水稻隐性长穗颈(eui)基因表达的基础生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐性长穗颈(elongated-uppermost-internode,简称eui)性状是解决不育系包颈现象的重要要遗传资源。有关温敏雄性核不育水稻中eui基因的遗传规律等方面已有深入研究,但环境因素对eui基因表达的影响、穗颈节间伸长的细胞学机制、eui基因的特异性cDNA片段的克隆等方面的研究还未见报道。本文以培矮64S为对照,研究温度对隐性长穗颈温敏雄性核不育水稻eui基因表达的影响,eui基因促进穗颈节间伸长的细胞学机制,以及利用SSH技术分离隐性长穗颈温敏雄性核不育水稻长选3S穗颈节间特异表达的cDNA片段。主要研究结果如下:
     (1)自然条件下长选3S茎秆高度比培矮64S的高24.3cm,主要是由倒一节间(即穗颈节间)的伸长所致,长选3S的倒一节间比培矮64S的长16.6cm,增加的长度占长选3S倒一节间长度的47.3%。倒二节间和倒三节间也有一定的伸长,倒四节间与对照基本一致。穗颈伸出剑叶鞘的长度由倒一节间长度和剑叶鞘长度决定,长选3S剑叶叶鞘与培矮64S相比增长2.8cm,表明隐性长穗颈基因对叶鞘伸长有一定的促进作用,但这种促进作用远小于对穗颈节间伸长的促进作用,使隐性长穗颈不育系长选3S的包颈程度比培矮64S的大大降低或不包颈。
     (2)长选3S穗颈伸出叶鞘的长度与始花当天的日均温度无关,而与始花前20-9 d自然条件下的日均温度呈负相关,其中以始花前17-12d(花粉母细胞形成至减数分裂期)日均温度负相关性最显著。始花前不同时段24℃处理的结果表明:与对照相比,包穗现象有不同程度的减轻,有5个处理使穗全部伸出剑叶叶鞘,其中以始花前17-12 d(即花粉母细胞形成至减数分裂期)温度处理伸颈伸出长度最大,人工温度处理的结果与自然条件下温度与穗颈伸出度的相关性分析一致,因此,始花前17-12 d(即花粉母细胞形成至减数分裂期)是隐性长穗颈eui基因表达对温度最敏感的时期。在eui基因表达对温度最敏感的时期进行28℃、26℃、24℃、22℃四种人工温度处理,28℃条件下eui基因表达受抑制,有30%的颖花被包在剑叶叶鞘中;26℃-22℃条件下eui基因表达,且穗颈伸出剑叶鞘的长度随温度的降低而增加。
     (3)在幼穗分化的第Ⅵ期,长选3S和培矮64S之间穗颈节间长度相差不大,从第Ⅶ期开始,长选3S穗颈节间伸长的速度比培矮64S的快。而从第Ⅷ期至始花当天,长选3S穗颈节间伸长的速度显著快于培矮64S的,这一时段长选3S穗颈节间日均伸长的速度是培矮64S的2.2倍,穗颈节间伸长的长度是培矮64S的2.5倍。始花后两者穗颈节间伸长速度逐渐减慢,最后停止伸长。不同发育时期穗颈节间的细胞平均长度和细胞个数也呈现相似的变化规律,即长选3S穗颈节间薄壁细胞个数和长度在Ⅵ期时与培矮64S并无很大差异,随着幼穗的不断发育,细胞长度和细胞个数的差异越来越大,到定长时差异达到最大。长选3S穗颈节间薄壁细胞个数的增加从Ⅶ期到Ⅷ期至始花当天是呈直线式上升趋势,而到了始花之后细胞个数增加速度减慢;薄壁细胞的长度在Ⅶ期至始花当天也显著的增加,但从始花到定长这一阶段细胞长度呈缓慢增长的趋势。人工温度(24℃)条件下长选3S穗颈节间伸长的动态变化、穗颈节间的细胞平均长度及细胞个数的变化规律等与自然条件下所得的结果基本一致。综上所述,长选3S穗颈节间的伸长主要是由幼穗分化前期细胞分裂和细胞伸长共同作用的结果。
     (4)自然条件下长选3S定长穗颈节间的长度比对照培矮64S的长18.0 cm,其纵列外层和内层薄壁细胞个数分别比培矮64S的多1 248个和580个;外层和内层薄壁细胞的平均长度分别比培矮64S的长23.3μm和38.3μm,尤其是中部区段细胞的平均长度差值最大,长选3S穗颈节间中部区段外层和内层薄壁细胞的平均长度分别比对照的长24.8μm和48.7μm。说明隐性长穗颈温敏核不育水稻穗颈节间伸长是细胞数目增多和细胞长度增加双重作用所致,其后者作用更显著。在不同温度处理后,长选3S穗颈节间最内和最外层薄壁细胞个数和细胞平均长度随处理温度升高逐渐减少;与22℃处理的材料比较,28℃处理的材料穗颈节间短11.79 cm,其纵列最外和最内层薄壁细胞数目分别少771个和292个,细胞平均长度分别短13.9μm和24.6μm。表明eui基因促进细胞分裂和细胞伸长的作用随处理温度的升高逐渐减弱。
     (5)以培矮64S为对照群体,长选3S为目标群体,进行抑制差减杂交。用经过PA cDNA差减的CX cDNA构建一个差减文库。该文库包含约130个独立的重组克隆,插入片段平均大小为185 bp左右。
     (6)采用差减前的培矮64S cDNA和长选3S cDNA以及正向/反向差减杂交后的cDNA为模板标记探针,对随机挑取的96个重组克隆进行差示筛选,结果筛选出与差减前的长选3ScDNA探针和正向差减的cDNA探针都有杂交信号的特异表达克隆4个,只与正向差减的cDNA探针有杂交信号的特异表达克隆16个,共计20个,从20个候选阳性克隆中随机挑取8个进行Northern杂交,证实其中1个候选阳性克隆为长选3S穗颈节间特异表达的cDNA片段。但该基因是否为水稻中的高秆隐性基因(即eui基因)以及它在隐性长穗颈不育水稻穗颈节间伸长过程中的作用,还有待于在获得该cDNA片段的全长、进行更有效地同源性比较和对其进行功能研究后才能确定。
     综上所述,eui基因具有显著地促进穗颈节间内层薄壁细胞伸长的作用;该基因的表达与育性敏感期(即花粉母细胞形期至减数分裂期)的日均温度呈极显著的负相关,在此时期内如果日均温度在24℃-26℃之间,则能同时满足不育基因和eui基因的充分表达。因此,隐性长穗颈不育水稻在大田生产应用时要注意选择适宜的时间段和地域,既保证隐性长穗颈eui基因能够充分表达,又确保其育性不发生波动;在隐性长穗颈eui基因感温的敏感时期若遇到持续高温天气,在抽穗时则可通过适当喷施赤霉素以确保穗颈节伸出。有关eui基因全序列的获得和其功能确定还需要作大量的研究工作。
The poor exserted panicle of the male sterile line in rice is one ofmain problems in hybrid seed production. In order to overcome the panicleenclosed, spraying GA_3 is the only sure to make panicle exserted. However,elongated uppermost internode(eui) gene is very useful for seedproduction of hybrid rice. Changxuan 3S was thermo-sensitive malesterile(TGMS) rice with eui gene selected from seeds of Peiai 64Sirradiated by 350 Gy~(60)Coγ-ray. To provide science evidence and theorysupport for exploiting and utilizing TGMS rice Changxuan 3S with eui gene,the correlativity between panicle exsertion of Changxuan 3S and naturetemperature was analyzed, and effect of temperature on eui gene expressionwas studied, and the cell number and length were researched. At the sametime, specifc expression cDNA seqence of the uppermost internode forchangxuan 3S were isolated and cloned by using supperssion subtractivehybridization (SSH). The main results were showed as below:
     The culm length of Changxuan 3S was 24.3 cm longer than that of Peiai64S, the increased culm length for Changxuan 3S was mainly due to theelongation of the uppermost internode. The length of the uppermostinternode for Changxuan 3S was 16.6cm longer than that of Peiai 64S, andthe panicle exsertion was 13.8cm longer than that of Peiai 64S at naturaltemperature condition. Cytological studies on Changxuan 3S and Peiai 64Sshowed that the number of external and internal parenchyma cells in theuppermost internode of Changxuan 3S were 1 248 and 580 more than thoseof Peiai 64S respectively and the length 23.3μm and 38.3μm longer respectively. The number and length of cell had no obvious difference inbasal and top sections, but the length of parenchyma cell in middle sectionof the uppermost internode in Changxuan 3S was much longer than that inPeiai 64S, i.e. the two kinds of parenchyma cells were 24.8μm and 48.7μm longer respectively. Those resulted in 16.6 cm longer for uppermostinternode and 13.8 cm longer for panicle exserted in Changxuan 3S thanthat in Peiai 64S. It is, therefore, evident that elongation of uppermostinternode of Changxuan 3S is due to the increase of cell number and cellelongation. And the elongation of later was more significant.
     The length of panicle exsertion of Changxuan 3S was negativelycorrelated with a daily average temperature during 20-9d beforeflowering and with a most effective period between 17-12d at naturaltemperature condition.
     The optimal panicle exsertion of Changxuan 3S was recorded in thisstage of 17-12d before flowering when treated for 6 d at 24℃. The resultof artificial temperature treatment was the same as the correlationanalysis between panicle exsertion and daily mean temperature of 17-12dbefore flowering at natural temperature condition, i.e. the criticalperiod of eui gene expression to temperature was the period of preblooming17-12d (forming pollen mother cell and meiosis)
     Changes in length of elongated uppermost internodes under thecondition of constant 24℃showed that the internodes began elongation atpreblooming 12d. At preblooming 8d, high elongation of the internodes wasrecorded, and the elongation rate of internodes for Changxuan 3S wasfaster than that of Peiai 64S. The fastest period of internode elongationof Changxuan 3S was the fourth day preblooming to 0 day (flowering) withthe rate of 5.8 cm per day, which contributed 63.38%of the total length,while Peiai 64S had 2.65 cm elongation per day and 50.72%of the totallength. The internodes elongation rate decreased obviously afterflowering, and stopped elongation at the third day after flowering. The results demonstrated that the difference of internodes elongation betweenChangxuan 3S and Peiai 64S was mainly the fourth day preblooming toflowering and the mean elongation rate of internodes for Changxua3S was2.2 times faster than that of Peiai 64S.
     When the temperature treatments at 22℃, 24℃, 26℃or 28℃wereimposed on Changxuan 3S during the most sensitive period of eui geneexpression, the expression of eui gene was depressed under the temperatureof 28℃, whereas improved at the temperature of 22℃, 24℃, 26℃, in thatthe lower the temperature, the longer the panicle exsertion. Afterdifferent temperature treatments, the cell number and mean length ofelongated uppermost internodes were lower along with increasingtemperatures in Changxuan 3S. After treated at 28℃, the number ofoutermost and innermost parenchyma cells was 771 and 292 respectively morethan those of 22℃. The mean length of cells was 13.9μm and 24.6μmrespectively shorter than those of 22℃. The mean length of the two cellshad no obvious difference in basal and top sections, but the mean lengthof outermost and innermost parenchyma cells was 18.0μm and 35.4μmrespectively shorter than those of 22℃in middle sections
     A subtracted cDNA library specific to Changxuan 3S was constructedby SSH and pGEM-T Easy Vector cloning, which consisted of 130 individualrecombinant clones. Each clone had an insert with the average size of 185bp, and the frequency of inserting was 100%.
     Using PCR-select differential screening kit, the 96 recombinantclones of the constructed above cDNA library were chosen randomly and thenhybridized with forward and reverse subtracted probes and unsubtractedprobes. The results showed that 20 positive clones specific to theelongated uppermost iternode of Changxuan 3S were obtained. To confirmtheir positive results, 8 clones of them were chosen randomly from theabove positive clones and analyzed by Northern blot hybridization. Theresults showed that the probe built from 1 candidate clone hybridized only with Changxuan 3S mRNA, 4 clones hybridized with Changxuan 3S and Peiai64S mRNA, while the other 3 clones had no hybridization signals withChangxuan 3S and Peiai 64S mRNA, which probably represented cDNA clonesexpressed by low-abundance transcripts in Changxuan 3S.
     The positive clone specific to the elongated uppermost iternode ofChangxuan 3S was sequenced. The relationship between the gene expressionand elongation of the uppermost internode for Changxuan 3S was discussed.
引文
1.李泽炳,肖翊华,朱英国,等.杂交水稻的研究与实践[M].上海:上海科学技术出版社,1982.
    2.卢兴桂,顾铭洪,李成荃,等.两系杂交水稻的理论与技术[M].北京:科学出版社,2001.
    3. Xiao J H, Li J M, Yuan L P, et al. Dominance is the major genetic basis of heterosis in rice as recealed by QTL analysis using molecular markers[J]. Genetics, 1995, 140: 745-754.
    4. Stuber C W, Lincoln S E, Wolff D W, et al. Identification of genetic factors contributing heterosis in a hybrid from two elite maize inbred lines using molecular markers[J]. Genetics, 1992, 132: 823-839.
    5.孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达[J].中国农业大学学报,1997,2(1):64,116.
    6.余四斌,李建雄,徐才国,等.上位性效应是水稻杂种优势的重要遗传基础[J].中国科学,C辑,1998,28(4):333-342.
    7.李任华,徐才国,李香花,等.有利基因与有利的基因互作能够提高籼粳杂种优势[J].遗传学报,1999,26(3):228-238.
    8. Li Z, Pinson S R M, Park W D, et al. Epistasis for three yield components in rice(Oryza sativa L) [J]. Genetics, 1997, 145: 453-465.
    9.程宁辉,高燕萍,杨金水,等.水稻杂种一代与亲本基因表达差异的分析[J].植物学报,1997,39(4):379-382.
    10.程宁辉,杨金水,高燕萍,等.玉米杂种一代与亲本基因表达差异的初步研究[J].科学通报,1996,41(5):451-454.
    11. Xiong L Z, G P Yang, C G Xu, et al. Relationships of differential gene expression in leaves with heterosis and heterozygosity in a rice diallel cross[J]. Mol Breeding, 1998, 4: 129-136.
    12. Wagner D B, Dong J, Carlson M R, et al Paternal leakage of mitochondrial DNA in pinus[J]. Theor hppl Genet, 1991, 62: 510-514.
    13. Shen Y, Xu R, Gao M, et al. Polyorphism of mitochondrial DNA from cytoplasmic male sterile and fertile lines in rice[J]. Journal of Zhejiang Agricultural University, 1996, 22(5): 441-447.
    14. Williams J G K, Kubelik A R, Livak K J, et al. DNA polyorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18: 6531-6535.
    15.王得元.辣椒抗烟草花叶病毒基因工程和杂种优势分子机理研究[博士学位论文].陕西杨凌:西北农业大学园艺系,1997,34-37.
    16.陈洪,钱前,朱立煌,等.杂交水稻油优63杂种纯度的RAPD鉴定[J].科学通报,1996,41(9):833-836.
    17.杨剑波,李莉,汪秀峰,等.利用RAPD技术检测杂交稻种子纯度Ⅱ.油优63与其三系DNA扩增产物的区别[J].安徽农业科学,1996,24(4):297-298.
    18.鲍文奎.机会与风险——40年育种研究的思考[J].植物杂志,1990,4:4-5.
    19. Tsaftaris A S. Molecularaspects of heterosis in plants[J]. Physiologia plantarum, 1995, 94: 362-370.
    20.胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础[J].遗传,1999,21(2):47-50.
    21.倪中福,孙其信,吴利民.普通小麦优势杂交种及其亲本之间基因表达差异比较研究[J].中国农业大学学报,2000,5(1):1-8.
    22. Xiong L, Lee M W, Qi M, et al. Identification of defense-related rice genes by suppression subtractive hybridization and differential screening[J]. Mol Plant Microbe Interact, 2001, 14(5): 685-692.
    23. Bernardo R. Relationship between single cross performance and molecular marker heterozygosity[J]. Theor Appl Genet, 1992,83:628~634.
    24. Lee M, Godshalk E B, Lamkey K R, etal. Association of restriction fragment length polymorphisms among maize in breds with agronomic performance of their crosses[J]. Crop Sci, 1989, 29:1067-1071.
    25. Smith O S, Smith J S C, Bowen S L, et al. Similarities among a group of elite inbreds as measured by pedigree, F1 grain yield, grain yield heterosis and RFLPs[J]. Theor Appl Genet, 1990, 80: 833~840.
    26. Godshalk E B, Lee M, Lamkey K R. Relationship of restriction fragment length polymorphisms to single cross hybrid performance of maize[J]. Theor Appl Genet, 1990, 80: 273-280.
    27. MelchingerA E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphisms: Relation to estimated genetic effects in maize inbreds[J]. Crop Sci, 1990, 30: 1033-1040.
    28. Boppenmaier J, Melchinger A E, Seitz G, et al. Genetic diversity for RFLPs in European maize inbreds. Performance of crosses with in versus between heterotic groups for grain traits[J]. Plant Breeding, 1993, 111: 217-226.
    29. Zhang Q, Gao Y J, Saghai Maroof M A, et al. Molecular divergence and hybrid performance in rice[J]. Molecular Breeding, 1995, 1: 133-142.
    30. Zhang Q E, Shen B Z, Dai X K, et al. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility rice[J]. Proc Natl Acad Sci, USA, 1994, 191:8 675-8 679.
    31. Saghai Maroof M A, Yang G P, Zhang Q, et al. Correlation between molecular marker distance and hybrid performancein U S Southern long grain rice[J]. Crop Sci, 1997, 37: 145-150.
    32. deVicente M C, Tanksley S D. QTL analysis of transgressive segragation in an interspecific tomato cross[J].Genetics, 1993, 134: 585-596.
    33.万清林.杂交水稻幼芽呼吸和抗氰呼吸强度的研究[J].武汉植物研究,1992,(2):133.
    34.刘文华.杂交水稻及三系在发育过程中的脂酶酮工酶比较研究[J].武汉植物研究,1987,5(3):267
    35.肖翊华,孙国荣.硝酸还原酶活性与水稻杂种优势预测和优势杂种筛选的研究[J].水稻育种技术基础研究论文集,1991,261.
    36.孙国荣.谷氨酰胺合成酶活性与水稻杂交优势预测[J].武汉植物学研究,1994,(2):147.
    37.朱鹏,孙国荣.MDH和GDH活性与水稻杂种优势预测[J].武汉大学学报,1991,(4):89.
    38.孙宗修,程式华.杂交水稻育种—从三系、两系到一系[M].北京:中国农业科学出版社, 1994.
    39.卢兴桂,顾铭洪,李成荃,等.两系杂交水稻理论与技术[M].北京:科学出版社,2001.
    40.袁隆平.我国两系法杂交水稻研究的形势、任务和发展前景[J].农业现代化研究,1997,18(1):1-3.
    41.朱英国,杨代常.光周期敏感核不育水稻研究与利用[M].武汉:武汉大学出版社,1992.
    42.李泽炳.光敏感核不育水稻育性转换机理与应用研究[M].武汉:湖北科学技术出版社,1995.
    43.李振宇,王志兴,陈广红.水稻光敏核不育系GB028S光温反应研究[J].垦殖与稻作,2000(4):1-3.
    44.张再君,梁承邺,戴绍均.水稻光敏核不育系HN5S不育性的遗传分析[J].作物学报,2002,28(1):131-135.
    45.廖亦龙,万邦惠.四种温敏核不育水稻不育性的遗传分析[J].福建稻麦科技,1998,16(3):1-4.
    46.李继开,姚振广.光温敏基因雄性不育水稻遗传规律研究[J].垦殖与稻作,2002(4):3-6.
    47.元生朝,张自国,许传桢.光照诱导光敏感核不育水稻育性转换研究[J].华中农业大学学报,1987,2(7):12-27.
    48.陈良碧,周广洽.光、温敏不育水稻雄性败育的细胞学研究[J].激光生物学报,1993,2(1):225-228.
    49.陈良碧,李训贞,谭周,等.安农S-1水稻光温敏核不育系的育性研究:不同育时期花药和花粉扫描电镜观察[J].湖南师范大学学报,1990,13(2):141-145.
    50.肖翊华,陈平,刘文芳.光敏感核不育水花药败育过程中有利氨基酸的比较分析[J].武汉大学学报(自然科学版),1987(HPGMR专刊):95-100.
    51.俞美玉.CRMS诱导水稻雄性不育的研究.CRNS对水稻花药游离脯氨酸含量的影响及其与花药败育的关系[J].中国水稻科学,1991,5(4):169-174.
    52.朱英国.水稻雄性不育生物学[M].武汉:武汉大学出版社,2000.
    53.陈良碧,周广洽,黄玉祥.温敏不育水稻幼穗发育过程中ATP含量、呼吸速率动态变化研究[A].周广洽主编,温敏不育水稻生态生理学[M].长沙:湖南师范大学出版社, 1996,164-168.
    54.王明全,徐振平.RNA合成抑制剂对光敏感核不育水稻花粉育性的影响[J].植物生理学通讯,1994,30(6):426-428.
    55.肖翊华.光敏感核不育水稻光周期及其生理学[M].武汉大学出版社,1993,205-211.
    56.刘立军,薛光行.水稻光敏核不育基因相关产物的初步研究[J].作物学报,1995,21(2):251-254.
    57.陈员,梁承邺.湖北光敏感核不育水稻花药能量和活性氧代谢[J].植物学报,1992,34(6):416-425.
    58.陈良碧,周广洽.热激对光温敏核不育水稻几种酶活力的影响[J].湖南师范大学自然科学学报,1997,20(20):79-81.
    59.陈良碧,周广洽.温敏不育水稻育性敏感期生理变化研究[A].见.周广洽.温敏核不育水稻光温生态生理学[M].长沙:湖南师范大学出版社,1996.235-236.
    60.舒孝顺,陈良碧,吕金海.温敏感核不育水稻育性敏感期核糖核酸的变化[J].作物学报,2000,26(3):381-384.
    61.骆炳山,李文斌,屈映兰,等.湖北光敏感核不育水稻育性转换机理初报[J].华中农业大学学报,1990,9(7):7.
    62.李德红,骆炳山,屈映兰.光敏核不育水稻幼穗的乙烯生成与育性转换[J].植物生理学报,1996,22(3):320-326.
    63.徐孟亮,刘文芳,肖翊华.湖北光周期敏感核不不育水稻幼穗IAA的变化[J].华中农业大学学报,1990,9(4):381-386.
    64.张端品,邓训安,余功新,等.农垦58S光敏雄性核不育基因的染色体定位[J].华中农业大学学报,1990,9(4):407-419.
    65.钱前,朱旭东,曾大力,等.湖北水稻光敏感核不育基因msph的定位研究[J].浙江农业大学学报,1995(7):429-433.
    66.林兴华,余功新,张端品,等.NK58S光敏核不育基因在水稻第5染色体上位置的确定[J].华中农业大学学报,1996,15(1):1-5.
    67.胡学应,万帮惠.水稻光(温)敏核不育基因的遗传分析[A].两系法杂交水稻研究论文集[C].北京:农业出版社,1991,12(3):111-124.
    68. Zhang Q, Gao Y L, Yang S H, et al. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and Microsatellite[J]. Thero Appl Genet, 1994, 89: 185-192.
    69.张忠廷,李松涛,王斌,等.RAPD在水稻温敏核不育研究的应用[J].遗传学报,1994,21(5):373-378.
    70.王京兆,王斌,徐琼芳,等.用RAPD方法分析水稻温敏核不育基因[J].遗传学报,1995,22(1):53-58.
    71. Liu N, Shah Y, Wang F P, et al. Identification of an 85-kb DNAfragment containing PMS1, a locus for photoperiod-sensitive genic male sterility in rice[J]. Mol Genet Genomics, 2001, 266: 271-275.
    72. Wang B, Xu W W, Wang J Z, et al. Tagging and mapping the thermo-sensitive genic male sterile gene using molecular makers[J]..Theor Appl Genet, 1995, 91: 1111-1114.
    73.王凤平,梅明华,徐才国,等.光敏核不育水稻农垦58S与正常品种“农垦58”在pms1区段无育性基因分离[J].植物学报,1997,39(10):922-925.
    74. Mei M H, Chen L, Zhang Z H, et al. pms3 is the locus causing the original photoperiod-seensitive male sterility mutation of " Nongken 58S" [J]. Science in China(Series C ), 1999, 42(3): 316-332.
    75.李子银,林兴华,谢岳峰,等.利用分子标记定位农垦58S的光敏不育基因[J].植物学报,1999,41(7):731-735.
    76.陈亮,梅明华,徐才国,等.鉴定与水稻光敏核不育基因pms3连锁的AFLP—RFLP标记[J].厦门大学学报(自然科学版),2000,39(4):421-425.
    77.李香花,王伏林,陆青,等.水稻光敏核不育基因pms3的精细定位[J].作物学报,2002,28(3):310-314.
    78. Subudhi P K, Borkakati R P, Virmani S S, et al. Molecular mapping of a thermo-sensitive genetic male sterility gene in rice using bulkrd segregant analysis[J]. Genome, 1997, 40: 188-194.
    79. Dong N V, Subudhi P K, Luong P N, et al. Molecular mapping of a rice gene conditioning thermo-sensitive genic male sterility using AFLP, RFLP and SSR techniques[J]. Theor Appl Genet, 2000, 100: 727-734.
    80. Jia J H, Li C Y, Qu X P, et al. Construction of genetic linkage map and chromosome mapping of tms5 gene in rice[A]. In: Abstract Book of Plant Grnomics in China[C]. Dalian, 2000: 37.
    81. Reddy OUK, Siddiq E A, Sarma N P, et al. Genetic analysis of temperature-sensitive male sterility in rice[J]. Theor Appl Genet, 2000, 100: 794-801.
    82. Koh H J, Son Y H, Heu M H, et al. Molecular mapping of a new genic male sterility gene causing chalky endosperm in rice(Oryza sativa)[J]. Euphitica, 1999, 106: 57-62.
    83.江树业,陈启锋,方宣钧,等.与水稻光敏核不育基因相关的cDNA片段的鉴定和染色体定位[J].科学通报,1999,44(9):2084-2088.
    84.李仕贵,周开达,朱立煌,等.水稻温敏显性核不育基因的遗传分析和分子标记定位[J].科学通报,1999,44(9):955-958.
    85.袁隆平.我国两系法杂交水稻研究的形势、任务和发展前景[J].农业现代化研究,1997,18(1):1-3.
    86.邓晓建,李仁端,周开达,等.水稻两用核不育系的生态育种[J].西南农业学报,1998,11(3):15-19.
    87. Okuno K, Kawai T. Variation of internode and other characters in induced long-internode mutants of rice[J]. Japan J Breed, 1978, 28(3): 243-250.
    88. Okuno K, Kawai T. Genetic analysis of induce long-internode mutants of rice[J]. Japan J Breed, 1978, 28(4): 336-342.
    89. Rutger J N, Carnahan H L. Fourth genetic element to facilitate hybrid cereal production-recessive tall in rice[J]. Crop Science, 1981, 21: 373-376.
    90.吴世弼,张琦华.水稻诱变获得隐性高秆基因[J].福建省农科院学报,1988,3(1):41-45.
    91.廖昌礼,倪克鱼,刘远坤,等.高秆隐性水稻Grlc的遗传与利用研究:Ⅰ.Grlc及其测交F_1的株高特征和秆型[J].西南农业学报,1988,1(1):43-46.
    92.孙立华,王月芳,蒋宁,等.具广亲和性的水稻隐性高秆细胞突变体[J].遗传学报,1994,21(1):67-73.
    93. Yang R-C, Yang S-L, Huang R-H, Zhang Q-Q. A new gene of elongated uppermost internode[J]. RGN, 1999, 16: 41-43.
    94. Rutger J N. Inheritance of semidwarf and other useful mutant genes in rice[J]. In:Rice Genetics, Manila: IRRI, 1986, 261-271.
    95. Maekawa M, Mawkawa T, Shinbashi N, Kinoshita T. Allelism of genes for elongation uppermost internod from two different sources[J]. RGN, 1989, 6: 101-103.
    96. Chen T-W. Studies on the Grlc recessive high type rice in genetics[J]. J Sichuan Agric Univ. 1992, 10(3): 509-521.
    97.陈建民,顾世梁,汤述煮,等.水稻隐性高秆突变的遗传研究[J].扬洲大学学报(自然科学版),1998,1(3):36-41.
    98.陈建民,汤述煮,陆驹飞,等.水稻隐性长节间与半矮生基因等位关系的遗传分析[J].江苏农业研究,1999,20(1):1-5.
    99.朱旭东,张晓惠,钱前,等.高秆隐性突变体Mh-1的株高遗传研究[J].遗传学报,27(4):311-316.
    100.梁康迳,王乃元,杨仁崔.水稻穗颈伸出度的遗传及其在育种上的应用[J].福建农学院学报,1992,2 1(4):380-385.
    101.黄荣华,杨仁崔,梁康迳,等.高秆隐性恢复系eR127在杂交水稻配组上的应用研究初报[J].福建农业学报,2001,16(1):5-7.
    102.杨蜀岚,杨仁崔,曲雪萍,等.水稻长穗颈高秆隐性基因eui2(t)的遗传及其微卫星分析[J].植物学报,2001,43(1):67-71.
    103.何祖华,李德葆.不同生育期水稻株高基因对GA_3敏感性及对内源激素含量的调节[J].植物生理通讯,1994,30(3):170-174.
    104.杨仁崔.高秆隐性杂交稻研究进展[J].中国农业科学,2001,34(2):232.
    105. Maekawa M, Kita F. Interaction of eui gene for the elongation of uppermost internode and some genes for elongation of internode[J]. Japan J Breed, 1983, 33(suppl. 1): 124-125.
    106. Librojo L, Khush G S. Chromosomal location of some mutant genes through the use of primary trisomics in rice[J]. In:Rice Genetics, Manila: IRRI, 1986, 249-255.
    107.吴玉良,何祖华,董继新,等.水稻高秆基因eui的初步分子定位[J].中国水稻科学,1998,12(2):119-12.
    108.杨蜀岚,马洪丽,张书标,等.水稻长穗颈高秆隐性基因的分子标记和定位[J].[福建农林大学学报(自然科学版)],2002,31(4):480-483.
    109. Virmani S S, Dalmacio R D, Lopez M T. eui gene for elongated uppermost internode transterred to indica rice[J]. IRRN, 1988, 13(6): 6.
    110.申宗坦,杨长登,何祖华.消除籼型野败不育系包颈现象的研究[J].中国水稻科学, 1987,1(2):95-99.
    111.何祖华,申宗坦.水稻穗颈伸出度的遗传与不育系改良[J].中国水稻科学,1991,5(1):1-6.
    112.杨仁崔.水稻不包穗雄性不育系的选育方法[J].中国专利,ZL98102050.x,2002.
    113. Kende H, van der Knaap E, Cho H T. Deepwater rice: a model plant to study stem elongation[J]. Plant Physiol, 1998, 118: 1105-1110.
    114.宋平,周燮.深水稻节间伸长生长的机制[J].植物学通报,2000,17(1):46-51.
    115. Choi V H, Yoshizawa K, Kobayashi M, Sakuri A. Distribution of endogenous gibberellins in vegetative shoots of rice[J]. Plant Cell Physiol, 1995, 36(6): 997-1001.
    116. Kobayashi M, Gaskin P, Spray C R, Phinney B O, MacMillan J. The metabolism of gibberellin A_(20) to A, by tall and dwarf mutants of Oryza sativa and Arabidopsis thaliana[J]. Plant Physiol, 1994, 106: 1367-1372.
    117. Bleecker A B, Schuette J L, Kende H. Anatomical analysis of growth and developmental patterns in the internode of deepwater rice[J]. Planta, 1986, 169: 490-497.
    118. Lorbiecke R, Sauter M. Induction of cell grown and cell division in the intercalary meristem of submerged deepwater rice(Oryza sativa L.) [J]. Planta, 1998, 204: 140-145.
    119. Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407(6802): 321-324.
    120. Cho H T, Kende H. Expression of expansin genes is correlated with growth in deepwater rice[J]. Plant Cell, 1997, 9: 1661-1667.
    121. Potter L, Fey S C. Xyloglucan endotransglycosylase activity in pea internodes[J]. Plant Physiol, 1993, 103: 235-241.
    122. Uozu S, Tanaka-Ueguchi M, Kitano H, Hattori K, Matsuoka M. characterization of XET - related genes of rice[J]. Plant Physiol, 2000, 122: 853-859.
    123. Sauter M, Seagull R W, Kende n. Internodal elongation and orientation of cellulose microfibrils microtubules in deepwnter rice[J]. Planta, 1993, 190: 354-362.
    124. Kobayashi M, Sakurai A, Saka H, Takahashi N. Fluctuation of the endogenous IAA level in rice during its life cycle[J]. Agric Biol Chem, 1989, 53(4): 1089-1094.
    125.汤日圣,张远海,张金渝,等.矮秆基因对水稻性状控制的机理探讨[J].中国农业科学,1991,24(2):51-56.
    126. Cosgrove D J. Cell wall loosening by expansins[J]. Plant Physiol, 1998, 118: 333-339.
    127.宋平,高红胜,曹显祖,等.不同籼稻品种的矮生性与内源ABA水平及其结合蛋白的关系[J].西北植物学报,1998,18(3):380-385.
    128. Hoffmann-Benning S, Kende H. On the role of abscisic acid and gibberellin in the regulation of growth in rice[J]. Plant Physiol, 1992, 99: 1156-1161.
    129. Romano C P, Cooper M L, Klee H J. Uncoupling auxin and ethylene effects in transgenic tobacco and arabidopis plants[J]. Plant Cell, 1993, 5: 181-189.
    130. Suge H, Tokairin H. Plant response to wind as affected by genetic backgrounds in rice plants[J]. Japan ]our Crop Sci, 1982, 51(3): 380-385.
    131. Ross J J, Reid J B, Gaskin P, MacMillan J. Internode lenth in Pisum. Estimation of GA_1 levels in genotypes Le, 1e and 1e~d [J]. Physiologia Plantarum, 1989, 76: 173-176.
    132. Ross J J, Murfet I C, Reid J B. Gibberellin mutants[J]. Physiologia Plantarum, 1997, 100: 550-560.
    133. Ashikari M, Wu J, Yano M, Sakaki T, Yoshimura A. Rice gibbrerllin-insensitive dwarf mutant geneDwarfl encodes the α-subunit of GTP-binding protein[J]. Proc Natt Aca Sci USA, 1999, 96(8): 10284-10289.
    134. Gurskaya N G, Diatchenko L, Chenchik A, et al. Equalizing cDNAsubtraction based on selective suppression of polymerase chain reaction: clonong of Jurkat cell transcripts induced by phytohe maglutinin and phorbol 12-myristate 13-acetate[J]. Analytical Biochemistry, 1996, 240: 90-97.
    135. Kim J Y, Chung Y S, Paek K H, et al. Isolation and characterization of a cDNA encoding the cysteine proteinase inhibitor, induced upon flower maturation in carnation using suppression subtractive hybridization[J]. Mol Cell, 1996a, 9(4): 392-397.
    136. Kim J Y, Chung Y S, Ok S H, et al. Characterization of the full-length sequences of phospholipase A_2 induced during flower development[J]. Biochim Biophys Acta, 1996b, 1489(2-3): 389-392.
    137.刘军,袁自强,刘建东,等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达基因[J].科学通报,2000,45(13):1392-1397.
    138. Ulmasov T, Hagen, Guilfoyle T J. ARF1, a transcription factor that binds to auxin response elements[J]. Science, 1997, 276: 1865-1868.
    139. Christian S H, Thomas B. The Arabidopsis gene MONOPTEROS enaodes a transcription factor mediating embryo axis formation and vascular development[J].EMBO J, 1998, 17(5): 1405-1411.
    140. Allen S, Jennifer L N, Andy M, et al. ETTIN paterms the hrabidopsis floral meristem and reproductive organs[J]. Development, 1997, 124: 4481-4491.
    141. Bahn S C, Bae M S, Park Y B, et al. Molecular cloning and characterization of a novel low temperature-induced gene blti2 from barley(Hordeum Vulgare L)[J]. Biochem Biophys Acta, 2001, 1522(2): 134-137.
    142. Hinder hofer K, Zentgraf U. Identification of a transcription factor specifically expressed at the onset of leaf senescence[J]. Planta, 2001, 213(3): 469-473.
    143.郭新红,姜孝成,潘晓玲,等.用抑制差减杂交法分离和克隆梭梭幼苗受渗透胁迫诱导相关基因的cDNA片段[J].植物生理学报,2001,27(5):401-406.
    144.杨孚初.“九二0”对杂交水稻种子质量的影响[J].杂交水稻,19990,14(1):20-21.
    145.周广洽,陈良碧,梁满中,徐孟亮.长穗颈双低温敏核不育水稻的选育[J].生命科学研究.2000,4(4):290-294.
    146.颜季琼,张孝琪,龙程高.等植物细胞壁的结构和功能的分子生物学基础[A].植物生理与分子生物学[M].余叔文.北京:科学出版社,1992,84-98.
    147.黄祥辉.植物细胞的延长生长[J].植物生理通讯,1984,2:6-11.
    148.岳莉莉,齐义鹏.绿色荧光蛋白——现代细胞生物学与分子生物学研究领域的新标记物[J].生物工程进展,1997,17(4):40-45.
    149.郑湘如,王希善.植物解剖结构显微图谱[M].北京:中国农业出版社,1983.168-171
    150.丁颖.中国水稻栽培学[M].北京:中国农业出版社,1961,160-165.
    151.张书标,杨仁崔,黄荣华,章清杞.水稻长穗颈光温敏核不育系培矮64S(1)的选育[J].核农学报,2001,15(4):193-198.
    152.黄荣华,章清杞,张书标,杨蜀岚,杨仁崔.辐射诱变选育水稻长穗颈不育系的初步研究[J].福建农业大学学报,2001,30(2):133-137.
    153.章清杞,杨仁崔.eui基因e-对杂交稻若干生物学特性的影响[J].中国农业科学,2003,36(7):735-739.
    154.徐孟亮,陈良碧,周广洽.培矮64S中不育临界温度低的新株系筛选[J].生命科学研究.1999,3(2):168-174.
    155.陈良碧,李训贞,周广洽.温度对水稻光敏、温敏核不育基因表达影响的研究[J].作物学报.1993,19(1):47-54.
    156. Diachenko L, Lau Y C, Campbell A P, et al. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proc Natl Acad Sci USA, 1996, 93: 6025-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700