雨生红球藻(Haematococcus pluvialis)虾青素酯和脂肪酸的鉴定及差异表达基因的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以雨生红球藻(Haematococcus pluvialis)为研究对象,利用高效液相色谱—大气压化学电离正离子质谱鉴定了虾青素酯的各个成份,并建立了测定虾青素含量的HPLC方法;用HPLC及GC-MS的方法研究了雨生红球藻四种类型细胞的虾青素酯和脂肪酸的种类及含量;利用分光光度法和HPLC研究了雨生红球藻虾青素的稳定性;比较研究了酶解和皂化过程中游离虾青素数量变化规律及其得率;并利用抑制性差减杂交技术构建了雨生红球藻中与孢子发育和虾青素形成相关的差减cDNA文库。主要结果如下。
     1.利用LC-(APCI)MS鉴定出了雨生红球藻提取物中的4个游离类胡萝卜素,15个虾青素单酯,12个虾青素双酯及3个虾红素单酯。另外,经高效液相色谱—DAD检测到一组化合物的最大吸收在400 nm,正离子模式二次质谱出现有较强的m/z 871和593的分子离子碎片离子特征峰。这组化合物可能是虾红素的亚麻酸或ω-6-γ-亚麻酸酯的异构体,这是以前未见报道的。
     2.用HPLC外标法对雨生红球藻中虾青素的含量进行测定。虾青素在0.1-2.0μg线性范围内线性关系良好,其回归方程为:y=1027.3x+245.55,相关系数R~2=0.9997,平均加样回收率为100.277,RSD(%)为2.14。本方法定量准确,重复性好,鉴定出的种类较多,可以作为测定虾青素酯的一种方法。
     3.红色游动细胞和红色孢子中的虾青素酯的种类是一致,而且四种类型细胞中的脂肪酸的种类是一致的。另外,红色游动细胞和红色孢子的虾青素酯中主要的几种脂肪酸的含量变化与细胞中总的脂肪酸的含量变化趋势一致。油酸(C18:1)和亚油酸(C18:2)是红色孢子和红色游动细胞中的主要脂肪酸,而且二者在红色孢子和红色游动细胞中的含量远大于绿色孢子和绿色游动细胞中的,说明虾青素酯的形成需要油酸和亚油酸大量地合成。绿色孢子的HPLC图谱与绿色游动细胞的相似,都没有检测到虾青素酯和游离的虾青素。而且,绿色孢子中的脂肪酸组成与绿色游动细胞基本相同,显然,脂肪酸的积累与虾青素的积累密切相关,而与孢子的形成关系不大。红球藻红色孢子中含有30%以上的脂肪酸,并且不饱和的脂肪酸占总脂肪酸的81%,因此,雨生红球藻不仅可以作为珍贵虾青素的较好来源,也可以作为具有较高品质的脂肪酸的来源。
     4.氧、温度对虾青素稳定性的作用显著。抗氧化剂VE或VC对虾青素的稳定性起了负作用,加了抗氧化剂的藻粉中虾青素的含量都低于无抗氧化剂的。保存1.5年时,破壁藻粉抽真空后在20℃下保存和藻泥-20℃保存,虾青素的含量和虾青素酯中的各个成份间的相对含量变化不大。保存2年时,虾青素的含量都下降了约10%,藻粉中的虾青素各酯的相对含量变化较大,藻泥中各酯的相对含量仍较稳定。
     5.最佳的酶解条件是在反应体系中加入1.02 units的胆固醇酯酶后在37℃下反应75 min,酶解得率是72.04%;最佳皂化条件是加入1.07 mol L~(-1)NaOH在22℃下反应40 min,皂化得率为51.48%。无论是通过酶解还是碱水解,对虾青素酯都具有一定的破坏作用。先水解,特别是先皂化水解虾青素酯,然后用HPLC测定雨生红球藻虾青素含量的方法误差太大,是不可行的。
     6.雨生红球藻细胞在胁迫条件下能够积累大量的虾青素,细胞由绿色游动细胞变为红色不动孢子。提取绿色游动细胞和红色孢子中的mRNA,利用抑制性差减杂交技术,成功构建了雨生红球藻中与孢子发育和虾青素形成相关基因的差减cDNA文库。以管家基因α-tubulin作为差减指标,检测到差减cDNA文库的差减效率可高达2~(10)-2~(15)倍,表明在红色孢子中某些差异表达基因包括与孢子发育和虾青素形成相关的基因的富集效率也接近2~(10)-2~(15)倍。雨生红球藻中与孢子发育和虾青素形成相关基因的差减cDNA文库的建立对快速分离、克隆孢子发育及虾青素形成相关基因和认识雨生红球藻中积累虾青素的分子机理有重要意义。
The astaxanthin ester composition of Haematococcus pluvialis were characterized by LC-(APCI)MS, and a HPLC method was developed to determine the astaxanthin content. The astaxanthin ester composition and the fatty acid composition in four different cell types of H. pluvailis were characterized by HPLC and GC-MS. The stability of astaxanthin and astaxanthin esters was studied. The content of free astaxanthin obtained by saponification and enzymatic hydrolysis were examined. A subtractive cDNA library of genes related to cyst formation and astaxanthin synthesis was contracted by SSH.
     1. Four free carotenoids, fifteen astaxanthin monoesters, twelve astaxanthin diesters and three astacin monoesters in H. pluvialis were identified by LC-(APCI)MS. In addition, a set of compounds with maximum absorbance at 400 nm, detected by HPLC-DAD, had strong characteristic fragment ions at m/z 871 and m/z 593 in the positive ion mode MS_2. They were presumed to be linolenic acid or an isomer ofω-6-γ-linolenic acid esters of astacin. The presence of these compounds has not been reported ever in H. pluvialis cells.
     2. The astaxanthin ester contents in H. pluvialis were quantified by the external standard calibration curve method through HPLC. The linear calibration curves were y = 1027.3x+245.55 (R~2=0.9997) when the astaxanthin content ranging from 0.1 to 2.0μg. The average recovery was 100.277 and the RSD (%) was 2.14. This method, with better sensitivity and better reproducibility, could identify more astaxanthin esters than those ever reported
     3. The astaxanthin ester types were identical in red mobile cells and red cysts, and the fatty acid types were identical in four types of H. pluvialis cells. The major fatty acid contents in astaxanthin esters had the same tendency with the contents of the total fatty acids in red motile cells and red cysts. The oleic acid (C18:1) and linoleic acid (C18:2) were dominant in both red mobile cells and red cysts, and red mobile cells and red cysts contained much more oleic acid and linoleic acid than green motile cells and green cysts. It indicated that the active synthesis of oleic acid and linoleic acid was necessary to astaxanthin ester synthesis. The HPLC chromatogram of green cysts was similar to that of green motile cells, and neither free astaxanthin nor astaxanthin esters were detected in these two cells. Furthermore, the fatty acid composition was the same in green cysts and green motile cells. It suggested that astaxanthin ester accumulation coordinated with the synthesis of fatty acids from another point of view. The synthesis and accumulation of fatty acids was independent of the formation of cysts, but was highly correlated with the synthesis and accumulation of astaxanthin. The red cysts contained more than 30% of fatty acids, in which the unsaturated fatty acids accounted for about 81%. Therefore, H. pluvialis was not only a good resource of precious astaxanthin, but also would become a good resource of valuable fatty acids in future.
     4. Both oxygen and temperature had strong effects astaxanthin stability. Both vitamin C and vitamin E, the common antioxidant, decreased the astaxanthin stability. There were no significant changes in the astaxanthin content or the relative content of each astaxanthin ester after the dry algal meal with broken cell wall stored under vacuum at -20℃for 1.5 years or the algal meal stored at -20℃for 1.5 years. After stored for 2 years, the astaxanthin content of each treatment decreased about 10%, and the relative content of each astaxanthin ester was stabile in algal meal, but decreased significantly in dry algal meal.
     5. 72.04% free astaxanthin was obtained after the extraction mixture was treated at 37℃for 75 min with the presence of 1.02 units cholesterol. And it was the optimal treatment for hydrolysis by enzyme. However, only 51.48% free astaxanthin was obtained after the reaction mixture was treated at 22℃for 40 min with the presence of 1.07 M NaOH. And it was the optimal treatment for hydrolysis by alkali. Therefore, it was not accurate to determine astaxanthin content by HPLC after hydrolysis especially after saponification, for hydrolysis by enzyme or by alkali would destroy astaxanthin in some degree.
     6. H. pluvialis formed red cysts with astaxanthin accumulation in cells under stresses. In order to analyze the change of gene expressions and isolate these related genes inducing astaxanthin synthesis, a subtractive cDNA library of cyst formation and astaxanthin synthesis was constructed by using the Suppression Subtractive Hybridization (SSH) techniques. In this paper, the quality of cellular RNAs and adaptor ligation efficiency were analyzed, and the housekeeping gene,α-tubulin, was used to estimate the efficiency of subtractive cDNA. In this subtractive cDNA library,α-tubulin was subtracted very efficiently at appropriate 2~(10)-2~(15) fold, indicating that some differentially expressed genes including the genes related to the cyst formation and astaxanthin synthesis were also enriched at the same folds. The construction of the subtractive cDNA library would be essential for rapid isolation and clone of the genes related to cyst formation and astaxanthin synthesis, and would be helpful to find out the molecular mechanism of the astaxanthin accumulation in H. pluvialis.
引文
陈定一主编,分析化学,上海科学技术出版社,1986年第一版,1999年第8次印刷.
    陈峰,姜悦主编,微藻生物技术,中国轻工出版社出版,1999年9月第一版:174-207.
    陈兴才,黄伟光,欧阳琴,雨生红球藻中虾青素酯的皂化及游离虾青素的纯化分离,福建大学学报(自然科学版),2005,33(2):264-268.
    陈勇,李德发,陆文清,朴香淑,杨文军,惠柏棣,韩雅珊,测定雨生红球藻中虾青素及其它色素含量的高效液相色谱法,分析测试学报,2003,22(4):28-31.
    龚贤弟,陈峰,雨生红球藻及虾青素的生产,陈峰,姜悦主编,微藻生物技术,中国轻工业出版社,北京1999,174-213.
    金龙飞,天然虾青素的应用和制备,山西食品工业,2002,9(3):9-12.
    景志忠,哈金梅,才学鹏,模式生物与比较基因学研究进展,中国实验动物学杂志,2002,12(4):248-252.
    孔任秋,徐旭东,王业勤,蓝藻分子生物学又十年,水生生物学报,2001,25(6):620-630.
    吕玉华,金征宇,徐学明,虾青素高产突变株的选育,生物技术,1999,9(5):29-33.
    罗志勇,刘水平,陆秋恒,陈湘晖,文斌,罗建清,胡维新,人参植物与皂甙生物合成相关的差减cDNA文库构建及基因差异表达分析,生命科学研究,2003,7(4):324.
    苗凤萍,李夜光,耿亚红,胡鸿钧,温度对雨生红球中虾青素的产量和生物量的影响,武汉植物学研究,2005,23:73-76.
    欧阳叶新,施定基,钟辉,梁承邺,李振甲,胡鸿钧,高温和红光诱导鱼腥藻7120短丝体中TNF-α基因表达效率的提高,武汉植物学研究,2003,21(4):301-307.
    王进波,刘建新,虾青素的开发与应用,中国饲料,2000,24:20-21.
    谢虹,张慧碧,何国平,梁建生,高效液相色谱法测定虾青素含量,粮食与饲料 工业,2003,1:46-47.
    许增雅,郑裕国,沈寅初,分光光度法测定红发夫酵母中虾青素含量,浙江工业大学学报,2001,29(2):120-123,125.
    应国清,王晓艳,沈寅初,高效液相色谱法分析检测虾青素,食品与发酵工业,2001,27(11):43-44.
    翟中和主编,细胞生物学,高等教育出版社,北京,1997,315-362.
    Andrewes A. G., Phaff H. J., Starr M. P., Carotenoids of Phaffia rhodozyma, a Red-Pigmented Fermenting Yeast, Phytochemistry, 15(1976) 1003-1007.
    Bernhard K., Synthetic astaxanthin. The route of a carotenoid from research to commercialization, In: "Carotenoids: Chemistry and Biology," Krinsky N. I., Mathews-Rot M. M., Taylor R. F. (editors), Plenum Press, New York, 1990, pp. 337-363.
    Black H. S., Radical interception by carotenoids and effects on UV carcinogenesis, Nutr. Cancer, 31(1998) 212-217.
    Boussiba S., Bing W., Zarka A., Yuan J. P., Chen F., Changes in pigments profile in the green alga Haematococcus pluvialis exposed to environmental stresses. Biotechnol. Lett., 21 (1999) 601-604.
    Boussiba S., Carotenogenesis in the green alga Haernatococcus pluvialis: cellular physiology and stress response, Physiol. Plantarum, 108 (2000) 111-117.
    Boussiba S., Fan L., Vonshak A., Enhancement and determination of astaxantin accumlation in green alga Haematococcus pluvialis, Meth. Enzymol., 213(1992) 386-391.
    Boussiba S., Vonshak A., Astaxanthin accumulation in the green alga Haematococcus pluvialis, Plant cell Physiol., 32 (1991) 1077-1082.
    Breitenbach J., Misawa N., Kajiwara S., Sandmann G., Expression in Escherichia coli and properities of the carotene ketolase from Haematococcus pluvialis, Fems. Microbiol. Lett., 140 (1996) 241-246.
    Breithaupt D. E., Identification and quantification of astaxanthin esters in shrimp (Pandalus borealis) and in a microalga (Haematococcus pluvialis) by Liquid chromatography-mass spectrometry using negative ion atmospheric pressure chemical ionization, J. Agric. Food Chem., 52 (2004) 3870-3875.
    
    Britton G., Liaaen-Jensen S., Pfander H., Carotenoids today and challenges for the future. In: Britton G., Liaaen-Jensen S., Pfander H. [eds], Carotenoids vol. 1A: Isolation and analysis. Basel: Birkh. User, 1995.
    
    Chew B. P., Park J. S., Wong M. W., Wong T. S., A Comparison of the Anticancer Activities of Dietary P-Carotene, Canthaxanthin and Astaxanthin in Mice in Vivo, Anticancer Res., 19(1999) 1849-1854.
    Cysewski G. R., Lorenz R. T., Industrial production of microalgal cell mass and secondary products-species of high potential: Haematococcus. In: Richmond A. Eds., Handbook of microalgal culture: biotechnology and applied phycology. Oxford, Blackwell Science LtD., 2004. pp. 281-288.
    Czygan F. C, Blood-Rain and Blood-Snow: Nitrogen Deficient Cells of Haematococcus pluvialis and Chlamydomonas nivalis, Arch. Mikrobiol., 74 (1970) 69-76.
    
    Davis Rowland H., The age of model organism, Nature reviews, 5 (2004) 69-76.
    Delia B., Rodrigeuz-Amaya, A guide to carotenoid analysis foods, Washington D. C, International Life Sciences Institute (ILSI) press, 2001, pp. 15.
    Di Mascio P., Kaiser S., Sies H., Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 274 (1989) 532-538.
    Diatchenko L., Lau Y. F., Campbell A. P., Chenchik A., Moqadam F., Huang B., Lukyanov S., Lukyanov K., Gurskaya N., Sverdlov E. D., Siebert P. D., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc. Natl. Acad. Sci. USA, 93 (1996) 6025-6030.
    
    Droop M. R., Carotenogenesis in Haematococcus pluvialis, Nature, 175 (1955) 42.
    Droop M. R., Conditions governing haematochrome formation and loss in the alga Haematococcus pluvialis Flotow, Arch. Microbiol., 20 (1954) 391-397.
    Fan L., Vonshak A., Gabbay R., Hirshberg J., bohen Z., Boussiba S., The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine, Plant cell Physiol, 36 (1995) 1519-1524.
    Foss P., Storebakken T., Austreng E., Liaaen-Jensen S., Carotenoids in diets for salmonids V. Pigmentation of rainbow trout and sea trout with astaxanthin and astaxanthin sipalmitate in comparison to canthaxanthin, Aquaculture, 65 (1987) 293-305.
    Fraser P. D., Miura Y., Misawa N., In Vitro Characterization of Astaxanthin Biosynthetic Enzymes., J. Biol. Chem., 272 (1997) 6128-6135.
    Fraser P. D., Shimada H., Misawa N., Enzymic confirmation of reactions involved in routes to astaxanthin formation, elucidated using a direct substrate in vitro assay, Eur. J. Biochem., 252 (1998) 229-236.
    Girard P., Falconnier B., Bricout J., Vladescu B., β -carotene producing mutants of Phaffia rhodozyma, Appl. Microbial. Biotech., 41 (1994) 183-191.
    Gouveia L., Empis J., Relative stabilities of microalgal carotenoids in microalgal extracts, biomass and fish feed: effect of storage conditions, Innovat. Food Sci. Emerg. Tech., 4 (2003) 227-233.
    Grung M., D'Souza F. M. L., Borowitzka M., Liaaen-Jensen S., Algal carotenoids 51. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S, 3'S)-astaxanthin esters, J. Appl. Phycol., 4 (1992) 165-171.
    Gudin C, Chaumont D., Cell fragility-the key problem of microalgae mass production in closed photobioreactors, Bioresour. Tech., 38 (1991) 145-151.
    Hagen C, Braune W., Birckner E., Nuske J., Functional aspects of secondary carotenoids in Haematococcus lacustris (Girod) Rostafinski (Volvocales), New Phytol., 125 (1993) 625-633.
    Hanagata N., Dubinsky Z., Secondary carotenoid accumulation in scenedesmus komarek II (chlorophyceae, chlorophyta), J. Phycol., 35 (1999) 960-966.
    Harker M., Hirschberg J., Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for P-C4-oxygenase, crtO, Febs Lett., 404 (1997) 129-134.
    
    Hedrick S. M., Cohen D. I., Nielsen E. A., Davis M. M, Isolation of cDNA clones encoding T cell-specific membrane associated proteins, Nature, 308 (1984) 149-153.
    Ittah Y, Kanner J., Granit R., Hydrolysis study of carotenoid pigments of paprika by HPLC/photodiode array detection, J. Agric. Food Chem., 41 (1993) 899-901.
    Ivanova N. B., Belyavsky A. V., Identification of differentially expressed genes by restriction endonuclease-based gene expression fingerprinting, Nucleic Acids Res., 23(1995)2954-2958.
    Ji W., Wright M. B., Cai L., Efficacy of SSH PCR in isolating differentially expressed genes, BMC Genomics, 3 (2002) 1464.
    Johnsom E. A., Gil-Hwan A., Astaxanthin from microbial sources, Crit. Rev. Biotechnol., 11 (1991)297-326.
    Jyonouchi H., Sun S., Iijima K., Gross M. D., Antitumor activity of astaxanthin and its mode of action, Nutr. Cancer, 36 (2000) 59-65.
    Jyonouchi H., Zhang L., Tomita Y., Studies of immunomodulating actions of carotenoids. II. Astaxanthin enhances in vitro antibody production to T-dependent antigens without facilitating polyclonal B-Cell activation, Ibid., 19 (1993) 269-280.
    Kajiwara S., Kakizono T., Saito T., Kondo K., Ohtani T., Nishio N., Nagai S., Misawa N., Isolation and functional identification of a novel cDNA for astaxanthin biosynthesis from Haematococcus pluvialis, and astaxanthin synthesis in Escherichia coli, Plant Mol. Biol., 29 (1995) 343-352.
    Kaplan R. J., Greenwood C. E., Dietary saturated fatty acids and brain function, Neurochem. Res., 23 (1998) 615-626.
    Katayama T., Ikeda N., Harada K., Carotenoids in sea breams, Chrysophrys major and schlegel, Bull. Jpn. Soc. Sci. Fish, 31 (1965) 947-952.
    Kobayashi M., Kakizono T., Nagai S., Astaxanthin production by a green algae, Haematococcus pluvialis accompanied with morphological changes in acetate media, J. Ferment. Bioeng., 71 (1991) 335-339.
    Lawlor S. M., O'Brien N. M., Astaxanthin: antioxidant effects in chicken embryo fibroblasts, Nutr. Res., 15 (1995) 1695-1704.
    Lemaire S. D., Collin V., Keryer E., Issakidis-Bourguet E., Lavergne D., Miginiac-Maslow M, Chlamydomonas reinhardtii: a model organism for the study of the thioredoxin family, Plant Physiol. Biochem., 41 (2003) 513-521.
    Lignell D., Medicament for improvement of duration of muscle function or treatment of muscle disorders or diseases, Patent Cooperation Treaty application number 9911251. AstaCarotene AB, Sweden, 1999.
    Lim G. B., Lee S. Y., Lee E. K., Haam S. J., Kim W. S., Separation of astaxanthin from red yeast Phaffia rhodozyma by supercritical carbon dioxide extraction, J. Biochem. Eng., 11 (2002) 181-187.
    Lotan T., Hirschberg J., Cloning and expression in Escherichia coli of the gene encoding P-C4-oxygenase, that converts (3-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis, FEBS Lett., 364 (1995) 125-128.
    Martinez M., Tissue levels of polyunsaturated fatty acids during early human development. J. Pediatr., 120 (1992) 129-138.
    Mascio D., Kaiser S. P., Sies H., Lycopene as the most efficient biological carotenoid singlet oxygen quencher, Arch. Biochem. Biophys., 274 (1989) 532-538.
    Matsuno, T., Xanthophylls as Precursors of Retinoids, Pure Appl. Chem., 63 (1991) 81-88.
    Mendoza H., Martel A., Jimenez del Rio M., Garcia Reina G., Oleic acid is the main fatty acid related with carotenogenesis in Dunaliella salina, J. Appl. Phycol., 11 (1999) 15-19.
    Miao F. P., Lu D. Y., Li Y. G., Zeng M. T., Characterization of astaxanthin esters in Haematococcus pluvialis by liquid chromatography-atmospheric pressure chemical ionization mass spectrometry, Anal. Biochem., 352 (2006) 176-181.
    Miki W., Biological functions and activities of animal carotenoids, Pure Appl. Chem., 63(1991)141-146.
    Miki W., Hosoda K., Kondo K., Itakura H., Astaxanthin-containing drink, Patent application number 10155459. Japanese Patent Office. Publication date 16 June, 1998.
    Minguez-Mosquera M. I., Perez-Galvez A., Study of lability and kinetics of main carotenoid pigments of red pepper in the de-dsterifiction reaction, J. Agric. Food Chem., 46 (1998) 566-569.
    Misawa N., Kajiwara S., Kondo K., Yokoyama A., Satomi Y., Saito T., Miki W., Ohtani T., Canthaxanthin biosynthesis by the conversion of methylene to keto groups in a hydrocarbon beta-carotene by a single gene, Biochem. Biophys. Res. Commun, 209 (1995) 867-876.
    Mortensen A., Skibsted L. H., Sampson J., Rice-Evans C, Everett S. A., Comparative mechanisms and rates of free radical scavenging by carotenoid antioxidants, FEBS Lett, 418 (1997) 91-97.
    Naguib Y., Antioxidant activities of astaxanthin and related carotenoids, J. Agr. Chem., 48(2000)1150-1154.
    Nakazoe J., Ishii S., Kamimoto M,. Takeuchi M., Effects of supplemental carotenoid pigments on the carotenoid accumulation of young sea bream (Chrysophrys major), Bull. Tokai Reg. Fish. Lab, 113 (1984) 29-41.
    Orosa M., Franqueira D., Cid A., Abalde J., Analysis and enhancement of astaxanthin accumulation in Haematococcus pluvialis. J. Bioresou. Technol., 96 (2005) 373-378.
    Palozza P., Krinsky N. I., Astaxanthin and canthaxanthin are potent antioxidants in a membrane model, Arch. Biochem. Biophys., 297 (1992) 291-295.
    Rabbani S., Beyer P., Lintig J. V., Hugu eney P., Kleinig H., Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil, Plant Physiol., 116 (1998) 1239-1248.
    Renstrom B., Liaaen-Jensen S., Fatty acid composition of some esterified carotenoids, Comp. Biochem. Physiol., 69B (1981) 625-627.
    Richard B., Breemen V., Huang C. R., Tan Y. C, Sander L. C, Schilling A. B., Liquid chromatography/mass spectrometry of carotenoids using atmospheric pressure chemical ionization, J. Mass Spectrum., 31 (1996) 975-981.
    Roessler P. G., Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions, J. phycol., 26 (1990) 393-399.
    Santos M. F., Mesquita J. F., Ultrastructural study of Haematococcus lacustris (Girad.) Rostafinski (Volvocales). I. Some aspects of carotenogenesis, Cytologie, 49 (1984) 215-228.
    Sargent T. D., Dawid I. B., Differential gene expression in the gastrula of Xenopus laevis, Science, 222 (1983) 135-139.
    Sauerwald T., Hachey D. L., Jensen C. L., Chen H., Anderson R. E., Heird W. C., Intermediates in endogenous synthesis of C22:6ω3 and C20:4ω6 by term and preterm infants, Pediatr. Res., 41 (1997) 183-187.
    Schiedt K., Vecchi M., Glinz E., Astaxanthin and its metabolites in wild rainbow trout (Salmo garidneri R.), Comp. Biochem. Physiol., 83B (1986) 9-12.
    Schoefs B., Nour-Eddine R., Jaouad R., Yves L., Astaxanthin accumulation in Haematococcus requires a cytochrome P450 hydroxylase and an active synthesis of fatty acid, FEBS Lett., 500 (2001) 125-128.
    Schugerl K., Hubbuch J., Integrated bioprocesses, Curr. Opin. Microbiol., 8 (2005) 294-300.
    Shinidzu N., Goto M., Miki W., Carotenoids as singlet oxygen quenchers in marine organisms, Fish. Sci., 61 (1996) 134-137.
    Simopoulos A. P., Omega-3 fatty acids in health and disease and in growth and development, Am. J. Clin. Nutr., 54 (1991) 438-463.
    Sommer T. R., D'Souz F. M. L., Morrissy N. M., Pigmentation of adult rainbow trout, oncorhynchus mykiss, using the green alga Haematococcus pluvialis, Aquaculture, 106(1992)63-74.
    Sommer T. R., Potts W. T., Morrissy N. M., Utilization of microalgal astaxanthin by rainbow trout {oncorhynchus mykiss), Aquaculture, 94 (1991) 79-88.
    Sprey B., Die Lokalisierung von Sekundarcarotinoiden von Haematococcus pluvialis Flowtow emen, Wille. Proto-plasma, 71 (1970) 235-250.
    Stanley Fields, Mark Johnston, Whither model organism research, Sciences, 307 (2005) 1885-1886.
    Storebakkern T., Foss P., Schiedt K., Austreng E., Jensen S.-L., Manz U., Carotenoids in diets for salmonids IV. Pigmentation of Atlantic salmon with astaxanthin, astaxanthin dipalmitae and canthaxanthin, Aquaculture, 65 (1987) 279-292.
    Takaichi S., Matsui K., Nakamura M., Muramatsu M., Hanada S., Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry, Comp. Bioch. Physiol. B., 136 (2003) 317-322.
    Tanaka T., Kawamori T., Ohnishi M., Makita H., Mori H., Satoh K., Hara A., Suppression of azoxymethane-induced rat colon carcinogenesis by dietary administration of naturally occurring xanthophylls astaxanthin and canthaxanthin during post initiation phase, Carcinogen., 16 (1995a) 2957-12963.
    Tanaka T., Makita H., Ohnishi M., Hideki M., Sato K., Hara A., Chemoprevention of rat oral carcinogenesis by naturally occurring xanthophylls, astaxanthin and canthaxanthin, Cancer Res., 55 (1995b) 4059-4064.
    Tanaka Y., Katayama T., Simpson K. L., Chichester C. O., The carotenoids in marine red fish and the metabolism of the carotenoids in sea bream Chrysophrys major Temminch and schegel, Bull. Jpn. Soc Sci. Fish, 42 (1976) 1177-1182.
    Tanaka T., Morishita Y., Suzui M., Kojima T., Okomura A., Mori H., Chemoprevention of mouse urinary bladder carcinogenesis by the naturally occurring carotenoid astaxanthin. Carcinogen., 15 (1994b) 15-19.
    Terao J., Antioxidant activity of beta-carotene-related carotenoids in solution, Lipids, 24(1989)659-661.
    Thompson G. A., Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1302(1996)17-45.
    Todd Lorenz R., Cysewski G. R., Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol., 18 (2000) 160-167.
    Torrissen O. J., Christiansen R., Requirements for carotenoids in fish diets, J. Appl. Ichthyol., 11(1995)225-230.
    Tsavalos A. T., Harkaer M., DanielM., Young A. J., Secondary carotenoids synthe in microalgae.In Murata N. (Eds.), Research in photosynthesis, Nethelands, Kluwer Academic Publishers, Dordrecht, 1992, Vol. III pp. 47-51.
    Vecchi M., Muduna V., Glinz E., HPLC separation and determination of astacene, semiastacene, and other keto-carotenoids, J. High Resolut. Chromatogr. Chromatogr. Commun., 10 (1987) 348-351.
    Wang S. B., Hu Q., Sommerfeld M., Chen R. Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae), Proteomics, 4 (2004) 692-708.
    Wang X., Willen R., Wadstrom T., Astaxanthin-Rich AlgalMeal and Vitamin C Inhibit Helicobacter pylori Infection in BALB/cA Mice, Antimicrob. Agents Chemother., 44 (2000) 2452-2457.
    Weissenberg M., Schaeffler I., Menagem E., Barzilai M., Levy A., Isocratic non-aqueous reversed-phase high-performance liquid chromatographic separation of capsanthin and capsorubin in red peppers (Capsicum annuum L.), paprika and oleoresin, J. Chromatogr., 757 (1997) 89-95.
    Weller P., Breithaupt D. E., Identification and quantification of Zeaxanthin esters in plants using liquid chromatography-mass spectrometry, J. Agric. Food Chem., 51 (2003) 7044-7049.
    White D. A ., Page G. I., Waile J. S., Moody A. J., Davies S. J., Effect of esterification on the absorption of astaxanthin in rainbow trout, Oncorhynchus mykiss (Walbaum), Aquac. Res., 33 (2002) 343-350.
    Yokoyama A., Izumida H., Miki W., Production of Astaxanthin and 4-Ketozeaxanthin by the Marine Bacterium, Agrobacterium aurantiacum, Biosci. Biotechnol. Biochem., 58 (1994) 1842-1844.
    Yuan J. P., Chen F., Chromatographic separation and purification of trans-astaxanthin from the extracts of Haematococcus pluvialis, J. Agric. Food Chem., 46 (1998) 3371-3375.
    Yuan J. P., Chen R, Hydrolysis kinetics of astaxanthin esters and stability of astaxanthin of Haematococcus pluvialis during saponification, J. Agric. Food Chem., 47(1999)31-35.
    Yuan J. P., Gong X. D., Chen R, Separation and analysis of carotenoids and chlorophylls in Haematococcus lacustris by high-performance liquid chromatography photodiode array detection, J. Agric. Food. Chem., 45 (1997) 1952-1956.
    Yuan J. P., Gong X. D., Chen F., Separation and identification of astaxanthin esters and chlorophylls in Haematococcus lacustris by HPLC, Biotechnol. Tech., 10 (1996)655-660.
    Zhekisheva M., Boussiba S., Khozin-Goldberg I., Zarka A., Cohen Z., Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters, J Phycol., 38 (2002) 325-331.
    Zhekisheva M., Zarka A., Khozin-Goldberg I., Cohen Z., Boussiba S., Inhibition of astaxanthin synthesis under high irradiance does not abolish triacylglycerol accumulation in the green alga Haematococcus pluvialis (Chlorophyceae), J Phycol., 41 (2005)819-826.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700