稻瘟病菌mnh6和mtp1基因的克隆和功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻瘟病是一种严重危害水稻的毁灭性病害,其病原菌为子囊菌Magnaporthe grisea。稻瘟病菌也是一种研究病原真菌-寄主植物相互作用的模式生物。研究稻瘟病菌致病的分子机理不仅对于了解病原真菌-寄主的互作机理,而且对于开发新的杀菌剂具有重要的促进作用。稻瘟病菌致病相关基因的克隆和功能分析是研究稻瘟病菌致病机制的一种快速且有效的途径。非组蛋白基因6(mnh6)和Ⅲ型膜整合蛋白(mtp1)是稻瘟病菌的两个功能未知的基因。目前为止,还没有在稻瘟病菌或其他丝状真菌中研究过mnh6和mtp1基因或其同源基因的功能。本文克隆了mnh6和mtp1基因,通过DNA同源置换分别敲除了这2个基因,并分析了基因缺失引起的稻瘟病菌表型和致病性变化,确定了这2个基因在稻瘟病菌生长、发育和致病过程中的部分功能。
     主要研究结果如下:
     1.利用长距离PCR从稻瘟病菌附着胞cDNA文库中克隆了mnh6和mtp1基因的cDNA序列,并从基因组DNA中克隆了mnh6和mtp1基因的全长DNA序列。
     2.使用多种分析软件,分析和预测了MNH6和MTP1蛋白的结构和功能。MNH6为非组蛋白(DNA结合蛋白),属于HMGB蛋白家属。MTP1为一种Ⅲ型膜整合蛋白,具有8个跨膜区,可能结合在细胞膜上。
     3.通过构建基因敲除载体和原生质体转化,分别获得了mnh6缺失或mtp1缺失的基因缺失突变子,并从DNA水平和RNA水平进行了验证。
     4.突变子△mnh6的菌落形态不同于野生型GUYl1,菌落呈灰白色,菌丝稀疏,生长速度变慢,产孢菌丝细胞壁的溶剂疏水性消失,菌丝细胞壁容易被细胞壁降解酶降解,产孢减少,孢子形态变得细长,孢子的附着胞形成率降低,附着胞的膨压降低,附着胞对寄主植物表面的穿透能力减弱,侵入后生长速度减慢,喷雾接种后对大麦和水稻C039的致病性消失。mnh6基因重新引入△mnh6后,突变子的表型恢复。
     5.MNH6-GFP融合蛋白主要在细胞核内表达,说明MNH6蛋白的作用位点主要在细胞核内。MNH6在稻瘟病菌致病循环过程中的各个发育时期具有重要作用,如菌丝生长,产孢,附着胞形成,穿透,侵入生长等时期,表明MNH6是稻瘟病菌致病性和完成侵染循环所必需的。
     6.突变子△mtp1的菌落形态类似于野生型Guyl1,但菌丝颜色较黑,产孢减少,孢子萌发延迟,附着胞形成延迟,离体接种发现突变子对大麦和水稻C039的致病性与野生型一致。突变子△mtp1在各种培养基上的生长速度与野生型没有差异,两者附着胞膨压也没有区别。
     7.mtp1启动子指导的GFP蛋白主要在稻瘟病菌的菌丝和孢子中表达,附着胞中表达量较少。mtp1基因对于稻瘟病菌的生长没有明显的作用,但对于稻瘟病菌的产孢、孢子萌发具有重要的作用。它对于稻瘟病菌的致病性是非必需的。
Rice blast is a severe disease to harm rice and the rice blast fungus is a well-known ascomycete Magnaporthe grisea. This fungal pathogen has been used as a primary model for elucidating various aspects of the pathogen-host interaction with its host. And the results to research the molecular basis of this disease not only help us to understand the pathogen-host plant interaction, but also promote to exploit new bactericide. Identification of pathogenicity-relative genes is a quick and effective step to study the molecular basis of this disease. A nonhistone 6 (MNH6) and a type-III integral membrane protein (MTP1) are two unknown proteins in functions of rice blast fungus. Until now genes, mnh6 and mtp1, or their homologous proteins were studied in rice blast fungus or other filamentous fungi. In this paper, mnh6 and mtp1 genes in M. grisea were cloned and their roles in growth, development and pathogenicity were partly analyzed and identified by targeted gene replacement.
     The results are showed as following:
     1. cDNA fragments of mnh6 and mtp1 genes were cloned from M. grisea appressorium cDNA library and full length DNA fragments of these genes were cloned from genomic DNA by LD-PCR.
     2. The structures and functions of MNH6 and MTP1 were analyzed and predicted by using several biological soft wares. MNH6 is a nonhistone (DNA combining protein), belonging to HMGB protein family. MTP1 is a type-III integral membrane protein, having eight transmembrane domains.
     3. Knockout mutants of mnh6 or mtp1 were obtained separately by gene replacement vector construction and fungal transformation. And knockout mutants were identified in DNA and RNA level using PCR, Southern Blot, RT-PCR, and real-time RT-PCR.
     4. Null mutantΔmnh6 produced appeared offwhite hyphae, showed reduction in growth, conidiation and appressorium formation, and also showed reduction in appressorium turgor pressure. And the hyphae were more readily wettable by a solution containing SDS and EDTA and more easily digested by fungal cell-wall-digesting enzymes. The appressoria produced byΔmnh6 mutants showed diminished host penetration and the infectious hyphae ofΔmnh6 mutants showed reduced in planta growth. Targeted deletion of mnh6 resulted in the greatly reduced virulence capacity to barley and rice CO39 in infection assays.
     5. MNH6-GFP fusion protein was observed mainly in nucleolus. And this implied MNH6 protein mainly functions in nucleolus. mnh6 plays significant roles in the all-different development events of the fungus globally during its disease cycle such as vegetative growth, conidiation, appressorium formation, penetration, infectious growth and conidiation in diseased tissues in M. grisea. The pleiotropic effects on fungal morphogenesis exhibited byΔmnh6 mutant suggested that mnh6 is required for effective pathogenicity and completing the disease cycle of rice blast fungus.
     6. Null mutantΔmtp1 showed reduction in conidiation, delayed in germination and appressorium formation, and its hyphae showed blacker than wild type strain. But mutants showed no differences in growth, appressorium turgor, and virulence capacity to barley and rice CO39.
     7. GFP controlled by mtp1 promotor was expressed mainly in hyphae and spores, less expressed in appressoria. mtp1 has no visible effects on the growth of rive blast fungus. However, it has significant effects on conidiation, conidium germination of the fungus. And, mtp1 is dispensable for pathogenicity of M. grisea.
引文
Adachi K, JE Hamer, 1998. Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell, 10: 1361-1373.
    Agresti A, Bianchi ME, 2003. HMGB proteins and gene expression. Curr Opin Genet Dev, 13: 170-178.
    Agresti A, Scaffidi P, Riva A, Caiolfa VR, Bianchi ME., 2005. GR and HMGB1 interact only within chromatin and influence each other's residence time. Mol Cell 2005, 18: 109-121.
    Ahn I-P, SKim, W-B Choi, Y-H Lee, 2003. Calcium restores prepenetration morphogenesis abolished bypolyamines in Colletotrichum gloeosporioides infecting red pepper. FEMS Microbiology Letters, 227: 237-241.
    Ahn N, SKim, W Choi, KH Im, YH. Lee, 2004. Extracellular matrix protein gene, EMP1, is required for appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe grisea. Mol Cells, 17(1): 166-73.
    Alspaugh JA, JR Perfect, J Heitman, 1998. Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans. Fungal Genet Biol, 25: 1-14.
    Altschul SF, TL Madden, AA Schaffer, et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res, 25: 3389-3402.
    Andreeva L., R Heads, and CJ Green, 1999. Cyclophilins and their possible role in the stress response. Int. J. Exp. Pathol., 80: 305-315.
    Andrew J F, J M. Jenkinson and N J Talbot. 2003. Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. The EMBO Journal, 22(2): 225-235.
    Arevalo-Rodriguez M, ME Cardenas, X Wu, SD Hanes, and J Heitman, 2000. Cyclophilin A and Essl interact with and regulate silencing by the Sin3-Rpd3 histone deacetylase. EMBO J., 19: 3739-3749.
    Asiegbu FO, WB Choi, JS Jeong, RA Dean, 2004. Cloning, sequencing and functional analysis of Magnaporthe grisea MVP1 gene, a hex-1 homolog encoding a putative 'woronin body' protein. FEMS microbiology letters, 230: 85-90.
    Assmann, S. M., 2005. G protein regulation of disease resistance during infection of rice with rice blast fungus. Sci STKE 2005: cm13.
    Baker B, P Zambryski, B Staskawicz, SP Dinesh-Kumar, 1997. Signaling in Plant-Microbe Interactions. Science, 276: 726-733.
    Balhadere PV, AJ Foster, and NJ Talbot, 1999. Identification of pathogenicity mutants of the rice blast fungus Magnaporthe grisea by insertional mutagenesis. Mol. Plant-Microbe Interact., 12: 129-142.
    Balhadere PV, and NJ Talbot, 2002. A Magnaporthe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection. The Plant Cell, 14: 917-930.
    Balhadere PV, and NJ Talbot. 2001. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 13: 1-19.
    Banno S, Kimura M, Tokai T, et al., 2003. Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett., 222: 221-227.
    Basarab JJ S, T Lundqvist, BR Pfrogner, RS Schwartz, Z Wawrzak, 1999. Catalytic mechanism of scytalone dehydratase from Magnaporthe grisea. Pest Sci 55: 277-280.
    Baxevanis, A. D., Landsman, D., 1995. The HMG-1 box protein family: classification and functional relationships. Nucleic Acids Res. 23, 1604-1613.
    Beckerman JL, DJ Ebbole, 1996. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Mol Plant Microbe Interact, 9: 450-456.
    Belotserkovskaya R, Reinberg D: Facts about FACT and transcript elongation through chromatin. Curr Opin Genet Dev, 14: 139-146.
    Biswas, D., Imbalzano, A. N., Eriksson, P., Yu, Y., and Stillman, D. J., 2004. Role for Nhp6, Gcn5, and the Swi/Snf complex in stimulating formation of the TATA-binding protein-TFIIA-DNA complex. Mol Cell Biol 24: 8312-8321.
    Biswas, D., Yu, Y., Mitra, D., and Stillman, D. J., 2006. Genetic interactions between Nhp6 and Gcn5 with Mot1 and the Ccr4-Not complex that regulate binding of TATA-binding protein in Saccharomyces cerevisiae. Genetics 172: 837-849.
    Biswas, D., Yu, Y., Prall, M., Formosa, T., and Stillman, D. J., 2005. The yeast FACT complex has a role in transcriptional initiation. Mol Cell Biol 25: 5812-5822.
    Bolker M, 1998. Sex and crime: heterotrimeric G proteins in fungal mating and pathogenesis. Fungal Genet Biol, 25: 143-156.
    Bonaldi T, Langst G, Strohner R, Becker PB, Bianchi ME., 2002. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J, 21: 6865-6873.
    Bonman J. M., Vergel D. D. T., Khin M. M., 1986. Physiological specialization of Pyricularia oryzae in the Philippines. Plant Disease 70, 767-769.
    Bourett TM, RJ Howard, 1990. In vitro development of penetration structures in the rice blast fungus Magnaporthe grisea. Can J. Bot, 68: 329-342.
    Brewster, N. K., Johnston, G. C., and Singer, R. A., 2001. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 21: 3491-3502.
    Buhr TL, S Oved, GM Truesdell, C Huang, O Yarden and MB Dickman, 1996. A kinase-encoding gene from Colletotrichum trifolii complements a colonial growth mutant of Neurospora crassa Mol Gen Genet, 251: 565-572.
    Carroll, A. M., Sweigard, J. A., Valent, B., 1994. Improved vectors for selecting resistance to hygromycin. Fungal Genet. Newslett. 41, 22.
    Chadha, S., and Gopalakrishna, T., 2005. Retrotransposon-microsatellite amplified polymorphism (REMAP) markers for genetic diversity assessment of the rice blast pathogen (Magnaporthe grisea). Genome 48: 943-945.
    Chadha, S., and Gopalakrishna, T., 2006. Detection of Magnaporthe grisea in infested rice seeds using polymerase chain reaction. J Appl Microbiol 100: 1147-1153.
    Chen YC, OP Peoples, and CT Walsh, 1988. Acinetobacter cyclohexanone monooxygenase: gene cloning and sequence determination, J Bacteriol, 170: 781-789.
    Choi WB, RA Dean, 1997. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant cell, 9: 1973-1983.
    Chumley FG. and B Valent, 1990. Genetic analysis of melanin deficient, nonpathogenic mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact., 3: 135-143.
    Clergeot PH, M Gourgues, J Cots, F Laurans, MP Latorse, R Pepin, D Tharreau, JL Notteghem, MH Lebrun, 2001. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA, 98: 6963-6968.
    Consolo, V. E, Cordo, C. A., and Salerno, G. L., 2005. Mating-type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia 160: 285-290.
    Consolo, V. E, Cordo, C. A., and Salerno, G. L., 2005. Mating-type distribution and fertility status in Magnaporthe grisea populations from Argentina. Mycopathologia 160: 285-290.
    Costigan, C., Kolodrubetz, D., and Snyder, M., 1994. NHP6A and NHP6B, which encode HMGl-like proteins, are candidates for downstream components of the yeast SLT2 mitogen-activated protein kinase pathway. Mol Cell Biol 14: 2391-2403.
    Couch, B. C., Fudal, I., Lebrun, M. H., Tharreau, D., Valent, B., van Kim, P., Notteghem, J. L., and Kohn, L. M. 2005. Origins of host-specific populations of the blast pathogen Magnaporthe oryzae in crop domestication with subsequent expansion of pandemic clones on rice and weeds of rice. Genetics 170: 613-630.
    Czymmek, K. J., Bourett, T. M., Shao, Y., DeZwaan, T. M., Sweigard, J. A., and Howard, R. J., 2005. Live-cell imaging of tubulin in the filamentous fungus Magnaporthe grisea treated with anti-microtubule and anti-microfilament agents. Protoplasma 225: 23-32.
    Dalrymple, B. P., Peters, J. M., 1992. Characterization of a cDNA clone from the haemoparasite Babesia bovis encoding a protein containing an "HMG-Box". Biochem. Biophys. Res. Commun. 184, 31-35.
    Das D, Scovell WM 2001, The binding interaction of HMG-1 with the TATA-binding protein/TATA complex. J Biol Chem. 276: 32597-32605.
    Dasgupta A, Scovell WM 2003. TFIIA abrogates the effects of inhibition by HMGB1 but not E1A during the early stages of assembly of the transcriptional preinitiation complex. Biochim Biophys Acta. 1627: 101-110.
    Dasgupta, A., Ramsey, K. L., Smith, J. S., and Auble, D. T., 2004. Sir Antagonist 1 (Sanl) is a ubiquitin ligase. J Biol Chem 279: 26830-26838.
    de Jong JC, BJ McCormack, N Smirnoff, and NJ Talbot, 1997. Glycerol generates turgor in rice blast. Nature 389: 244-245.
    Dean RA, 1997. Signal pathways and appressorium morphogenesis. Annu Rev Phytopathol, 35: 211-234.
    Dean, R. A., Talbot, N. J., Ebbole, D. J., et al. 2005. The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434: 980-986.
    Deising H. B., StefanWemer, Marcus Wernitz, 2000. The role of fungal appressoria in plant infection Microbes and Infection, 2: 1631-1641.
    Dejong JC, BJ McCormack, N Smirnoff, NJ Talbot, 1997. Glycerol generates turgor in rice blast. Nature, 389: 244-245.
    DeZwaan TM, AM Carroll, B Valent, JA Sweigard, 1999. Magnaporthe grisea pthllp is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell, 11: 2013-2030.
    Diatchenko L, A Chenchik, and P Siebert, 1998. Suppression subtractive hybridization: A method for generating subtracted cDNA libraries starting from poly (A+) or total RNA. In RT-PCR Methods for Gene Cloning and Analysis. Eds. Siebert, P. & Larrick, J. (Bio Techniques Books, MA), pp. 213-239.
    Diatchenko L, Y-F C Lau, A P Campbell, et al., 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes andlibraries. Proc. Natl. Acad. Sci. USA, 93: 6025-6030.
    Dickman MB, O Yarden, 1999. Serine/threonine protein kinases and phosphatases in filamentious fungi. Fungal Genet Biol, 26: 99-117.
    Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A., Dangl, J. L., 1994. Arabidopsis mutants simulating disease resistance response. Cell 77, 565-577.
    Dilger M, FG Felsenstein, G Schwarz, 2003. Identification and quantitative expression analysis of genes that are differentially expressed during conidial germination in Pyrenophora teres. Mol Genet Genomics, 270: 147-55.
    Dixon KP, J-R Xu, N Smirnoff, and NJ Talbot, 1999. Independent signalling pathways regulate cellular turgor during hyperosmotic stress and appressoriurn-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell, 11: 2045-2058.
    Donofrio, N. M., Oh, Y., Lundy, R., et al., 2006. Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol.
    Ebbole DL, J Yuan, D Li, TL Thomas and RA Dean, 2002. Gene discovery in the rice blast fungus, Magnaporthe grisea: Analysis of ESTs. P. 81 in the Abstracts for Plant, Animal & Microbe Genomes X, 12-16 January 2002, San Diego, CA.
    Ekwamu A, 1991. Influence of head blastinfection on seed germination and yieldcomponents of finger millet (Eleusinecoracana L. Gaertn) Trop. Pest Manag., 37: 122-23.
    Eriksson, P., Biswas, D., Yu, Y., Stewart, J. M., and Stillman, D. J. 2004. TATA-binding protein mutants that are lethal in the absence of the Nhp6 high-mobility-group protein. Mol Cell Biol 24: 6419-6429.
    Fang EGC, RA Dean, 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant-Microbe Interact, 13: 1214-1227.
    Formosa, T., Eriksson, P., Wittmeyer, J., Ginn, J., Yu, Y., and Stillman, D. J., 2001. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. Embo J 20: 3506-3517.
    Formosa, T., Ruone, S., Adams, M. D., Olsen, A. E., Eriksson, P., Yu, Y., Rhoades, A. R., Kaufrnan, P. D., and Stillman, D. J., 2002. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162: 1557-1571.
    Fragiadakis, G. S., Tzamarias, D., and Alexandraki, D., 2004. Nhp6 facilitates Aft1 binding and Ssn6 recruitment, both essential for FRE2 transcriptional activation. Embo J 23: 333-342.
    Froeliger E H, Carpenter a B E, 1996, NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet, 251: 647-656.
    Fudal, I., Bohnert, H. U., Tharreau, D., and Lebrun, M. H., 2005. Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol 42: 761-772.
    Fujimoto D, Y Shi, D Christian, JB Mantanguihan, H Leung, 2002. Tagging quantitative loci controlling pathogenicity in Magnaporthe grisea by insertional mutagenesis. Physiological and Molecular Plant Pathology, 61(2): 77-88.
    Gilbert RD, AM Johnson, and RA Dean, 1996. Chemical signals responsible for appressorium formation in the rice blast fungus. Physiol. Mol. Plant Pathol., 48: 335-346.
    Gilbert, M. J., Thornton, C. R., Wakley, G. E., and Talbot, N. J., 2006. A P-type ATPase required for rice blast disease and induction of host resistance. Nature 440: 535-539.
    Goodwin GH, Sanders C, Johns EW., 1973. A new group of chromatinassociated proteins with a high content of acidic and basic amino acids. Eur J Biochem, 38: 14-19.
    Gothel SF, and MA Marahiel, 1999. Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell. Mol. Life Sci., 55: 423-436.
    Gurskaya N G, L Diatchenko, A Chenchik, et al., 1996. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: Cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal. Biochem., 240: 90-97.
    Gustin MC, J Albertyn, M Alexander, K Davenport, 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 62: 1264-1300.
    Hall TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser., 41: 95-98.
    Hamer JE and NJ Talbot, 1998. Infection-related development in the rice blast fungus Magnaporthe grisea. Curr Opin Microbiol, 1: 693-697.
    Hamer JE, B Valent, FG Chumley, 1989. Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics, 122: 351-361.
    Hamer JE, RJ Howard, FG Chumley, B Valent., 1988 A mechanism for surface attachment in spores of a plant pathogenic fungus. Science, 15: 288-290.
    Hamer JE, S Givan, 1990. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Mol Gen Genet, 223: 487-495.
    Heath MC, RJ Howard, B Valent, FG Chumley, 1992. Ultrastructural interactions of one strain of Magnaporthe grisea with goosegrass and weeping lovegrass. Can J Bot 70: 779-787.
    Hegde Y. and PE Kolattukudy, 1997. Cuticular waxes relieve self-inhibition of germinationand appressorium formation by the conidia of Magnaporthe grisea. Physiological and Molecular Plant Pathology, 51: 75-84.
    Hemmati, R., Javan-Nikkhah, M., Okovvat, S. M., and Ghazanfari, K. 2005. Study on genetic diversity of Magnaporthe grisea using PCR and determination of the mating type alleles distribution in Mazandaran province, Iran. Commun Agric Appl Biol Sci 70: 311-313.
    Henson JM, MJ Butler, AW Day, 1999. The dark side of the mycelium: melanins of phytopathogenic fungi (review). Annu Rev Phytopathol, 37: 447-471.
    Howard RJ, MA Ferrari, DH Roach, and NP Money, 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Nail Acad Sci. USA, 88: 11281-11284.
    Howard, RJ, and Valent, B, 1996. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu. Rev. Microbiol., 50: 491-512.
    Idnurm A and BJ Howlett, 2001. Pathogenicity genes of phytopathogenic fungi. Mol Plant Pathol, 2: 241-255.
    Idnurm A. and BJ Howlett, 2002. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell, 1: 719-724.
    Igarashi S, CM Utiamada, LC Igarashi, AH Kazuma, RS Lopes, 1986. Pyriculariain wheat. 1. Occurrence ofPyricularia sp. in Paran state. Fitopatol. Bras., 11: 351-52.
    Inoue H, H Nojima, and H Okayama, 1990. High efficiency transformation of Escherichia coli with plasmids. Gene, 96: 23-28.
    Irie T, H Matsumura, R Terauchi, H Saitoh, 2003. Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Genet Genomics, 270: 181-189.
    Jantasuriyarat, C., Gowda, M., Hailer, K., et al., 2005. Large-scale identification of expressed sequence tags involved in rice and rice blast fungus interaction. Plant Physiol 138: 105-115.
    Jelitto TC, HA Page, ND Read, 1994. Role of external signals in regulating the pre-penetration phase of infection by the rice blast fungus, Magnaporthe grisea. Planta, 194: 471-477.
    Kamakura T, JZ Xiao, WB Choi, T Kochi, S Yamaguchi, T Teraoka, and I yamaguchi, 1999. cDNA subtractive cloning of genes expressed during early stage of appressorium formation by Magnaporthe grisea. Biosci Biotechnol Biochem, 63: 1407-1413.
    Kaminskyi R, C Basse, M Feldbriigge, 1999. Fungal-plant signaling in the Ustilago maydis-maize pathosystem. Curr Opin Microbiol, 2: 647-650.
    Kang SH, CH Khang, YH Lee, 1999. Regulation of cAMP-dependent protein kinase during appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett, 170: 419-423.
    Kassavetis, G. A., and Steiner, D. E, 2006. Nhp6 is a transcriptional initiation fidelity factor for RNA polymerase Ⅲ transcription in vitro and in vivo. J Biol Chem 281: 7445-7451.
    Kershaw, M. J., Thornton, C. R., Wakley, G. E., and Talbot, N. J., 2005. Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Mol Microbiol 56: 117-125.
    Khang, C. H., Park, S. Y., Lee, Y. H., and Kang, S., 2005. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum. Fungal Genet Biol 42: 483-492.
    Kim S, IP Alan and YH Lee, 2001. Analysis of genes expressed during rice -Magnaporthe grisea interactions. Mol. Plant-Microbe Interact., 14: 1340-346.
    Kim YK, D Li, PE Kolattukudy, 1998. Induction of Ca~(2+)-calmodulin signaling by hard-surface contact primes Colletotrichumgloeosporioides conidia to germinate and formappressoria, J. Bacteriol., 180: 5144-5150.
    Kim YK, Y Wang, ZM Liu and PE Kolattukudy, 2002. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioids conidia as a sterol glycosyl transferase, a novel fungal virulence factor. Plant J, 30: 177-187.
    Kim, M., Alan, S. H., Krogan, N. J., Greenblatt, J. E, Buratowski, S., 2004. Transitions in RNA polymerase Ⅱ elongation complexes at the 3' ends of genes. EMBO J. 23, 354-364.
    Kim, S., Alan, I. P., Rho, H. S., and Lee, Y. H., 2005. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Mol Microbiol 57: 1224-1237.
    Kimura A, Y Takano, I Furusawa, and T Okuno, 2001. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Plant Cell, 13: 1945-1958.
    Koga H, Nakayachi O, 2004, Moroholooical studies on attachment of spores of Magnaporthe grisea to the leaf surface of rice. J Gen Plant Pathol: 70: 11-15.
    Kolodrubetz, D., and Burgum, A., 1990. Duplicated NHP6 genes of Saccharomyces cerevisiae encode proteins homologous to bovine high mobility group protein 1. J Biol Chem 265: 3234-3239.
    Kolodrubetz, D., Haggren, W., and Burgum, A., 1988. Amino-terminal sequence of a Saccharomyces cerevisiae nuclear protein, NHP6, shows significant identity to bovine HMG1. FEBS Lett 238: 175-179.
    Kolodrubetz, D., Kruppa, M., and Burgum, A., 2001. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 272: 93-101.
    Komduur JA, M Veenhuis, JA Kiel, 2003. The Hansenula polymorpha PDD7 gene is essential for macropexophagy and microautophagy. FEMS Yeast Res, 3: 27-34.
    Kronstad J, A de Maria, D Funnell, RD Laidlaw, N Lee, M Moniz de Sa, M Ramesh, 1998. Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol, 170: 395-404.
    Kruppa, M., and Kolodrubetz, D., 2001. Mutations in the yeast Nhp6 protein can differentially affect its in vivo functions. Biochem Biophys Res Commun 280: 1292-1299.
    Kruppa, M., Moir, R. D., Kolodrubetz, D., and Willis, I. M., 2001. Nhp6, an HMG1 protein, functions in SNR6 transcription by RNA polymerase Ⅲ in S. cerevisiae. Mol Cell 7: 309-318.
    Kulkarni, R. D., Thon, M. R., Pan, H., and Dean, R. A., 2005. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol 6: R24.
    Laser H, Bongards C, Schuller J, Heck S, Johnsson N, Lehming N., 2000. A new screen for protein interactions reveals that the Saccharomyces cerevisiae high mobility group proteins Nhp6A/B are involved in the regulation of the GAL1 promoter. Proc Natl Acad Sci USA, 97: 13732-13737.
    Lau GW, and JE Hamer, 1996. Regulatory genes controlling MPG1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell, 8: 771-781.
    Lee N, A. D'Souza Cletus and WK James, 2003. Of smuts, blasts, mildews, and blights: cAMP Signaling in Phytopathogenic Fungi Annu Rev Phytopathol, 41: 399-427.
    Lee SC, and YH Lee, 1998. Calciurn/calmodulin-dependent signalling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea. Mol. Cell, 8: 698-704.
    Lee YH, and RA Dean, 1993. cAMP regulates infection structure formation in the plant pathogenic fungus Magnaporthe grisea. Plant Cell, 5: 693-700.
    Lee YH, RA Dean, 1994. Hydrophobicity of contact surface induces appressorium formation in Magnaporthe grisea. FEMS Microbiol Lett, 115: 71-75.
    Lengeler KB, RC Davidson, C D Souza, T Harashima, WC Shen, P Wang, X Pan, M Waugh, J Heitman, 2000. Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev, 64: 746-785.
    Lev S, A Sharon, R Hadar, H Ma, and BA Horwitz, 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: Diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. USA, 96: 13542-13547.
    Liu S, RA Dean, 1997. G protein a-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. Mol. Plant-Microbe Interact., 10: 1075-1086.
    Liu Z-M and P E Kolattukudy, 1999. Early expression of the calmodulin gene, which precedes appressorium formation in Magnaporthe grisea, is inhibited by self-inhibitors and requires surface attachment. Journal of Bacteriology, 181(10): 3571-3577.
    Liu, X. H., Lu, J. P., Wang, J. Y., Min, H., and Lin, F. C., 2006. Promoter trapping in Magnaporthe grisea. J Zhejiang Univ Sci B 7: 28-33.
    Livak, K. J., Schmittgen, T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(△△CT) method. Methods 25, 402-408.
    Lopez S, Livingstone-Zatchej M, Jourdain S, Thoma F, Sentenac A, Marsolier M-C., 2001. High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase Ⅲ SNR6 gene. Mol Cell Biol, 21: 3096-3104.
    Lorenz M C and G R Fink, 2002. Life and Death in a Macrophage: Role of the Glyoxylate Cycle in Virulence. Eukaryotic Cell, 1(5): 657-662.
    Lu KP, SD Hanes, and T Hunter, 1996. A human peptidylprolyl isomerase essential for regulation of mitosis. Nature, 380: 544-547.
    Lu, J. P., Liu, T. B., Lin, F. C., 2005. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridization. FEMS Microbiol. Lett. 245, 131-137.
    Lu, J. P., Liu, T. B., Yu, X. Y., Lin, F. C., 2005. Representative appressorium stage cDNA library of Magnaporthe grisea. J. Zhejiang Univ. Sci. B 6, 132-136.
    Madhani HD, GR Fink, 1998. The control of filamentous differentiation and virulence in fungi. Trends Cell Biol, 8: 348-353.
    Marks, A. R. 1996. Cellular functions of immunophilins. Physiol. Rev. 76, 631-649.
    Martin, M. P., Gerlach, V. L., and Brow, D. A. 2001. A novel upstream RNA polymerase Ⅲ promoter element becomes essential when the chromatin structure of the yeast U6 RNA gene is altered. Mol Cell Biol 21: 6429-6439.
    McCafferty H R K, N J Talbot, 1998. Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonization. Curr Genet, 33: 352-361.
    Megraw, T. L., Kao, L. R., and Chae, C. B. 1994. The mitochondrial histone HM: an evolutionary link between bacterial HU and nuclear HMG1 proteins. Biochimie 76: 909-916.
    Michael J Kershaw, G Wakley and N J Talbot, 1998. Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationshipsbetween fungal hydrophobins The EMBO Journal, 17(14): 3838-3849.
    Mitchell T K, Michael R. Thon, J-S Jeong, D Brown, JX Deng and R A Dean, 2003. The rice blast pathosystem as a case study for the development of new tools and raw materials for genome analysis of fungal plant pathogens. New Phytologist, 159: 53-61.
    Mitchell TK, and RA Dean, 1995. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast fungus Magnaporthe grisea. Plant Cell, 7: 1869-1878.
    Mochly-Rosen D, 1995. Localization of protein kinases by anchoring proteins. a theme in signal transduction. Science, 268: 247-251.
    Money NP, RJ Howard, 1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method o turgor measurement. Fungal Gent Biol, 20: 217-227.
    Moreira, J. M. A., Holmberg, S., 2000. Chromatin mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B. EMBO J. 19, 6804-6813.
    Motoyama, T., Kadokura, K., Ohira, T., lchiishi, A., Fujimura, M., Yamaguchi, I., and Kudo, T. 2005. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genet Biol 42: 200-212.
    Muller, S., Scaffidi, P., Degryse, B., Bonaldi, T., Ronfani, L., Agresti, A. et al., 2001. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J. 20, 4337-4340.
    Orbach MJ, et al., 2002, Generation of a saturated insertion strain library of Magnaporthe grisea: use of fluorescent markers to indicate insertion locus expression patterns. 3rd international rice blast conference. 11-14 Sept. 2002. Tsukuba international congress center, Tsukuba Science City, Ibaraki, JAPAN.
    Orphanides, G., LeRoy, G., Chang, C.-H., Luse, D. S., Reinberg, D., 1998. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92, 105-116.
    Orphanides, G., Wu, W. H., Lane, W. S., Hampsey, M., Reinberg, D., 1999. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400, 284-288.
    Osherov N, J Mathew, A Romans, GS May, 2002. Identification of conidial-enriched transcripts in Aspergillus nidulans using suppression subtractive hybridization. Fungal Genet Biol, 37: 197-204.
    Ou, S. H., 1985. Rice Diseases (2nd ed.). Commonwealth Mycological Institute, Kew, UK.
    Pall, M. C. Brunelli P., 1993. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet. Newsl. 40, 59-62.
    Pan X, J Heitman, 1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol, 19: 4874-4887.
    Paull, T. T., Johnson, R. C., 1995. DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. Consequences for nucleoprotein complex assembly and chromatin condensation. J. Biol. Chem. 270, 8744-8754.
    Pellier, A. L., Lauge, R., Veneault-Fourrey, C., Langin, T., 2003. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol. Microbiol. 48, 639-655.
    Prokisch H, O Yarden, M Dieminger, M Tropschug, and IB标尺thelmess, 1997. Impairment of calcineurin function in Neurospora crassa reveals its essential role in hyphal growth, morphology and maintenance of Ca~(2+) gradient. Mol. Gen. Genet., 256: 104-114.
    Rasmussen C, C Garen, S Brining, RL Kincaid, RL Means, and AR Means, 1994. The calmodulin-dependent protein phosphatase catalytic sub-unit (calcineurin A) is an essential gene in Aspergillus nidulans. EMBO J., 13: 2545-2552.
    Rauyaree R, W Choi, E Fang, B Blackmon and RA Dean, 2001. Genes expressed during early stages of rice infection with the rice blast fungus Magnaporthe grisea. Mol. Plant Pathol., 2: 347-354.
    Reggiori F and DJ Klionsky, 2002. Autophagy in the eukaryotic cell. Eukaryotic Cell 1: 11-21
    Rho HS, S Kang, YH Lee, 2001. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells, 12: 407-411.
    Rhoades, A. R., Ruone, S., and Formosa, T. 2004. Structural features of nucleosomes reorganized by yeast FACT and its HMG box component, Nhp6. Mol Cell Biol 24: 3907-3917.
    Ruiz-Roldan MC, FJ Maier, and W Schafer, 2001. PTK1, a mitogen-activated protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on标尺ley. Mol. Plant-Microbe Interact., 14: 116-125.
    Ruone, S., Rhoades, A. R., and Formosa, T. 2003. Multiple Nhp6 molecules are required to recruit Spt16-Pob3 to form yFACT complexes and to reorganize nucleosomes. J Biol Chem 278: 45288-45295.
    Scaffidi, P., Misteli, T., Bianchi M. E., 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191-195.
    Shi Z, D Christian, H Leung, 1995. Enhanced transformation in Magnaporthe grisea by restriction enzyme mediated integration of plasmid DNA. Phytopathology, 85: 329-333.
    Shi Z, H Leung, 1995. Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol Plant Microbe Interact 8: 949-959.
    Shinpei Banno, Makoto Kimura, Takeshi Tokai, et al., 2003. Cloning and characterization of genes specically expressed duringinfection stages in the rice blast fungus. FEMS Microbiology Letters, 222: 221-227.
    Silue D, D Tharreau, NJ Talbot, PH Clergeot, JL Notteghem, MH Lebrun, 1998. Identification and characterization of apfl(-) in a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea which is unable to differentiate appressoria. Physiol Mol Plant Pathol, 53: 239-251.
    Singer, R. A., and Johnston, G. C. 2004. The FACT chromatin modulator: genetic and structure/function relationships. Biochem Cell Biol 82: 419-427.
    Snoeijers, S. S., Perez-Garcia, A., Joosten, M.H., De Wit, P. J., 2000. The effect of nitrogen on disease development and gene expression in bacterial and fungal pathogens. Eur. J. Plant Patho. 106, 493-506.
    Soanes DM, W Skinner, J Keon, J Hargreaves, NJ Talbot, 2002. Genomics of phytopathogenic fungi and the development of bioinformatic resources. Mol Plant Microbe Interact, 15: 421-427.
    Soundararajan, S., Jedd, G., Li, X., Ramos-Pamplona, M., Chua, N. H., Naqvi, N. I., 2004. Woronin body function in Magnaporthe grisea is essential for efficient pathogenesis and for survival during nitrogen starvation stress. Plant Cell 16, 1564-1574.
    Stringer, M. A., Timberlake, W. E., 1995. dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Mol. Microbiol. 16, 33-44.
    Sweigard JA, AM Carroll, L Farrall, FG Chumley and B Valent, 1998. Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol. Plant-Microbe Interact., 11: 404-412.
    Sweigard JA, FG Chumley, B Valent, 1992. Disruption of a Magnaporthe grisea cutinase gene. Mol Gen Genet, 232: 183-190.
    Sykes K, M-J Gething, and J Sambrook, 1993. Proline isomerases function during heat shock. Proc. Natl. Acad. Sci. USA, 90: 5853-5857.
    Szerlong, H., Saha, A., and Cairns, B. R. 2003. The nuclear actin-related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. Embo J 22: 3175-3187.
    Takano Y, T Kikuchi, Y Kubo, JE Hamer, K Mise, and I Furusawa, 2000. The Colletotrichum lagenarium MAP kinase gene CMK1 regulates diverse aspects of fungal pathogenesis. Mol. Plant-Microbe Interact., 13: 374-383.
    Takano Y, W Choi, TK Mitchell, T Okuno and RA Dean, 2003. Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol Plant Pathol, 4: 337-347.
    Talbot NJ, 1995. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology, 3: 9-16.
    Talbot NJ, 2003. On the trail of a cereal killer: Exploring the Biology of Magnaporthe grisea. Annu. Rev. Microbiol. 57: 177-202.
    Talbot NJ, DJ Ebbole, and JE Hamer, 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell, 5: 1575-1590.
    Talbot NJ, MJ Kershaw, GE Wakley, OMH de Vries, JGH Wessels, and JE Hamer, 1996. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell, 8: 985-999.
    Thines E, Eilbert F, Sterner O, AnkeH, 1997. Signal transduction leading toappressorium formation in germinatingconidia of Magnaporthe grisea: effects of second messengers diacylglycerols, ceramindesand sphingomyelin. FEMS Microbiol. Lett., 156: 91-94.
    Thines E, Weber RWS and Talbot NJ, 2000. MAP kinase and protein kinase a-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell, 12: 1703-1718.
    Thomas, J. O., 2001. HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans. 29, 395-401.
    Thompson JE, S Fahnestock, L Farrall, DI Liao, B Valent, DB Jordan, 2000. The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea - tetrahydroxynaphthalene reductase. J Biol Chem, 275: 34867-34872.
    Thompson, J. D., Higgins, D. G., Gibson, T. J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.
    Toda T, S Cameron, P Sass, Zoller M, M Wigler, 1987. Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cyclic AMP-dependent protein kinase. Cell 50: 277-288.
    Tongen, A., Goriely, A., and Tabor, M., 2006. Biomechanical model for appressorial design in Magnaporthe grisea. J Theor Biol 240: 1-8.
    Travers AA: Priming the nucleosome. 2003. a role for HMGB proteins? EMBO Rep. 4: 131-136.
    Tucker SL, Talbot NJ, 2001. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol, 39: 385-417.
    Uchiyama T, K Okuyama, 1990. Participation of Oryza sativa leaf wax in appressorium formation by Pyricularia oryzae. Phytochemistry, 29: 91-92.
    Urban M, T Bhargava and J E Hamer, 1999. An ATP-driven effiux pump is a novel pathogenicity factor in rice blast disease. The EMBO Journal, 18(3): 512-521.
    Valent B, 1990. Rice blast as a model system for plant pathology. Phytopathology, 80: 33-36.
    VanEtten HD, DE Matthews and PS Matthews, 1989. Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu. Rev. Phytopathol., 27: 143-164.
    VanEtten HD, S Soby, C Wasmann and K McCluskey, 1994. Pathogenicity genes in fungi. In Daniels, M. J., Downie, J. A. and Osbourne, A. E. (eds), Advances in Molecular Genetics in Plant-Microbe Interactions. Kluwer Academic Publishers, Dordrecht, pp. 163-170.
    Veneault-Fourrey, C., and Talbot, N. J., 2005. Moving toward a systems biology approach to the study of fungal pathogenesis in the rice blast fungus Magnaporthe grisea. Adv Appl Microbiol 57: 177-215.
    Veneault-Fourrey, C., barooah, M., Egan, M., Wakley, G., and Talbot, N. J., 2006. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312: 580-583.
    Viaud MC, 2003, Cloning and characterization of genes specifically expressed during infection stages in the rice blast fungus. FEMS Microbiol Lett., 222(2): 221-7.
    Viaud MC, PV Balhadere and NJ Talbot, 2002. A Magnaporthe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection, Plant Cell, 14: 917-930.
    Vidal-Cros A, F Viviani, G Labesse, M Boccara, M Gaudry, 1994. Polyhydroxynaphthalene reductase involved in melanin biosynthesis in Magnaporthe grisea. Purification, cDNA cloning and sequencing. Eur J Biochem, 219: 985-992.
    Villaba F, M-H Lebrun, A Hua-Van, M-J Daboussi and M-C Grosjean-Cournoyer, 2001. Transposon impala, a noveltool for gene tagging in the rice blast fungus Magnaporthegrisea. Mol. Plant-Microbe Interact. 14: 308-315.
    Von Stein O D, W G Thies, M Hormann, 1997. A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res, 25: 2598~2602.
    Wang H L, Kim S H, Siu H, et al., 1999. Transformation of sap staining fungi with hygromycin B resistance plasmids pAN721 and pCB1004 [J]. Mycol Res, 103 (1): 77-80.
    Wang P, ME Cardenas, GM Cox, JR Perfect, and J Heitman, 2001. Two cyclophilin A homologs with shared and divergent functions important for growth and virulence of Cryptococcus neoformans. EMBO Rep., 2: 511-518.
    Wang ZY, Thornton CR, Kershaw MJ, Debao L, Talbot NJ, 2003. The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol, 47: 1601-1612.
    Wang, J. Y., Liu, X. H., Lu, J. P., and Lin, F. C. 2005. Sequence analysis and expression pattern of MGTA1 gene in rice blast pathogen Magnaporthe grisea. J Zhejiang Univ Sci B 6: 817-824.
    Wang, Z. Y., Jenkinson, J. M., Holcombe, L. J., Soanes, D. M., Veneault-Fourrey, C., Bhambra, G. K., and Talbot, N. J. 2005. The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochem Soc Trans 33: 384-388.
    Wawrzak Z, T Sandalova, JJ Steffens, GS Basarab, T Lundqvist, Y Lindqvist, DB Jordan, 1999. High-resolution structures of scytalone dehydratase-inhibitor complexes crystallized at physiological pH. Proteins, 35: 425-439.
    Weber RWS, GE Wakley, E Thines, and NJ Talbot, 2001. The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 216:101-112.
    Wessels JG, 1997. Hydrophobins: proteins that change the nature of the fungal surfaace. Adv Micro Physiol, 38:1-45.
    Wosten HA, FH Schuren, JG Wessels, 1994. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848-5854.
    Wu C, Travers A. 2004, A 'one-pot' assay for the accessibility of DNA in a nucleosome core particle. Nucleic Acids Res. 32:e122.
    Xiao JZ, T Watanabe, T Kamakura, A Oshima, I Yamaguchi, 1994. Studies on cellular differentiation of Magnaporthe grisea. Physiochemical aspects of substratum surfaces in relation to appressorium formation. Physiol Mol Plant Pathol 44:227-236.
    Xu J R, C J Staiger, J E Hamer, 1998. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defence responses. Proc Natl Acad Sci USA, 95:12713-12718.
    Xu J-R and CY Xue, 2002. Time for a blast: genomics of Magnaporthe grisea. Molecular plant pathology, 3(3): 173-176.
    Xu J-R, 2000. MAP Kinases in Fungal Pathogens. Fungal Genetics and Biology, 31:137-152.
    Xu, J-R, and JE Hamer, 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev., 10:2696-2706.
    Xu, J-R, M Urban, JA Sweigard, and JE Hamer, 1997. The CPKA gene of Magnaporthe grisea is essential for appressorial penetration. Mol. Plant-Microbe Interact., 10:187-194.
    Xue CY, G Park, W Choi, L Zheng, RA Dean, and JR Xu, 2002. Two novel fungal virulence genes specifically expressed in appressoria of the rice blast fungus. Plant Cell, 14: 2107-2119.
    Yu, Y., Eriksson, P., and Stillman, D. J., 2000. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 20: 2350-2357.
    Yu, Y., Eriksson, P., Bhoite, L.T., and Stillman, D.J., 2003. Regulation of TATA-binding protein binding by the SAGA complex and the Nhp6 high-mobility group protein. Mol Cell Biol 23: 1910-1921.
    Zhao, X., Kim, Y, Park, G, and Xu, J.R. , 2005. A mitogen-activated protein kinase cascade regulating infection-related morphogenesis in Magnaporthe grisea. Plant Cell 17:1317-1329.
    Zhu H, DS Whitehead, YH Lee, RA Dean, 1996. Genetic analysis of developmental mutants and rapid chromosome mapping of APP1, a gene required for appressorium formation in Magnaporthe grisea. Mol Plant Microbe Interact, 9:767-774.
    刘树俊,有江力,1998.稻瘟病菌致病变突体的REMI诱变与鉴定.生物工程学报14(3):254—258.
    李宏宇,鲁国东等,2003.稻瘟病菌无毒基因研究进展.中国生物工程杂志,23(6):27-30.
    李宏宇,潘初沂,陈涵,赵长江,鲁国东,王宗华,2003a.稻瘟病菌T-DNA插入方法优化及其突变体分析.生物工程学报,19(4):419-423.
    李宏宇,鲁国东等,2003b.稻瘟病菌微波诱发突变体的分析.菌物系统,22(4):639-644.
    林福呈,李德葆,2001.稻瘟病菌分生孢子发芽和附着胞形成的影响因素研究.中国水稻科学,15(4):291~297.
    沈瑛,J Manry等,1996.我国稻瘟病菌的遗传多样性及其地理分布。中国农业科学,29(4):39-46.
    王洪凯,林福呈,李德葆,2002.稻瘟病菌致病相关基因研究进展.菌物系统,21(3):459~464.
    王洪凯,林福呈,李德葆,2002.真菌中温度敏感型相关基因研究进展.微生物学报,42(5):634-639.
    王立安,王源超,李昌文,郑小波,2003.Ca2+信号途径参与稻瘟病菌分生孢子萌发及附着胞形成的调控.菌物系统22(3):457~465.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700