanisms of interaction between pathogen enzymes and insect cuticle. Journal of Invertebrate Pathology. 1986, 47: 295-302.
    [26] Smith R.J., Grula E.A. Chitinase is an inducible enzyme in B.bassians. Journal of Invertebrate Pathology. 1983, 42: 319-326.
    [27] St. Leger R.J., Cooper R.M., Charnley A.K. Cuticle-degrading enzymes of entomopathogenic fungi: Regulation of production of chitinolytic enzymes. Journal of General Microbiology. 1986, 32: 1509-1517.
    [28] St. Leger R.J., Cooper R.M., Charnley A.K. Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. Journal of Invertebrate Pathology. 1986, 47: 167-177.
    [29] Smith R.J., Perkrul S., Grula, E.A. Requirement for sequential enzymatic activities for penetration of the integument of the corn earworm (Heliothis zea). Journal of Invertebrate Pathology. 1981, 38: 335-344.
    [30] Fukamizo T., Kramer, K.J. Mechanism of chitin hydrolysis by the binary chitinase system in insect molting fluid. Insect Biochemistry. 1985, 15: 141-145.
    [31] Samuels R.I., Paterson I.C. Cuticle degrading proteases from insect moulting fluid and culture filtrates of entomopathogenic fungi. Comparative Biochemistry and Physiology. 1995, 110B: 661-669.
    [32] Hassan A.E.M., Charnley A.K. Combined effects of diflubenzuron and the entomopathogenic fungus Metarhizium anisopliae on the tobacco hornworm Manduca sexta. In: Proceedings of the 10th International Congress of Plant Protection. 1983, 790.
    [33] St. Leger R.J., Joshi M.J., Bidoch K.A., Roberts D.W. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by in infected cuticles. Applied and Environmental Microbiology. 1996, 62: 1257-1264.
    [34] Gupta S.C., Leathers T.D., EL-Sayed G.N. Production of degradation enzyme by Metarhizium anisopliae during growth on defined media and insect cuticle. Experimental Mycology. 1991, 15: 310-315.
    [35] St. Leger R.J., Cooper R.M., Charnley A.K. Distribution of chymoelastases and trypsin-like enzymes in five species of entomopathogenic deuteromycetes. Archives of Biochemistry and Biophysics. 1987, 258: 123-131.
    [36] Kodaira Y. Biochemical studies on the muscardine fungi in the silkworms, Bombyx moril. Journal of Faculty of Textile Science and Technology, Shinshu University. 1961, E5: 1-68.
    [37] Suzuki A., Taguchi H., Tamura S. Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxin C, D and desmethyl-destruxin B, produced by Metarhizium anisopliae. Agricultural and Biological Chemistry. 1970, 34:.813-816.
    [38] Pais M., Das B.C., Ferron P. Depsipeptides from Metarhizium anisopliae. Phytochemistry. 1981, 20: 715-723.
    [39] Gupta S., Roberts D.W., Renwick J.A.A. Insecticidal cyclodepsipeptides from Metarhizium anisopliae. Journal of Chemical Society-Perkin Transactions I. 1989, 12: 2347-2358.
    [40] Wahlman M., Davidson B.S. New destruxins from the entomopathogenic fungus Metarhizium anisopliae. Journal of Natural Products. 1993, 56: 643-647.
    [41] Chen H.C., Yeh S.F., Ong G.T., Wu S.H., Sun C.M., Chou C.K. The novel desmethyldestruxin B2, from Metarhizium anisopliae, that suppresses hepatitis B virus surface antigen production in human hepatoma cells. Journal of Natural Products. 1995, 58: 527-531.
    [42] Yeh S.F., Pan W., Ong G.T., Chiou A.J, Chuang C.C., Chiou S.H., Wu S.H. Study of structure–activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells. Biochemistry and Biophysical Research Communication. 1996, 229:.65-72.
    [43] Muroi M., Shiragami N., Takatsuki A. Destruxin B, a specific and readily reversible inhibitor of vacuolar-type H(+)-Translocating ATPase. Biochemistry and Biophysical Research Communication. 1994, 205(2): 1358-1365.
    [44] Kershaw M.J., Moorhouse E.R., Bateman R., Reynolds S.E., Charnley A.K. The Role of Destruxins in the Pathogenicity of Metarhizium anisopliae for Three Species of Insect. Journal of Invertebrate Pathology. 1999, 74: 213–223.
    [45] Samuels R.I., Charnley A.K., Reynolds S.E. The role of destruxins in the pathogenicity of three strains of Metarhizium anisopliae for the tobacco hornworm, Manduca sexta. Mycopathologia.1988, 104: 51-58.
    [46] Aldridge D.C., Turner W.B. The identity of zygosporin A and cytochalasin D. Journal of Antibiotics (Tokyo). 1969, 22(4): 170.
    [47] 蒲蛰龙, 李增智. 昆虫真菌学. 合肥: 安徽科学技术出版社. 1996,3-108.
    [48] Vincent M.J., Miranpuri G.S., Khachatourians, G.G. Acid phosphatases activity in haemolymph of the migratory grasshopper, Melanoplus sanguinipes, during Beauveria bassiana infection. Entomologia Experimentalis et Applicata. 1993, 67: 161-166.
    [49] Xia Y., Clarkson J.M., Charnley A.K. Trehalose-hydrolysing enzymes of Metarhizium anisopliae and their role in pathogenesis of the tobacco hornworm, Manduca Sexta. Journal of Invertebrate Pathology. 2002, 80: 139-147.
    [50] Xia Y., Clarkson J.M., Charnley A.K. Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca Sexta. Archives of Microbiology. 2001, 176: 427-434.
    [51] Xia Y., Dean P., Judge A.J., Gillespie J.P., Clarkson J.M., Charnley A.K. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the Entomopathogenic fungus Metarhizium anisopliae. Journal of insect Physiology. 2000, 46: 1249-1257.
    [52] Saito T., Aoki J. Toxicity of free fatty acids on the larval surfaces of two lepidopterousinsects towards Beauveria bassiana (Bals) Vuill and Paecilomyces fumoso-roseas (Wize) Brown et Smith (Deuteromyces: Moniliales). Applied Entomology and Zoology. 1983, 18: 225-233.
    [53] Smith R.J., Grula E.A. Toxic components on the larval surface of the corn earworm (Heliothis zea) and their effects on germination and growth of Beauveria bassiana. Journal of Invertebrate Pathology. 1982, 39: 15-22.
    [54] 翟锦彬, 黄秀梨, 许萍. 杀虫真菌—球孢白僵菌的昆虫致病机理研究近况. 微生物学通报. 1995, (1): 45-48.
    [55] Butt T.M., Wraight S.P., Galaini-Wraight S., Humber R.A., Robert D.W., Soper R.S. Humoral encapsulation of the fungus Erynia radicans (Entomopathorales) by the potato leafhopper, Empoasca fabae (Homoptera: Cicadelidae). Journal of Invertebrate Pathology. 1988, 52: 49-56.
    [56] St. Leger R.J., Charnley A.K., Cooper R.M. Poduction of polyphenol pigments and phenoloxidase by the entomopathogen, Metarhizium anisopliae. Journal of Invertebrate Pathology. 1988, 52: 215-220.
    [57] Charnley A.K., St. Leger R.J. The role of cuticle-degrading enzymes in fungal pathogenesis in insect. In The Fungal Spore and Disease Initiation in Plants and Animals (Edited by Cole G.T. and Hoch H.C.). Plenum Press, New York.
    [58] Gabriel B.P. Enzymatic activities of some entomopathogenic fungi. Journal of Invertebrate Pathology. 1968, 11: 141-145.
    [59] Leopold J., Samsinakova A. Quantative estimation of chitinase and several other enzymes in the fungus Beauvaria bassiana. Journal of Invertebrate Pathology. 1970, 15: 34-42.
    [60] Kucera M. Protease from the fungus Metarhizium anisopliae toxic for Galleria mellonella larvae. Journal of Invertebrate Pathology. 1980, 35: 304-310.
    [61] St. Leger R.J., Cooper R.M., Charnley A.K. Characterization of cuticle-degrading protease produced by the entomopathogen Metarhizium anisopliae. Archives of Biochemistry and Biophysics. 1987, 253: 221-232.
    [62] Samuels R.I, Charnley A.K., St. Leger R.J. The Partial characterozation of endoproteases from three species of entomopathogenic entomophthorales and two speices of deueromycetes. Mycopathologia. 1990,110: 145-152.
    [63] St. Leger R.J., Duxrands P.K., Chamley A.K., CooPer R.M. Role of extracellular chymoelastase in the virulence of Metarhizium anisopliae for Manduca sexta. Journal of Invertebrate Pathology. 1988, 52: 285-293.
    [64] Hurion N., Fromeniin H., Keil, B. Proteolytic enzymes of Entomophthora coronata:characterization of a collagenase. Comparative Biochemistry and Physiology. 1977, 56: 259-264.
    [65] Hurion N., Fromentin H., Keil B. Specificity of the collagenolytic enzyme from the fungus Entomophthora coronata: comparison with the bacterial collagenase from Achromobactor iophagus. Archives of Biochemistry and Biophysics. 1979, 192: 438-445.
    [66] St. Leger R.J., bidochka M.J., Roberts D.W. Isoforms of the cuticle-degrading PR1 protease and production of a metalloprotease by Metarhizium anisopliae. Archives of Biochemistry and Biophysics. 1994, 313: 1-7.
    [67] St. Leger R.J., Bidochka, M.J., Roberts, D.W. Characterization of a novel carboxypeptidase produced by the entomopathogenic fungus, Metarhizium anisopliae. Archives of Biochemistry and Biophysics. 1994, 314: 392-398.
    [68] St. Leger R.J., Cooper R.M., Charnley A.K. Analsis of aminopeptidase and dipeptidylpeptidase Ⅳ from the entomopathogenic fungus Metarhizium anisopliae. Journal of General Microbiology. 1993, 139: 237-243.
    [69] St. Leger R.J., Frank D.C., Roberts D.W., Staples R.C. Molecular cloning and regulatory analysis of the cuticle-degrading protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. European Journal of Biochemistry. 204, 991-1001.
    [70] St. Leger R.J., Butt T.M., Goettel M.S., Roberts D.W., Staples R.C. Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology. 1989, 13: 253-262.
    [71] Goettel M.S., St. Leger R.J., Rizzo N.W., Staples R.M., Roberts D. W. Ultrastructural localization of a cuticle drgrading protease produced by the entomopathogenic fungus Metarhizium anisopliae during penetration of the host cuticle. Journal of General Microbiology. 1989, 135: 2223-2239.
    [72] St. Leger R.J., Joshi L., Bidochka M.J., Roberts, D.W. Construction of an improved mycoinsecticide overexpressing a toxic protein. Proceedings of the National Academy of Sciences of the United States of Amercia. 1996, 93: 6349-6354.
    [73] Bagga S., Hu G., Screen S.E., St. Leger R.J. Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene. 2004, 324: 159-169.
    [74] Cole S.C.J., Charnley A.K., Cooper R.M. Purification and partial characterization of a novel trypsin-like cysteine protease from Metarhizium anisopliae. FEMS Microbiology Letters. 1993, 113: 189-196.
    [75] Dean D.D., Domnas A.J. The extracellular proteolytic enzymes of the mosquito-parasitising fungus Lagenidium giganteum. Experimental Mycology. 1983, 7: 31-39.
    [76] Umezama H., Aoyagi T. Trends in research of low molecular weight protease inhibitors of microbial origin. In Protease Inhibitors: Medical and Biological Aspects (Edited by Katanuma N., Umezawa H., Holzer M.). Tokyo and Berlin, Japan Science Society Press and Springer-Verlag. 1983, 3-15.
    [77] St. Leger R.J., Cooper R.M., Charnley A.K. Production of cuticle-degrading enzymes by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca sexta. Journal of General Microbiology. 1987, 133: 1371-1382.
    [78] Sugumarann M., Kanost M.R. Regulation of insect hemolymph phenolocidases. In: Parasites and pathogens of insects. Beckage, N. E., Thompson S.N., Federici A. Academic press. New York. 1993, 1: 317-342.
    [79] Bourcias D.G, Pendland, J.C. Detection of protease inhibitors in the haemolymph of resistant Anticarsia gemmatalis which are inhibitory to the entomopathogenic fungus,Nomuraea rileyi. Experientia. 1987, 43: 336-339.
    [80] 沈镇昭. 昆虫学通论. 第二版(下册). 北京:中国农业出版社. 1993,1-10.
    [81] Jungreis A.M. Physiology of moulting in insects. In Advances in Insect Physiology (Edited by Treherne J.E., Berridge M.J and Wigglesworth V.B.). 1979, 103-183. London, Academic Press.
    [82] Katzenellenbogen B.S., Kafatos F.C. Some properties of silkmoth moulting gel and moulting fluid. Journal of insect Physiology. 1970, 16: 2241-2256.
    [83] Katzenellenbogen B.S., Kafatos F.C. Proteinases of silkmoth moulting fluid: physical and catalytic properties. Journal of insect Physiology. 1971, 17: 775-800.
    [84] Bade M.L., Shoukimas J.J. Neutral metal chelator-sensitive protease in insect moulting fluid. Journal of insect Physiology. 1974, 20: 281-290.
    [85] Brookhart G.L., Kramer K.J. Proteinases in molting fluid of the tobacco hornworm, Manduca sexta. Insect Biochem. 1990, 20: 467-477.
    [86] Samuels R.I., Charnley A.K., Reynolds S.E. A cuticle degrading proteinase from the moulting fluid of the tobacco hornworm Manduca sexta. Insect Biochemistry and Molecular Biology. 1993, 23: 607–614.
    [87] Miller J.W., Kramer K.J., Law J.H. Isolation and partial characterization of the larval midgut trypsin from the tobacco hornworm, Manduca sexta Johannson (Lepidoptera: Sphingidae). Comparative Biochemistry and Physiology. 1974, 48B: 117-129.
    [88] Jany K.D., Haug H., Ishay J. Trypsin-like endopeptideases from the midgut of the larvae of the hornets of Vespa orientalis and Vespa crabro. Insect Biochemistry. 1978, 8: 221-230.
    [89] Christeller J.T., Shaw B.D., Gardiner S.E., Dymock J. Partial purification andcharacterization of the major midgut proteases of grass grub larvae (Costelytra Zealandica, Coleoptera: Scarabaeidae). Insect Biochemistry. 1989, 19: 221-231.
    [90] Samuels R.I., Charnley A.K., Reynolds, S.E. An aminopeptidase from the moulting fluid of the tobacco hornworm Manduca sexta. Insect Biochemistry and Molecular Biology. 1993, 23: 615–620.
    [91] Katzenellenbogen B.S., Kafatos F.C. Inactive proteinases in silkmoth molting gel. Journal of insect Physiology. 1971, 17: 823-832.
    [92] Walker V.K., Williamson J.H, Church R.B. Differential characterization of two leucine aminopeptidases in Drosophila melanogaster. Biochemical Genetics. 1981, 85: 47-60.
    [93] Hall N.A. Peptidases in Drosophila melanogaster. 2. The variation of peptidases activities during development. Insect Biochemistry. 1988, 18: 145-155.
    [94] Samuels R.I., Reynolds S.E. Molting fluid enzymes of the tobacco hornworm, Manduca sexta: Timing of proteolytic and chitinolytic activity in relation to pre-ecdysial development. Archives of Insect Biochemistry and Physiology. 1993, 24: 33-44.
    [95] Samuels R.I., Reynolds S.E. Molting fluid enzymes of the tobacco hornworm, Manduca sexta: Inhibitory of 20-hydroxyecdysone on the activity of the cuticle degrading enzyme MFP-1. Journal of Insect Physiology. 1993, 39: 633-637.
    [96] Kimura S. The control of chitinase activity by ecdysterone in larvae of Bombyx mori. Journal of insect Physiology. 1973, 19: 115-123.
    [97] Coga D., Funakoshi T., Fujimoto H., Kuwano E., Eto M., Ide A. Effects of 20-hydroxyecdysone and KK-42 of chitinase and β-N-acetylglucosaminidase during the larval-pupal transformation of Bombyx mori. Insect Biochemistry. 1991, 21: 277-284.
    [98] Kramer K.J., Corpuz L., Choi H.K., Muthukrishnan S. Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochemistry and Molecular Biology. 1993, 23: 691-877.
    [99] Samuels R.I, Reynolds S.E. Proteinase inhibitors from the molting fluid of the pharate adult Tobacco Hornworm, Muanduca sexta. Archives of Insect Biochemistry and Physiology. 2000, 43: 33-43.
    [100] Clynen E., Schoofs L., Salzet M. A review of the most important classes of serine protease inhibitors in insect and leeches. Medicinal Chemistry Reviews-Online. 2005, 2: 197-206.
    [101] Shrivastava B., Ghosh A.K. Protein purification, cDNA cloning and characterization of a protease inhibitor from the Indian tasar silkworm, Antheraea mylitta. Insect Biochemistry and Molecular Biology. 2003, 33: 1025-1033.
    [102] Schoofs L., Clynen E., Salzet M. Trypsin and chymotrypsin inhibitors in insects and gutleeches. Current Pharmaceutical Design. 2002, 8: 125-133.
    [103] Kanost M.R. Serine proteinase inhibitors in arthropodimmunity. Developmental and Comparative Immunology. 1999, 23: 291–301.
    [104] Eguchi M., Itoh M., Chou L.Y., Nishino K. Purification and characterization of a fungal protease specific protein inhibitors (FPI-F) in the silkworm haemolymph. Comparative Biochemistry and Physiology. 1993, 104B: 537-543.
    [105] Ote M., Mita K., Kawasaki H., Daimon T., Kobayashi M., Shimada T. Identification of molting fluid carboxypeptidase A (MF-CPA) in Bombyx mori. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology. 2005, 141: 314 – 322.
    [106] Warner A.H., Matheson C. Release of proteases from larvae of the Brine Shrimp Artemia franciscana and their potential role during the molting process. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology. 1998, 2: 255–263.
    [107] Fernandez Gimenez A.V., García-Carreńo F.L., Navarrete del Toro M.A., Fenucci J.L. 2001. Digestive proteinases of red shrimp Pleoticus muelleri (Decapoda, Penaeoidea): partial characterization and relationship with molting. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology. 2001, 130: 331-338.
    [108] Fernandez Gimenez A.V., García-Carreńo F.L., Navarrete del Toro M.A., Fenucci J.L. Digestive proteinases of Artemesia longinaris (Decapoda, Penaeidae) and relationship with molting. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology. 2002, 132: 593–598.
    [109] Lustigman S., McKerrow J.H., Shah K., Lui J., Huima T., Hough M., Brotman B. Cloning of a cysteine protease required for the molting of Onchocerca volvulus Third Stage Larvae. Journal of Biological Chemistry. 1996, 271: 30181–30189.
    [110] Lustigman S., Zhang J., Liu J., Oksov Y., Hashmi S. RNA interference targeting cathepsin L and Z-like cysteine proteases of Onchocerca volvulus confirmed their essential function during L3 molting. Molecular and Biochemical Parasitology. 2004, 138: 165–170.
    [111] Guiliano D.B., Hong X., McKerrow J.H., Blaxter M.L., Oksov Y., Liu J., Ghedin E., Lustigman S. A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Molecular and Biochemical Parasitology. 2004, 136: 227–242.
    [112] Davis M.W., Birnie A.J., Chan A.C., Page A.P. Jorgensen E.M. A conserved metalloprotease mediates ecdysis in Caenorhabditis elegans. Development. 2004, 131: 6001-6008.
    [113] Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabdits elegans. Nature. 1998, 391:806-811.
    [114] Mette M.F., Matzke A.J., Matzke M.A. Resistance of RNA-mediated TGS to HC-Pro, a viral suppressor of PTGS, suggests alternative pathways for dsRNA processing. Current Biology. 2001, 11: 1119-1123.
    [115] Mette M.F., Aufsatz W., van der Winden J., Matzke M.A. Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO Journal. 2000, 19: 5194-5201.
    [116] Hannon G.J. RNA interference. Nature. 2002, 418: 244-251.
    [117] Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001, 294: 853-858.
    [118] Zeng Y., Wagner E.J., Cullen B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Molecular Cell. 2002, 9: 1327-1333.
    [119] Hutvagner G., Zamore P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002, 297: 2002-2003.
    [120] Nishikura K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell. 2001, 107: 415-418.
    [121] Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998, 395: 854.
    [122] Winston W.M., Molodowitch C., Hunter C.P. Systemic RNAi in C. elegans requires the puptive transmembrane protein SID-1. Science. 2002, 295: 2456-2459.
    [123] Feinberg E.H., Hunter C.P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003, 301: 1545-1547.
    [124] Marcel T., Robin C.M., Femke S., Kristy L.O., Ronald H.A.P. Genes required for systemic RNA interference in Caenorhabditis elegans. Current Biology. 2004, 14: 111-116.
    [125] Palauqui J.C., Elmayan T., Pollien J.M., Vaucheret H. Systemic acquired silencing: transgene-specific posttranscriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO Journal. 1997, 16: 4738-4745.
    [126] Voinnet O., Vain P., Angell S., Baulcombe D.C. Systemic spread of sequence specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell. 1998, 95: 177-187.
    [127] Jorgensen P.A., Atkinson R G., Forster R.L.S., Lucas W.J. An RNA-based information superhighway in plants. Science. 1998, 279: 1486-1487
    [128] Lucas W.J., Yoo B.C., Kragler F. RNA as a long-distance information macromolecule in plants. Nature Reviews Molecular Cell Biology. 2001, 11: 849-857.
    [129] Worby G.A., Simonson-Leff N., Dixon J.E. RNA interference of gene expression (RNAi) in cultured Drosophila cells. Science’s STKE. 2001, 95: PL1.
    [130] Okada C.Y., Rechsteiner M. Introduction of macromolecules into cultured mammalian cells by osmotic lysis of pinocytic vesicles. Cell. 1982, 29: 33-41.
    [131] Biyasheva A., Do T.V., Lu Y., Vaskova M., Andres A.J. Glue secretion in the Drosophila salivary gland: A model for steroid-regulated exocytosis. Developmental Biology. 2001, 231: 234-251.
    [132] 汉农 G.J. 主编,陈忠斌 主译. RNAi-基因沉默指南. 2004, 化学工业出版社. 北京.
    [133] Biyasheva A., Do T.V., Lu Y., Vaskova M., Andres A.J. Glue secretion in the Drosophila salivary gland: A model for steroid-regulated exocytosis. Developmental Biology. 2001, 231: 234-251.
    [134] Bucher G., Scholten J., Klingler M. Parental RNAi in Tribolium (Coleoptera). Current Biology. 2002, 12: R85-R86.
    [135] Bettencourt R., Terenius O., Faye I. Hemolin gene silencing by ds-RNA injected into Cecropia pupae is lethal to next generation embryos. Insect Molecular Biology. 2002, 11: 267–271.
    [136] Farooqui T., Vaessin H., Smith B.H. Octopamine receptors in the honeybee (Apis mellifera) brain and their disruption by RNA-mediated interference. Journal of insect Physiology. 2004, 50: 701–713.
    [137] Kramer S.F., Bentley W.E. RNA interference as a metabolic engineering tool: potential for in vivo control of protein expression in an insect larval model. Metabolic Engineering. 2003, 5: 183–190.
    [138] Liu P.Z., Kaufman T.C. hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development. 2004, 131: 1515-1527.
    [139] Mito T., Sarashina I., Zhang H., Iwahashi A., Okamoto H., Miyawaki K., Shinmyo Y., Ohuchi H., Noji S. Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development. 2005, 132: 2069-2079.
    [140] Schr?der R. The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature. 2003, 422:621–625.
    [141] Tomoyasu Y., Denell R.E. Larval RNAi in Tribolium (Coleoptera) for analyzing adult. Development Genes and Evolution. 2004, 214: 575-578.
    [142] Dong Y., Friedrich M. Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper. BMC Biotechnology. 2005, 5: 25.
    [143] Celotto A.M., Graveley B.R. Exon-specific RNAi: a tool for dissecting the functional relevance of alternative splicing. RNA. 2002, 8: 718-724.
    [144] Kamath R.S., Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003, 30: 313-321.
    [145] Vastenhouw N.L., Fischer S.E., Robert V.J., Thijssen K.L., Fraser A.G., Kamath R.S., Ahringer J., Plasterk R.H. A genome side screen identifies 27 genes involved in transposon silencing in C.elegans. Current Biology. 2003, 13: 1311-1316.
    [146] Bertrand J.R., Pottier M., Vekris A., Opolon P., Maksimenko A., Malvy C. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochemical Biophysical Research Communications. 2002, 296: 1000-1004.
    [147] Coburn G.A., Cullen B.R. Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. Journal of Virology. 2002, 76: 9225-9231.
    [148] Cioca D.P., Aoki Y., Kiyosawa K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Therapy. 2003, 10: 125-133.
    [149] Zhang L., Yang N., Mohamed-Hadley A., Rubin S.C., Coukos G. Vector-based RNAi , a novel tool for isoform pecific knock-down of VEGF andante-angiogenesis gene therapy of cancer. Biochemical Biophysical Research Communications. 2003, 303: 1169-1178.
    [150] Verma U.N., Surabhi R.M., Schmaltieg A., Becerra C., Gaynor R.B. Small Interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clinical Cancer Research. 2003, 9: 1291-1300.
    [151] Nagy P., Arndt-Jovin D.J., Jovin T.M. Small interfering RNAs suppress the expression of endogenous and GFP fused epidermal growth factor receptor (erbB1) and induce apoptosis in erbB12 overexpressing cells. Experimental Cell Research. 2003, 285: 39-49.
    [152] Kosciolek B.A., Kalantidis K., Tabler M., Rowley P.T. Inhibition of telomerase activity in human cancer cells by RNA interference. Molecular Cancer Therapeutics. 2003, 2: 209-216.
    [153] Lusser A., Brosch G., Loidl A., Haas H., Loidl P. Identification of maize histone deacetylase HD2 as a acidic nuclear phosphoprotein. Science. 1997, 277: 88-91.
    [154] Ziegelhoffer E.C., Medrano L.J., Meyerowitz E.M. Cloning of the arabidopsis WIGGUM gene identifies a role farnesylation in meristem development. Proceedings of the National Academy of Sciences of the United States of Amercia. 2000, 97: 7633-7638.
    [155] Yang Z.N., Mirkow T.E. Isolation of large terminal sequences of BAC inserts based on double-restriction enzyme digestion followed by anchored PCR. Genome. 2000, 43: 412-415.
    [156] Arondel V., Lemieux B., Hwang I., Gibson S., Goodman H.M., Somerville C.R. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in A rabi dopsis. Science. 1992,258: 1353-1355.
    [157] Pavesi A., Ficarelli A., Tassi F., Restivo F.M. Cloning of two glutamate dehydrogenase cDNAs from Asparagus officinalis: sequence analysis and evolutionary implication. Genome. 2000, 43: 306-316.
    [158] Gao M., Chibbar R.N. Isolation, characterization and expression analysis of starch synthase IIa cDNA from wheat (Triticum aestiv um L.). Genome. 2000, 43: 768-775.
    [159] Funkenstein B., Chen T.T., Powers D.A., Cavari B. Molecular cloning and sequencing of the gilthead seabream ( S parus aurata) growth hormone encoding cDNA. Gene. 1991, 103: 243-247.
    [160] Almuly R., Cavari B., Fersthman H., Kolodny O., Funkenstein B. Genomic structure and sequence of the gilthead seabream( S parus aurata) growth hormone encoding gene: identification of minisatellite polymorphism in intron I. Genome. 2000, 43: 836-845.
    [161] Cui D.X., Yan X.J., Su C.Z. Differentially expressed genes in GC7901 or GES-1 were isolated by optimized differential display RT-PCR and their primary clinical significance. Journal of Fourth Military University. 1998, 18: 601-605.
    [162] Lisitsyn N., Lisitsyn N., Wigler M. Cloning the difference between two complex genomes. Science. 1993, 259: 946-951.
    [163] Diatchenko L., Chris-Lau Y.F., Campbell A.P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E.D., Siebert P.D. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes. Proceedings of the National Academy of Sciences of the United States of Amercia. 1996, 93: 6025-6030.
    [164] Kang D.C., France R.L., Su Z.Z., Fisher P.B. Reciprocal subtraction differential RNA display: an efficient rapid procedure for isolation differentially expressed gene sequences. Proceedings of the National Academy of Sciences of the United States of Amercia. 1998, 95: 13788-13793.
    [165] 单志萍,孟妤,姜文侯. 丝状真菌三孢布拉酶 DNA 的提取研究. 生物技术. 2001,11(3):5-6.
    [166] (美)F.奥斯伯,R.E.金斯顿,J.G.塞德曼等著. 颜子颖,王海林译. 精编分子生物学实验指南,第 1 版. 北京:科学出版社. 1998.
    [167] Andersen S.O. Cuticular sclerotization. In ‘‘Cuticle Techniques in Arthropods’’ (Miller, T.A. Ed.). Springer Verlag, Berlin.1980, 185–217.
    [168] Gillespie J.P., Bateman R., Charnley A.K. Role of Cuticle-Degrading Proteases in the Virulence of Metarhizium spp. for the Desert Locust, Schistocerca gregaria. Journal ofInvertebrate Pathology. 1998, 71: 128–137.
    [169] Sambrook J., Fritsch E.F., Maniatis T.著.金冬雁,黎孟枫等译.分子克隆实验指南,第 2 版.北京:科学出版社,1992 (Sambrook J, Fritsch E F, Maniatis T. Molecular Cloning: A Laboratory Manual,2nd ed. New York: Cold Spring Harbor Laboratory Press,1989).
    [170] Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72: 248-253.
    [171] Sambrook J., Russell D.W. Molecular Cloning (Third edition). 2001, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York.
    [172] Kang L., Yongchen C., Yan Z., Bowan L., Wei Z., Ruiqiang L., Jun W., Jun Y. The analysis of large-scale gene expression correlated to the phase of the migratory locust. Proceedings of the National Academy of Sciences of the United States of Amercia. 2004, 51: 17611-17615.
    [173] Cheung A.L., Ying P., Fischetti V.A. A method to detect proteinase activity using unprocessed X-ray films. Analytical Biochemistry. 1991, 193: 20–23.
    [174] Pichare M.M., Kachole M.S. Detection of electrophoretically separated proteinase inhibitors using X-ray film. Journal of Biochemistry and Biophysical Methods. 1994, 28, 215–224.
    [175] Veerappa H.M., Kulkarni S., Ashok P.G. Detection of legume protease inhibitors by the Gel-X-Ray film contact print technique. Biochemistry and Molecular Biology Education. 2002, 30: 40–44.
    [176] Nelson P.S., Gan L., Ferguson C., Moss P., Gelinas R., Hood L., Wang K. Molecular cloning and characterization of prostase, an androgen-regulated serine protease with prostaterestricted expression. Proceedings of the National Academy of Sciences of the United States of Amercia. 1999, 96: 3114-3119.
    [177] Liu P.Z., Kaufman T.C. hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development. 2004, 131: 1515-1527.
    [178] He Z.B., Cao Y.Q., Yin Y.P., Wang Z.K., Chen B., Peng G.X., Xia Y.X. Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Development, Growth and Differention. 2006, 48: 439-45.
    [179] Horjup P., Anderson S.O., Roepstoeff P. Isolation, characterization and N-terminal sequence studies of cuticular proteins from migratory locust Locusta migratoria. European Journal of Biochemistry. 1986, 154: 153-159.
    [180] Park J.H., Schroeder A.J., Helfrich-Forster C., Jackson F.R., Ewer J. Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific defects in executionand circadian timing of ecdysis behavior. Development. 2003, 30: 2645–2656.
    [181] Dewey E.M., McNabb S.L., Ewer J., Kuo G.R., Takanishi C.L., Truman J.W, Honegger H.W. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Current Biology. 2004, 14: 1208–1213.
    [182] Martin D., Maestro O., Cruz J., Mane-Padros D., Belles X. RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Journal of insect Physiology. 2006, 52: 410-416.
    [183] Ngo H., Tschudi C., Gull K., Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proceedings of the National Academy of Sciences of the United States of Amercia. 1998, 95: 14687-14692.
    [184] Hammond S.M., Bernstein E., Beach D., Hannon G.J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000, 404:293-296.
    [185] Tuschl T., Zamore P.D., Lehmann R., Bartel D.P., Sharp P.A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes and Development. 1999, 13:3191-3197.
    [186] Bosher J.M., Dufourcq P., Sookhareea S., Labouesse M. RNA interference can target pre-mRNA: consequences for gene expression in a Caenorhabditis elegans operon. Genetics. 1999, 153:1245-1256.
    [187] Yang D., Lu H., Erickson J.W. Evidence that processed small dsRNAs may mediate sequence specific mRNA degradation during RNAi in Drosophila embryos. Current Biology. 2000, 10: 1191-1200.
    [188] 陈历明,唐建国. 分子内分子伴侣—Pro 肽在蛋白质折叠中的作用. 生物科学. 2002,14(1):35-39.
    [189] Shinde U., Inouye M. Folding pathway mediated by an intramolecular chaperone: characterization of the structural changes in pro-subtilisin E coincident with autoprocessing. Journal of Molecular Biology. 1995, 252: 25-30.
    [190] Ikemura H., Takagi H., Inouye M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. Journal of Biological Chemistry. 1987, 262:7859-7864.
    [191] Shinde U., Inouye M. Intramolecular chaperones and protein folding. Trends in Biochemistry Sciences. 1993, 18: 442-446.
    [192] Shinde U., Inouye M. Intramolecular chaperones: polypeptide extensions that modulate protein folding. Semin. Cell Developmental Biology. 2000, 11: 35-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700