十字花科黑腐病菌colRS双组分调控系统基因的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十字花科黑腐病菌,学名为野油菜黄单胞菌野油菜致病变种(Xanthomonas campestris pv.campestris,简称Xcc),是一类γ-变形菌纲的革兰氏阴性细菌,能在世界范围侵染十字花科植物,给农业生产造成重大损失。该菌易于培养、保存,具有较好的遗传操作性,是研究微生物与寄主相互作用分子机理的重要模式细菌之一。Xcc属于典型的维管束病害病原菌,病菌通过水孔或伤口侵入植物体内,并在维管束木质部导管中扩展,导致系统病害。致病过程包括接触、识别、侵入、繁殖、扩展、显症等阶段,是一个复杂的、动态的多因子的相互作用过程。在整个侵染循环中,Xcc要历经腐生、附生和寄生阶段,经历着很大的环境变化,不断地与寄主以及环境因素发生互作。研究表明,在侵入寄主之前,在叶表成功定殖有利于病原菌侵入寄主体内。
     根据研究报道,colR、colS(合称colRS)双组分调控系统在荧光假单胞菌WCS365菌株(Pseudomonas fluorescens WCS365)、恶臭假单胞菌KT2440(Pseudomonas putida KT2440)菌株中参与调节细菌在植物根际定殖过程。colS的编码蛋白ColS感受外界刺激,传递磷酸基团至colR的编码蛋白ColR,ColR调节其它基因表达。除了影响定殖外,目前了解到colR基因调节细菌抗逆性,colR与恶臭假单胞菌CD2菌株对重金属的抗逆性和恶臭假单胞菌PaW85菌株(Pseudomonas putida PaW85)对酚的抗逆性相关;colRS参与调节恶臭假单胞菌PaW85菌株Tn4652转座子转座等。双组分调控系统是细菌对环境变化做出应对的重要的调节基因,参与调节定殖、生长发育、抗逆性、致病性等多种细胞活动和功能。因此,双组分调控系统相关的基因及产物被认为是未来发展控制细菌病害的理想药物靶标。然而,迄今尚未有与定殖相关植物病原细菌双组分调控系统基因的报道。
     在完成了Xcc 8004菌株全基因组序列测定的基础上,为了弄清该菌基因组中是否存在colRS基因的同源基因,我们用已报道的假单胞菌colRS基因编码的蛋白质序列对Xcc 8004全基因组数据库进行Blast搜索。结果表明,在Xcc 8004菌株基因组中,搜索到与已报道的colR、colS相似性很高的三对基因,XC1049和XC1050、XC3125和XC3126、XC3451和XC3452。为了了解这些基因是否与定殖相关,通过定点整合突变的方式,构建了以上六个基因的突变体NK1049、NK1050、NK3125和NK3126、NK3451和NK3452。植株实验检测结果表明,突变体NK1049定殖能力显著下降,将带有XC1049基因的pLAFR3导入NK1049突变体,能成功互补NK1049。表明XC1049基因与Xcc在寄主叶表定殖有关,故将XC1049命名为colR_(Xcc)。植株实验还显示,NK1049致病性基本丧失,在寄主植物满身红萝卜中生长迟缓,在辣椒品种ECW-10R诱导过敏反应延迟、强度显著下降。其它基因的突变体表型与野生型Xcc 8004菌株表型基本一致。
     生理生化检测发现,在重金属、有机溶剂、渗透压、酸碱胁迫下,突变体NK1049可以忍受的胁迫水平明显低于野生型菌株Xcc 8004,colR_(Xcc)对Xcc 8004抗逆性具有显著影响;与Xcc 8004、互补株CNK1049相比,突变体NK1049在NYGB培养基、MMX培养基中生长较慢。其它检测如营养缺陷型检测、泳动观察、生物膜形成检测、胞外蛋白酶,胞外淀粉酶、胞外纤维素酶和胞外多糖等Xcc的致病因子检测没有发现突变体与Xcc8004有明显差异。抗生素抗性分析结果表明,突变体NK1049比Xcc 8004对抗生素敏感,细菌细胞外膜渗透性可能改变;多粘菌素与细胞外膜脂多糖结合影响膜渗透性,NK1049对多粘菌素(polymyxin)敏感,colR_(Xcc)可能改变脂多糖功能而影响膜的渗透性。RT-PCR分析发现,colR_(Xcc)调节hrp,基因表达,colR_(Xcc)突变后hrpC、hrpE转录单元表达量显著降低。
     总之,本研究鉴定了十字花科黑腐病菌的一个与叶表定殖有关的基因colR_(Xcc)。实验表明,colR_(Xcc)与定殖、致病性、抗逆性及细胞生长相关,且调控该菌的hrp致病系统基因的表达。
Xanthomonas campestris pathovar campestris(Xcc)is the causal agent of black-rot disease,one of the most destructive diseases of cruciferous plants worldwide.To prevent the disease intensive studies have been carried out to investigate the mechanism of this model phytopathogen.Colonization is the initial phase of infection that Plant pathogens need to success colonize on host surface before entering into plant.Two-component regulatory system is widely used by bacteria for regulation of various cellular processes such as colonization,adaptation,growth,virulence,etc.It had been reported that colRS two-component regulatory system plays an important role in regulation of colonization.In addition,the research on colRS showed colR has function in adaptation in Pseudomonas putida CD2 and Pseudomonas putida PaW85 and colRS participates regulation of Tn4652 transposition in Pseudomonas putida PaW85,respectively.
     There are 3 pairs of predicted colRS homologous genes in X.campestris pv.campestris 8004.To investigate whether colRS homologous genes contribute to colonization of Xcc,the integration mutants of colR,colS genes NK1049,NK1050,NK3125,NK3126,NK3451 and NK3452 were constructed and applied to colonization test.It was found that the mutant NK1049 has reduced colonizing-ability on plant and the phenotypcs of NK1049 could be restored by XC1049 in trans.XC1049 was then designated as colR_(Xcc).Plant-infection test also showed that NK1049 was impaired in virulence and could only cause weak and delayed HR on non-host plant.
     General stress assay revealed that colR_(Xcc)mutant was defective in adaptation to osmotic,heavy-metal,phenol,pH stress.Monitoring growth rate showed the mutant NK1049 persisting slow growth in medium and plant leaves.Antibiotic sensitivity determination indicates that membrane function of colR_(Xcc)is likely altered.RT-PCR showed that mutation in colR_(Xcc)reduced the transcriptional level of hrpC and hrpE operons.
     This work identifies the colR_(Xcc)as a key gene which is involved in colonization on host leaves,stress adaptation,growth,infection of plant, and regulation of hrp genes in X.campestris pv.campestris.
引文
[1]Vidhyasekaran P.2004.Concise Encyclopedia of Plant Pathology.Food Products Press,NY.USA.pp619.
    [2]陈万权.2000.加强农作物抗病虫性研究的基本途径.植物遗传资源科学,2000,1(3):61-6.
    [3]全国农业技术推广服务中心病虫害测报处.2006.2006年全国农作物重大病虫害发生趋势预报.中国农村科技.3:15-17.
    [4]Vidaver,A.K.and P.A.Lambrecht 2004.Bacteria as plant pathogens.http://www.apsnet.org/bookstoretitles/EPPCD/topics/bacteria/default.htm.
    [5]王金生.2000.植物病原细菌学.中国农业出版社.
    [6]The American Phytopathological Society web site.Common Names of Plant Diseases.http://www.apsnet.org/online/common/toc.asp.
    [7]COLWELL RR,LISTON J.1961.Taxonomic relationships among the pseudomonads.J Bacteriol.82:1-14.
    [8]Williams,P.H.1980.Black rot:a continuing threat to world crucifers.Plant Dis.64:736-742.
    [9]Hayward,A.C.1993.J.G.Swings and E.L.Civerolo(ed.),Xanthomonas.Chapman &Hall,London,United Kingdom.
    [10]Naqvi,S.A.M.H.2004.Diagnosis and Management.Diseases of Fruits and Vegetables.2Publication:New York,Dordrecht,London Kluwer Academic Publishers.
    [11]Kwon SW,Go SJ,Kang HW,Ryu JC,Jo JK.1997.Phylogenetic analysis of Erwinia species based on 16S rRNA gene sequences.Int J Syst Bacteriol.47:1061-1067.
    [12]Aysan Y,Sahin F,2003.An outbreak of crown gall disease on rose caused by Agrobacterium tumefaciens in Turkey.Plant Pathology 52:780.
    [13]Stanton B.Gelvin.1990.Crown Gall Disease and Hairy Root Disease A Sledgehammer and a Tackhammer.Plant Physiol.92:281-285.
    [14]Berisha,B.,et al.1998.Isolation of Peirce's disease bacteria from grapevines in Europe.European Journal of Plant Pathology 104(5):427-433.
    [15]http://www.ncbi.nlm.nih.gov/genomes/static/eub.html.
    [16]http://www.apsnet.org/education/IntroPlantPath/PathogenGroups/bacteria/default.htm.
    [17]Buttner D,Bonas U.2003.Common infection strategies of plant and animal pathogenic bacteria.Curr Opin Plant Biol.6:312-319.
    [18]Alfano J R,Alan C.Bacterial pathogens in plants:life up against the wall..Plant Cell,1996(8):1683-1698.
    [19]赵蕾,张天宇.2002.病菌产生植物病原菌产生的降解酶及其作用.微生物学通报.29:89-93.
    [20]Carole Beaulieu,Martine Moccara.Frederique Van Gijsegem.1993.Pathogenic Behavior of Pectinase-Defective Erwinia chrysanthemi Mutants on Different Plants.Mol Plant Microbe Interact.6:197-202.
    [21]Herron SR,Benen JA,Scavetta RD,Visser J,Jurnak F.2000.Structure and function of pectic enzymes:virulence factors of plant pathogens.Proc Natl Acad Sci U S A.97:8762-87699.
    [22]Sandkvist M.2001.Type Ⅱ secretion and pathogenesis.Infect Immun.69:3523-3535.
    [23]Denny TP,Back S R.1991.Genetic evidence that extracellular polysaccharide is a virulence factor of Pseudomonas solanacearum.Mol Plant Microbe Interact.4:198-206.
    [24]Silipo A,Molinaro A,Sturiale L,Dow JM,Erbs G,Lanzetta R,Newman MA,Parrilli M.2005.The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris.J Biol Chem.280:33660-33668.
    [25]Toth IK,Thorpe CJ,Bentley SD,Mulholland V,Hyman LJ,Perombelon MC,Salmond GP.1999.Mutation in a gene required for lipopolysaccharide and enterobacterial common antigen biosynthesis affects virulence in the plant pathogen Erwinia carotovora subsp,atroseptica.Mol Plant Microbe Interact.12:499-507.
    [26]Wharam,S.D.,Mulholland,V.,and Salmond,G.P.C.1995.Conserved virulence factor regulation and secretion systems in bacterial pathogens of plants and animals.European Journal of Plant Pathology 101:1-13.
    [27]Alfano JR,Collmer A.2004.Type Ⅲ secretion system effector proteins:double agents in bacterial disease and plant defense.Annu Rev Phytopathol.42:385-414.
    [28]Kinscherf TG,Coleman RH,Barta TM,Willis DK.1991.Cloning and expression of the tabtoxin biosynthetic region from Pseudomonas syringae.J Bacteriol.173:4124-4132.
    [29]Zhang Y,Rowley KB,Patil SS.1993.Genetic organization of a cluster of genes involved in the production of phaseolotoxin,a toxin produced by Pseudomonas syringae pv.phaseolicola.J Bacteriol.175:6451-6458.
    [30]Morgan MK,Chatterjee AK.1988.Genetic organization and regulation of proteins associated with production of syringotoxin by Pseudomonas syringae pv.syringae.J Bacteriol.170:5689-5697.
    [31]Paula Jameson.2000.cytokinins and auxins in plant-pathogen interactions -An overview. Plant growth regulation .32:369-380.
    [32]Bassler BL. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing.Curr Opin Microbiol. 2:582-587.
    [33]Michiels J, Dirix G, Vanderleyden J, Xi C. 2001. Processing and export of peptide pheromones and bacteriocins in Gram-negative bacteria. Trends Microbiol. 9:164-168.
    [34]Loh J, Pierson EA, Pierson LS, Stacey G, Chatterjee A. 2002. Quorum sensing in plant-associated bacteria.Curr Opin Plant Biol. 5:285-290.
    [35]Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP. 2001.Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev. 25:365-404.
    [36]Reignault P, Sancholle M. 2005. Plant-pathogen interactions: will the understanding of common mechanisms lead to the unification of concepts? C R Biol. 328:821-833.
    [37]Brencic A, Winans SC. 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. Microbiol Mol Biol Rev.69:155-194.
    [38]王金生.1999.分子植物病理学.中国农业出版社.
    
    [39]Scholthof HB. 2001. Molecular plant-microbe interactions that cut the mustard.Plant Physiol.l27:1476-1483.
    [40]Abramovitch RB, Martin GB. 2004. Strategies used by bacterial pathogens to suppress plant defenses.Curr Opin Plant Biol.7:356-364.
    [41]Chan, J. W., and Goodwin, P. H. 1999. The molecular genetics of virulence of Xanthomonas campestris. Biotechnology Adv. 17:489-508.
    [42]Yao J, Allen C. 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum.] Bacteriol. 188:3697-3708.
    [43]Nachin L, El Hassouni M, Loiseau L, Expert D, Barras F. 2001. SoxR-dependent response to oxidative stress and virulence of Erwinia chrysanthemi: the key role of SufC, an orphan ABC ATPase.Mol Microbiol. 39:960-972.
    [44]Cornelis, K., T. Ritsema, J. Nijsse, M. Holsters, K. Goethals, and M. El Jaziri. 2001. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of aerial parts of plants. Mol. Plant-Microbe Interact. 14:599-608.
    [45]Tang DJ, Li XJ, He YQ, Feng JX, Chen B, Tang JL. 2005. The zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris.Mol Plant Microbe Interact. 18:652-658.
    [46]Franza T, Mahe B, Expert D. 2005. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol. 55:261-275.
    [47]Kamoun S, Kado CI. 1990. A plant-inducible gene of Xanthomonas campestris pv.campestris encodes an exocellular component required for growth in the host and hypersensitivity on nonhosts.J Bacteriol. 172:5165-5172.
    [48]Tang DJ, He YQ, Feng JX, He BR, Jiang BL, Lu GT, Chen B, Tang JL. 2005.Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence.J Bacteriol. 187:6231-6237.
    [49]Andersson RA, Koiv V, Norman-Setterblad C, Pirhonen M. 1999. Role of RpoS in virulence and stress tolerance of the plant pathogen Erwinia carotovora subsp.carotovora.Microbiology. 145:3547-3556.
    [50]Boch J, Joardar V, Gao L, Robertson TL, Lim M, Kunkel BN. 2002. Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana.Mol Microbiol.44:73-88.
    [51]Stock AM, Robinson VL, Goudreau PN. 2000.Two-component signal transduction. Annu Rev Biochem.;69:183-215.
    [52]Nixon, B. T., Ronson, C. W., and Ausubel, F. M. 1986. Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc. Natl. Acad. Sci. USA. 83:7850-7854.
    [53]Chang C, Stewart RC. 1998. The two-component system. Regulation of diverse signaling pathways in prokaryotes and eukaryotes.PIant Physiol. 117:723-731.
    [54]Wolanin PM, Thomason PA, Stock JB. 2002. Histidine protein kinases: key signal transducers outside the animal kingdom.Genome Biol.3:REVIEWS3013.
    [55] Nowak E, Panjikar S, Konarev P, Svergun DI, Tucker PA. 2006. The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis.J Biol Chem. 281:9659-9666.
    [56]Ann H.Westand Ann M. Stock.2001.Histidine kinases and response regulator proteins in two-component signaling systems.TRENDS in Biochemical Sciences .26:369-376.
    [57]Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM. 2005. The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev.29:231-262.
    [58]Kiil K, Ferchaud JB, David C, Binnewies TT, Wu H, Sicheritz-Ponten T, Willenbrock H,Ussery DW. 2005. Genome update: distribution of two-component transduction systems in 250 bacterial genomes.Microbiology. 151:3447-3452.
    [59]Mizuno T. 1997. Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli.DNA Res. 4:161-168.
    [60]Chen YT, Chang HY, Lu CL, Peng HL. 2004. Evolutionary analysis of the two-component systems in Pseudomonas aeruginosa PAO1. J Mol Evol. 59:725-737.
    [61]Fabret C, Feher VA, Hoch JA. 1999. Two-component signal transduction in Bacillus subtilis: how one organism sees its world.J Bacteriol. 181:1975-1983.
    [62]Urao T, Yamaguchi-Shinozaki K, Shinozaki K. 2000. Two-component systems in plant signal transduction.Trends Plant Sci. 5:67-74.
    [63]Stepanova AN, Ecker JR. 2000. Ethylene signaling: from mutants to molecules. Curr Opin Plant Biol. 3:353-360.
    [64]Wadhams GH, Armitage JP. 2004. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol. 5:1024-1037.
    [65]LeDeaux JR, Yu N, Grossman AD. 1995. Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis.] Bacteriol. 177:861-863.
    [66]Foynes S, Dorrell N, Ward SJ, Stabler RA, McColm AA, Rycroft AN, Wren BW.2000.Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun. 68:2016-2023.
    [67]Correa NE, Lauriano CM, McGee R, Klose KE. 2000. Phosphorylation of the flagellar regulatory protein FlrC is necessary for Vibrio cholerae motility and enhanced colonization.Mol Microbiol. 35:743-755.
    [68]Br inverted question markas AM, Chatterjee S, Wren BW, Newell DG, Ketley JM. 1999.A novel Campylobacter jejuni two-component regulatory system important for temperature-dependent growth and colonization.J Bacteriol. 181:3298-3302.
    [69]Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Lutticken R. 2002. rgf encodes a novel two-component signal transduction system of Streptococcus agalactiae.Infect Immun. 70:2434-2440.
    [70]Dekkers LC, Bloemendaal CJ, de Weger LA, Wijffelman CA,Spaink HP & Lugtenberg BJ 1998 . A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact 11:45-56.
    [71]Hu N, Zhao B. 2007.Key genes involved in heavy-metal resistance in Pseudomonas putida CD2.FEMS Microbiol Lett. 267:17-22.
    [72]Kivistik PA, Putrins M, Puvi K, lives H, Kivisaar M, Horak R. 2006. The ColRS two-component system regulates membrane functions and protects Pseudomonas putida against phenol. J Bacteriol. 188:8109-8117.
    
    [73]Horak R, lives H, Pruunsild P, KuljusM& Kivisaar M 2004. The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol 54:795-807.
    
    [74]Ramos-Gonzalez MI, Campos MJ, Ramos JL. 2005. Analysis of Pseudomonas putida KT2440 gene expression in the maize rhizosphere: in vivo expression technology capture and identification of root-activated promoters.J Bacteriol. 187:4033-4041.
    [75]Duan K, Dammel C, Stein J, Rabin H & Surette MG. 2003.Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication.Mol Microbiol 50: 1477-1491.
    [76]de Weert S, Dekkers LC, Bitter W, Tuinman S, Wijfjes AH, van Boxtel R,Lugtenberg BJ.2006.The two-component colR/S system of Pseudomonas fluorescens WCS365 plays a role in rhizosphere competence through maintaining the structure and function of the outer membrane. FEMS Microbiol Ecol. 58:205-213.
    [77]Munson GP, Lam DL, Outten FW, O'Halloran TV. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12.J Bacteriol. 182:5864-5871.
    [78]Cai SJ, Inouye M. 2002. EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem. 277:24155-24161.
    [79]Dartois V, Debarbouille M, Kunst F, Rapoport G. 1998. Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis. J Bacteriol. 180:1855-1861.
    [80]Cotter PD, Emerson N, Gahan CG, Hill C. 1999. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes.J Bacteriol. 181:6840-6843.
    [81]Li YH, Lau PC, Tang N, Svensater G, Ellen RP, Cvitkovitch DG. 2002. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J Bacteriol. 184:6333-6342.
    [82]Gao R, Lynn DG. 2005. Environmental pH sensing: resolving the VirA/VirG two-component system inputs for Agrobacterium pathogenesis. J Bacteriol. 187:2182-2189.
    [83]Ullrich M, Penaloza-Vazquez A, Bailey AM, Bender CL. 1995. A modified two-component regulatory system is involved in temperature-dependent biosynthesis of the Pseudomonas syringae phytotoxin coronatine. J Bacteriol. 177:6160-6169.
    [84]Stevens AM, Shoemaker NB, Li LY, Salyers AA.1993. Tetracycline regulation of genes on Bacteroides conjugative transposons. J Bacteriol. 175:6134-6141.
    [85]Fabret C, Hoch JA.1998. A two-component signal transduction system essential for growth of Bacillus subtilis: implications for anti-infective therapy. J Bacteriol.180:6375-6383.
    [86]Sun J, Zheng L, Landwehr C, Yang J, Ji Y. 2005. Identification of a novel essential two-component signal transduction system, YhcSR, in Staphylococcus aureus.J Bacteriol. 187:7876-7880.
    [87]Singh AK, Sherman LA. 2005. Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth.J Bacteriol. 187:2368-2376.
    [88]Wang N, Shaulsky G, Escalante R, Loomis WF. 1996. A two-component histidine kinase gene that functions in Dictyostelium development.EMBO J.15:3890-3898.
    [89]Carrero-Lerida J, Moraleda-Munoz A, Garcia-Hernandez R, Perez J, Munoz-Dorado J.2005. PhoR1-PhoP1, a third two-component system of the family PhoRP from Myxococcus xanthus: role in development.J Bacteriol. 187:4976-4983.
    [90]Alex LA, Borkovich KA, Simon MI. 1996. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase.Proc Natl Acad Sci U S A.93:3416-3421.
    [91]Hrabak EM, Willis DK. 1992. The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bacteriol. 174:3011-3020.
    [92]Rich JJ, Kinscherf TG, Kitten T, Willis DK. 1994. Genetic evidence that the gacA gene encodes the cognate response regulator for the lemA sensor in Pseudomonas syringae. J Bacteriol. 176:7468-7475.
    [93]Heeb S, Haas D. 2001.Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact.14:1351-1363.
    [94]Flego D, Marits R, Eriksson AR, Koiv V, Karlsson MB, Heikinheimo R, Palva ET.2000.A two-component regulatory system, pehR-pehS, controls endopolygalacturonase production and virulence in the plant pathogen Erwinia carotovora subsp. carotovora.Mol Plant Microbe Interact. 13:447-455.
    [95]Frederick RD, Chiu J, Bennetzen JL, Handa AK.1997. Identification of a pathogenicity locus, rpfA, in Erwinia carotovora subsp. carotovora that encodes a two-component sensor-regulator protein.Mol Plant Microbe Interact. 10:407-415.
    
    [96]Eriksson AR, Andersson RA, Pirhonen M, Palva ET.1998. Two-component regulators involved in the global control of virulence in Erwinia carotovora subsp. carotovora.Mol Plant Microbe Interact. 11:743-752.
    
    [97]Hyytiainen H, Sjoblom S, Palomaki T, Tuikkala A, Tapio Palva E. 2003. The PmrA-PmrB two-component system responding to acidic pH and iron controls virulence in the plant pathogen Erwinia carotovora ssp. carotovora. Mol Microbiol.50:795-807.
    
    [98]Rickman L, Saldanha JW, Hunt DM, Hoar DN, Colston MJ, Millar JB, Buxton RS. 2004.A two-component signal transduction system with a PAS domain-containing sensor is required for virulence of Mycobacterium tuberculosis in mice. Biochem Biophys Res Commun. 314:259-267.
    
    [99]Beier D, Gross R. 2006. Regulation of bacterial virulence by two-component systems.Curr Opin Microbiol. 9:143-152.
    
    [100]Calva E, Oropeza R. 2006. Two-component signal transduction systems,environmental signals, and virulence. Microb Ecol. 51:166-176.
    
    [101]Ronson CW, Astwood PM, Nixon BT, Ausubel FM. 1987. Deduced products of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory gene products.Nucleic Acids Res. 15:7921-7934.
    
    [102]Nagaya M, Aiba H, Mizuno T. 1994. The sphR product, a two-component system response regulator protein, regulates phosphate assimilation in Synechococcus sp. strain PCC 7942 by binding to two sites upstream from the phoA promoter.J Bacteriol. 1994 Apr;176(8):2210-5.
    
    [103]Kranz RG, Pace VM, Caldicott IM. 1990. Inactivation, sequence, and lacZ fusion analysis of a regulatory locus required for repression of nitrogen fixation genes in Rhodobacter capsulatus.J Bacteriol. 172:53-62.
    
    [104]Sola-Landa A, Moura RS, Martin JF. 2003. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci U S A. 100:6133-6138.
    
    [105]Swem LR, Elsen S, Bird TH, Swem DL, Koch HG, Myllykallio H, Daldal F, Bauer CE.2001. The RegB/RegA two-component regulatory system controls synthesis of photosynthesis and respiratory electron transfer components in Rhodobacter capsulatus. J Mol Biol. 309:121-138.
    [106]Iuchi S, Lin EC. 1992. Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J Bacteriol. 174:5617-5623.
    [107]Freeman JA, Bassler BL. 1999. A genetic analysis of the function of LuxO, a two-component response regulator involved in quorum sensing in Vibrio harveyi.Mol Microbiol. 31:665-677.
    [108]Freeman JA, Lilley BN, Bassler BL.2000. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi.Mol Microbiol.35:139-149.
    [109]Jahreis K, Morrison TB, Garzon A, Parkinson JS. 2004. Chemotactic signaling by an Escherichia coli CheA mutant that lacks the binding domain for phosphoacceptor partners.J Bacteriol. 186:2664-2672.
    [110]Arthur M, Molinas C, Courvalin P. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J Bacteriol. 174:2582-2591.
    [111]Goldberg JB, Dahnke T.1992. Pseudomonas aeruginosa AlgB, which modulates the expression of alginate, is a member of the NtrC subclass of prokaryotic regulators. Mol Microbiol. 6:59-66.
    [112]Stout V, Gottesman S. 1990. RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bacteriol. 172:659-669.
    [113]Stephens C. 1998. Bacterial sporulation: a question of commitment? Curr Biol.8:R45-R48.
    [114]Hagiwara D, Yamashino T, Mizuno T. 2004. A Genome-wide view of the Escherichia coli BasS-BasR two-component system implicated in iron-responses. Biosci Biotechnol Biochem. 68:1758-1767.
    [115]Groisman EA.2001. The pleiotropic two-component regulatory system PhoP-PhoQ.J Bacteriol. 183:1835-4182.
    [116]Stephenson K, Hoch JA. 2002. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol.2:507-512.
    [117] Barrett JF, Hoch JA. 1998. Two-component signal transduction as a target for microbial anti-infective therapy.Antimicrob Agents Chemother. 42:1529-1536.
    [118]Matsushita M, Janda KD. 2002. Histidine kinases as targets for new antimicrobial agents. Bioorg Med Chem. 10:855-867.
    [119]Roychoudhury S, Zielinski NA, Ninfa AJ, Allen NE, Jungheim LN, Nicas TI, Chakrabarty AM. 1993. Inhibitors of two-component signal transduction systems:inhibition of alginate gene activation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A.90:965-969.
    
    [120]da Silva, A. C, Ferro, J. A., Reinach, F. C, Farah, C. S., Furlan, L. R., Quaggio, R. B.,Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M., do Amaral, A.M., Bertolini, M. C, Camargo, L. E., Camarotte, G, Cannavan, F., Cardozo, J.,Chambergo, F., Ciapina, L. P., Cicarelli, R. M., Coutinho, L. L., Cursino-Santos, J. R.,El-Dorry, H., Faria, J. B., Ferreira, A. J., Ferreira, R. C, Ferro, M. I., Formighieri, E. F.,Franco, M. C, Greggio, C. C, Gruber, A., Katsuyama, A. M., Kishi, L. T., Leite, R. P.,Lemos, E. G, Lemos, M. V, Locali, E. C, Machado, M. A., Madeira, A. M.,Martinez-Rossi, N. M., Martins, E. C, Meidanis, J., Menck, C. F., Miyaki, C. Y, Moon,D. H., Moreira, L. M., Novo, M. T., Okura, V. K., Oliveira, M. C, Oliveira, V. R.,Pereira, H. A., Rossi, A., Sena, J. A., Silva, C, de Souza, R. F., Spinola, L. A., Takita,M. A., Tamura, R. E., Teixeira, E. C, Tezza, R. I., Trindade dos Santos, M., Truffi, D.,Tsai, S. M., White, F. F., Setubal, J. C., and Kitajima, J. P. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
    
    [121]Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Buttner D, Caldana C, Gaigalat L,Goesmann A, Kay S, Kirchner O, Lanz C, Linke B, McHardy AC, Meyer F,Mittenhuber G, Nies DH, Niesbach-Klosgen U, Patschkowski T, Ruckert C, Rupp O,Schneiker S, Schuster SC, Vorholter FJ, Weber E, Puhler A, Bonas U, Bartels D, Kaiser O. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J Bacteriol. 187:7254-7266.
    
    [122]Lee BM, Park YJ, Park DS, Kang HW, Kim JG, Song ES, Park IC, Yoon UH, Hahn JH,Koo BS, Lee GB, Kim H, Park HS, Yoon KO, Kim JH, Jung CH, Koh NH, Seo JS, Go SJ. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res. 33:577-586.
    
    [123]GOchiai H, Inoue Y, Takeya M, Sasaki A, Kaku H. (2005) Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. JARQ. 39:275-287.
    
    [124]Qian W, Jia Y, Ren SX, He YQ, Feng JX, Lu LF, Sun Q, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang L, Jiang BL, Zeng S, Gu WY, Lu G, Rong L, Tian Y, Yao Z, Fu G,Chen B, Fang R, Qiang B, Chen Z, Zhao GP, Tang JL, He C. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15:757-767.
    [125]Slater H, Alvarez-Morales A, Barber CE, Daniels MJ, Dow JM. 2000. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol. 38:986-1003.
    [126]Dow JM, Feng JX, Barber CE, Tang JL, Daniels MJ. 2000. Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris. Microbiology. 146 .885-891.
    [127]Tang JL, Feng JX, Li QQ, Wen HX, Zhou DL, Wilson TJ, Dow JM, Ma QS,Daniels MJ.1996. Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv.oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact.9:664-666.
    [128]Tang JL, Liu YN, Barber CE, Dow JM, Wootton JC, Daniels MJ. 1991. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet. 226:409-417.
    [129]Tang JL, Gough CL, Daniels MJ.1990. Cloning of genes involved in negative regulation of production of extracellular enzymes and polysaccharide of Xanthomonas campestris pathovar campestris. Mol Gen Genet. 222:157-160.
    [130]Dow JM, Crossman L, Findlay K, He YQ, Feng JX, Tang JL. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A. 100:10995-11000.
    [131]He YW, Wang C, Zhou L, Song H, Dow JM, Zhang LH. 2006. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction.J Biol Chem. 281:33414-33421.
    [132]Wengelnik K, Van den Ackerveken G, Bonas U.1996. HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact.9:704-712.
    [133]Yanisch-Perron, C, J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors.Gene 33:103-119.
    [134]Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJ, Fielding AH. 1984.Cloning of genes involved in pathogenicity of Xanthomonas campestris pv.campestris using the broad host range cosmid pLAFR1.EMBO J. 3:3323-3328.
    [135]Staskawicz B, Dahlbeck D, Keen N, Napoli C.1987. Molecular characterization of cloned avirulence genes from race 0 and race 1 of Pseudomonas syringae pv. glycinea.J Bacteriol. 169:5789-5794.
    [136]Leong, S. A., Ditta, G. S., and Helinski, D. R. 1982. Heme biosynthesis in Rhizobium.Identification of a cloned gene coding for delta-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem 257: 8724-8730.
    [137]Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G, and Puhler, A. 1994.Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73.
    [138]Daniels, M. J, Barber, C. E., Turner, P. C, Cleary, W. G, and Sawczyc, M. K. 1984a.Isolation of mutants of Xanthomonas campestris pathovar campestris showing altered pathogenicity. J Gen Microbiol 130: 2447-2455.
    [139]Wengelnik, K., Marie, C, Russel, M., and Bonas, U. 1996. Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction. J. Bacteriol. 178:1061-1069.
    [140]Sambrook, J., Fritsch, E. F., and Maniatis, T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
    [141]Vojnov AA, Zorreguieta A, Dow JM, Daniels MJ, Dankert MA. 1998. Evidence for a role for the gumB and gumC gene products in the formation of xanthan from its pentasaccharide repeating unit by Xanthomonas campestris. Microbiology.144:1487-1493.
    [142]Walsh PM, Haas MJ, Somkuti GA. 1984. Genetic Construction of Lactose-Utilizing Xanthomonas campestris.Appl Environ Microbiol. 47: 253-257.
    [l43]Bonas U.,Schulte R.,Fenselan S.et al.1991. Isolation of a gene cluster from Xanthomonas campestris pv.vesicatoria that determines pathogenicity and the hypersensitive response on pepper and tomato. Mol.Plant-Microbe Interact.4:81-89.
    [144]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.J Mol Biol. 215:403-410.
    [145]Pearson,WR. Lipman,DJ. 1988.Improved tools for biological sequence comparison. Proc.Natl.Acad.Sci.USA 85:2444-2448.
    [146]Altschul, S. R, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
    [147]Ponting CP, Schultz J, Milpetz F, Bork P. 1999. SMART: identification and annotation of domains from signalling and extracellular protein sequences. Nucleic Acids Res. 27:229-232.
    [ 148]Letunic I, Copley RR, Pils B, Pinkert S, Schultz J, Bork P.2006. SMART 5: domains in the context of genomes and networks. Nucleic Acids Res. 34:D257- D 260.
    [149]Thompson JD, Higgins DG, Gibson TJ. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice.Nucleic Acids Res.22:4673-4680.
    [150]Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ. 1998. Multiple sequence alignment with Clustal X. Trends Biochem Sci. 23:403-405.
    [151]Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. 2003. ExPASy:The proteomics server for in-depth protein knowledge and analysis.Nucleic Acids Res.31:3784-3788.
    [152]Windgassen, M., Urban, A., and Jaeger, K-E. (2000) . Rapid gene inactivation in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 193:201-205.
    [153]Hirano SS, Upper CD. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev.64:624-653.
    [154]Bjorklof K, Nurmiaho-Lassila EL, Klinger N, Haahtela K, Romantschuk M. 2000.Colonization strategies and conjugal gene transfer of inoculated Pseudomonas syringae on the leaf surface. JAppl Microbiol. 89:423-432.
    [155]Deziel E, Comeau Y, Villemur R. 2001. Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities.J Bacteriol. 183:1195-1204.
    [156]Dasgupta N, Arora SK, Ramphal R. 2000. fleN, a gene that regulates flagellar number in Pseudomonas aeruginosa.J Bacteriol. 182:357-364.
    [157]Crossman L, Dow JM. 2004. Biofilm formation and dispersal in Xanthomonas campestris.Microbes Infect. 6:623-629.
    [158]Vaara, M. (1992). Agents that increase the permeability of the outer membrane.Microbiol. Rev. 56:395-411
    [159]Nikaido, H. 2003. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. Microbiol. Mol. Biol. Rev. 67: 593-656.
    [160]Roane TM, Pepper IL. 1999. Microbial Responses to Environmentally Toxic Cadmium.Microb Ecol. 38:358-364.
    [161]Isken S, de Bont JA. 1998. Bacteria tolerant to organic solvents. Extremophiles.2:229-238.
    [162]Volker U, Maul B, Hecker M. 1999. Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis.i Bacteriol.181:3942-3948.
    [163]Arlat M, Gough CL, Barber CE, Boucher C, Daniels MJ. 1991. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol Plant Microbe Interact. 4:593-601.
    [164]Fenselau S, Balbo I, Bonas U. 1992. Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals.Mol Plant Microbe Interact. 5:390-396.
    [165]Weber E, Berger C, Bonas U, Koebnik R. 2007. Refinement of the Xanthomonas campestris pv. vesicatoria hrpD and hrpE operon structure.Mol Plant Microbe Interact.20:559-567.
    [166]Barrett JF, Goldschmidt RM, Lawrence LE, Foleno B, Chen R, Demers JP, Johnson S,Kanojia R, Fernandez J, Bernstein J, Licata L, Donetz A, Huang S, Hlasta DJ, Macielag MJ, Ohemeng K, Frechette R, Frosco MB, Klaubert DH, Whiteley JM, Wang L, Hoch JA. 1998. Antibacterial agents that inhibit two-component signal transduction systems.Proc Natl Acad Sci U S A.95:5317-5322.
    [167]Wang L, Grau R, Perego M, Hoch JA. 1997. A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev. 11:2569-2579.
    [168]Qin Z, Zhang J, Xu B, Chen L, Wu Y, Yang X, Shen X, Molin S, Danchin A, Jiang H,Qu D. 2006. Structure-based discovery of inhibitors of the YycG histidine kinase: new chemical leads to combat Staphylococcus epidermidis infections.BMC Microbiol. 6:96.
    [169]Di Guilmi AM, Dessen A. 2002. New approaches towards the identification of antibiotic and vaccine targets in Streptococcus pneumoniae. EMBO Rep. 3:728-734.
    [170]Throup JP, Koretke KK, Bryant AP, Ingraham KA, Chalker AF, Ge Y, Marra A, Wallis NG, Brown JR, Holmes DJ, Rosenberg M, Burnham MK. 2000. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol.35:566-576.
    [171]Montesinos E, Bonaterra A, Badosa E, Frances J, Alemany J, Llorente I, Moragrega C.2002. Plant-microbe interactions and the new biotechnological methods of plant disease control.Int Microbiol.5:169-175.
    [172]Poplawsky AR,Chun W.1998.Xanthomonas campestris pv.campestris requires a functional pigB for epiphytic survival and host infection.Mol Plant Microbe Interact.11:466-475.
    [173]Beattie,G.A.and S.E.Lindow.1999.Bacterial colonization of leaves:a spectrum of strategies.Phytopathology.89:353-359.
    [174]Xiao-Hui CAI,Qing ZHANG,Shuo-Yong SHI,Da-Fu DING.2005.Searching for Potential Drug Targets in Two-component and Phosphorelay Signal-transduction Systems using Three-dimensional Cluster Analysis.Acta Biochimica et Biophysica Sinica.37:293-302.
    [175]秦智强,钟扬,张健,何有裕,吴旸,江娟,陈洁敏,罗小民,瞿涤.2004.表皮葡萄球菌双组分调控系统的生物信息学分析.科学通报.49:948-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700