前列腺素E_1对损伤血管内皮细胞的保护作用及其机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮病变是心血管疾病发生的关键环节,氧化应激和炎症损伤是引起血管内皮损伤的两大主要原因。前列腺素E1(Prostaglandin E1, PGE1)是一种具有广泛生物活性的内源性物质,是多不饱和脂肪酸二高γ-亚油脂酸(DGLA)的氧化产物。PGE1具有舒张血管、抑制血小板聚集、促进血管新生和降低血液粘度的作用。临床上广泛用于冠状动脉粥样硬化性心脏病、心力衰竭、脑梗死、肺心病、肺动脉高压、糖尿病并发症、肾病等的治疗。现在越来越多的研究开始探索PGE1的抗炎抗氧化和血管内皮保护作用。PGE1可以保护人视网膜色素上皮细胞避免氧化损伤,抑制甲氨蝶呤处理大鼠肠粘膜上皮细胞产生活性氧(ROS),降低外周血管疾病、外周动脉硬化症和肝缺血再灌注损伤患者血液循环中的可溶性黏附分子。但是,还没有直接证据证明PGE1对损伤的内皮细胞具有保护作用。
     本实验分别采用过氧化氢(H2O2)和肿瘤坏死因子-α(TNF-α)作为外源性自由基和炎症因子生成系统,模拟人脐静脉内皮细胞(HUVECs)的脂质过氧化损伤和炎症损伤过程,建立离体培养的HUVECs氧化损伤和炎症损伤模型,观察PGE1对氧化损伤和炎症损伤的HUVECs的保护作用,并探讨其可能机制,为其用于心、脑血管疾病的治疗提供药理学依据。
     我们首先探讨PGE1对氧化损伤HUVECs的保护作用,发现:(1)H2O2(200μM)能显著降低HUVECs细胞的活力,诱导细胞凋亡,可作为体外模型模拟氧自由基致HUVECs细胞氧化应激损伤;(2)PGE1可显著增高H2O2损伤的HUVECs的细胞活力,抑制细胞内LDH释放;(3)PGE1能够启动HUVECs细胞内抗氧化防御机制,显著减少MDA的生成量,提高细胞内SOD的活性和GSH-Px的含量,清除细胞内的ROS;(4)PGE1对H2O2诱导的HUVECs细胞凋亡有明显抑制作用,可抑制凋亡细胞染色质形态学的变化,降低细胞凋亡率;(5)PGE1可提高H2O2损伤的HUVECs细胞的NO水平、eNOS mRNA和蛋白质的水平。由此可见,PGE1能够保护H2O2损伤的血管内皮细胞,NO途径在该过程中发挥重要作用。
     我们接着探讨PGE1对炎症损伤HUVECs细胞的保护作用,发现:(1)TNF-a (10ng/ml)能显著降低HUVECs细胞的活力,明显上调黏附分子ICAM-1、VCAM-1和E-selectin的产生,增加其与单核细胞的黏附能力,可作为体外模型模拟炎症反应致内皮细胞炎症损伤;(2)PGE1浓度依赖性地降低损伤的HUVECs表面ICAM-1、VCAM-1和E-selectin的表达,降低单核-内皮细胞之间的黏附作用,从而阻止继发的炎症反应;(3)PGE1可明显抑制TNF-α诱导的NF-kB (p65)活化,这可能是PGE1抑制TNF-α诱导的内皮细胞损伤的原因之一;(4)PGE1抑制TNF-α诱导的细胞内ROS表达,这也可能是PGE1抑制TNF-α诱导的内皮细胞损伤的原因之一。由此可见,PGE1能够保护TNF-α损伤的HUVECs,这与其抑制TNF-α诱导的NF-kB (p65)活化和ROS产生。
     综上所述,PGE1对氧化损伤和炎症损伤的HUVECs具有保护作用,这为PGE1治疗血管内皮损伤性疾病如动脉粥样硬化、心绞痛、心肌梗死、弥散性血管内凝血等提供药理学证据。
Endothelial dysfunction is critical pathogenic factor in the development of cardiovascular diseases such as atherosclerosis, hypercholesteremia and disseminated intravascular coagulation. Oxidative stress and inflammation play critical roles in endothelial dysfunction.
     Prostaglandin E1 (PGE1), which is an important member of the prostaglandins family, is a product of arachidonic acid metabolism by cycloxygenase. PGE1 has vasodilator effects on the systemic and pulmonary circulation and cardio-protective effects during ischemia and reoxygenation. In addition, beneficial effects on angiogenesis, platelet aggregation, blood viscosity and fibrinolysis have been observed. Moreover, increasing attention has now been paid to the anti-oxidant activity, anti-inflammation activity and cytoprotective action of PGE1. PGE1 protected human retinal pigment epithelial cells against oxidative injury; prevented the production of ROS in the intestinal mucosa of methotrexate-treated rats; reduced circulating soluble adhesion molecules in peripheral vascular disease, peripheral arterial obstructive disease and hepatic ischemia/reperfusion injury. However, no direct evidence was provided about the protective effects of PGE1 on damaged vascular endothelium, which is an important contributor to the development of cardiovascular diseases.
     This study, therefore, was conducted to examine the protective effect of PGE1 on human umbilical vein endothelial cells (HUVECs) injured by hydrogen peroxide (H2O2) or tumor necrosis factor-a (TNF-a), and explore its mechanisms.
     We firstly examined the protective effect of PGE1 on HUVECs injured by H2O2, and find:(1) H2O2 (200uM) markedly increased cell permeability, damaged cellular antioxidant defenses and furthermore induced endothelial cell apoptosis. (2) PGE1 (0.25,0.50,1.00uM) dose-dependently increased cell viability and attenuated LDH release in H2O2-injuried HUVECs. (3) PGE1 (0.25,0.50,1.00uM) significantly reduced intracellular MDA, increased intracellular SOD and GSH-Pox activity, and reduced intracellular ROS in H2O2-injuried HUVECs. (4) PGE, (0.25,0.50, 1.00uM) significantly reduced apoptotic rate induced by H2O2 in a concentration-dependent manner. (5)PGE1 (0.25,0.50, 1.00uM) triggered NO release, eons protein and mRNA expression a dose-dependent manner in H2O2-injuried HUVEC. As stated above, we concluded that PGE1 significantly protected HUVECs from H2O2-induced cell damage, which was possibly mediated at least in part by a mechanism linked to the up-regulation of NO expression. Therefore, PGE1 inhibited vascular oxidative stress and further prevented the development of endothelial dysfunction.
     Then we examined the protective effect of PGE1 on HUVECs injured by TNF-a, and find:(1) TNF-a (lOng/ml) significantly increased VCAM-1, ICAM-1 and E-selectin expression, increased THP-1 cell adhesion to HUVECs. (2) PGE] (0.25, 0.50,1.00uM) significantly reduced the increased protein and mRNA expression of VCAM-1, ICAM-1 and E-selectin in TNF-a-treated HUVECs. (3) PGE, inhibits THP-1 cell adhesion to TNF-a-treated HUVECs. (4) PGE, (0.25,0.50,1.00uM) significantly reduced the increased intracellular ROS induced by TNF-a in TNF-a-treated HUVECs. (4) PGE1 (0.25,0.5, 1.0uM) decreased the level of p65 in the nucleus and increased p65 in the cytoplasm in TNF-a-treated HUVECs. In other word, PGE1 inhibited nuclear translocation of p65 in TNF-a-treated HUVECs. In summary, the present data suggested that PGE1 suppressed TNF-a-induced vascular inflammation which was possibly mediated by inhibition of oxidative stress and NF-kB activation. Therefore, PGE1 inhibited vascular inflammation and further prevented the development of endothelial dysfunction.
     In conclusion, PGE1 protected HUVECs from H2O2 or TNF-a induced injury, which shed light on the pharmacological basis for the clinical application of PGE1 for treatment of atherosclerosis and acute coronary syndrome, which are relevant to endothelial cell death.
引文
[1]尚晋,陈群.血管内皮功能障碍与动脉粥样硬化[J].福建医药杂志,2006;28(6):105-107.
    [2]Ross R. Atherosclerosis:an inflammatory disease[J]. N Engl J Med, 1999; 340(2):115-261.
    [3]王海涛,嵇克刚,王霞.改善血管内皮功能在心血管疾病中的研究进展[J].光明中医,2009;24(6):1193-1195.
    [4]Paniker NV, Srivastava SK, Beutler E. Glutathuone metabolism of the cells:Effect of glutathione reductase deficiency on the stimulation of hexose monophosphate shunt under oxidative stress[J]. Biochim Biophys Acta,1970; 215(3):456-460.
    [5]Trump BF, Berezesky I. Calcium-mediated cell injury and cell[J]. FASEB J,1995; 9(2):219-228.
    [6]McConkey D, Orrenius S. The role of calcium in the regulation of apoptosis[J]. J Leukoc Biol,1996; 59(6):775-783.
    [7]王得清,沈文梅,田亚平.羟自由基对细胞损伤作用的实验观察[J].生物化学与生物物理进展,1995;22(5):278-281.
    [8]李后开,戴敏.内皮细胞炎症反应在动脉粥样硬化研究中的作用[J].中国动脉硬化杂志,2004;12(5):607-610.
    [9]Krishnaswamy G, Kelley J, Yerra L, et al. Human endothelium as a source of multifunctional cytokines:molecular regulation and possible role in human disease[J]. J Interferon Cytokine Res,1999; 19(2):91-104.
    [10]Sinha AK, Colman RW. Prostaglandin E1 inhibits platelet aggregation by a pathway independent of adenosine 3',5'-monophosphate[J]. Science,1978; 200(4338):202-203.
    [11]Marchesi S, Pasqualini L, Lombardini R, et al. Prostaglandin E1 improves endothelial function in critical limb ischemia[J]. J Cardiovasc Pharmacol.2003; 41(2):249-253.
    [12]Schror K, Hohlfeld T. Mechanisms of anti-ischemic action of prostaglandin E1 in peripheral arterial occlusive disease [J]. Vasa,2004; 33(3):119-124.
    [13]Mehrabi MR, Serbecic N, Tamaddon F, et al. Clinical and experimental evidence of prostaglandin E1-induced angiogenesis in the myocardium of patients with ischemic heart disease[J]. Cardiovasc Res, 2002; 56(2):214-224.
    [14]Kuss M, Heidrich H, Koettgen E. Hemostatic and fibrinolytic effects of systemic prostaglandin E1 therapy in patients with peripheral arterial disease[J]. Vasa 2003; 32(3):145-148.
    [15]Weiss C, Regele S, Velich T, et al. Hemostasis and fibrinolysis in patients with intermittent claudication:effects of prostaglandin E1 [J]. Prostaglandins Leukot Essent Fatty Acids,2000; 63(5):271-277.
    [16]Vaughan DE, Plavin SR, Schafer AI, et al. PGE1 accelerates thrombolysis by tissue plasminogen activator[J]. Blood,1989; 73(5): 1213-1217.
    [17]姜宗文,曹丽英.前列地尔在临床上的应用[J].中国老年学杂志,2003;23(9):628-630.
    [18]Miho Y, Norihito S, Hisao T, et al. Induction of Human Thioredoxin in Cultured Human Retinal Pigment Epithelial Cells through Cyclic AMP-dependent Pathway; Involvement in the Cytoprotective Activity of Prostaglandin E1[J]. Exp Eye Res,1997; 65(5):645-652
    [19]Feng G, Toshiharu H. A synthetic analog of prostaglandin E1 prevents the production of reactive oxygen species in the intestinal mucosa of methotrexate-treated rats[J]. Life Sci,2002; 71(9):1091-1099.
    [20]Palumbo B, Oguogho A, Fitscha P, et al. Prostaglandin E1-therapy reduces circulating adhesion molecules (ICAM-1, E-selectin, VCAM-1) in peripheral vascular disease[J]. Vasa,2000; 29(3):179-185.
    [21]Gianetti J, Caterina MD, Cristofaro T, et al. Intravenous prostaglandin E1 reduces soluble vascular cell adhesion molecule-1 in peripheral arterial obstructive disease[J]. Am Heart J,2001;142(4): 733-739.
    [22]Hafez T, Moussa M, Nesim I, et al. The Effect of Intraportal Prostaglandin E1 on Adhesion Molecule Expression, Inflammatory Modulator Function, and Histology in Canine Hepatic Ischemia/Reperfusion Injury [J]. J Surg Res,2007; 138(1):88-99.
    [23]Liochev SI, Fridovich I. The effects of superoxide dismutase on H2O2 formation[J]. Free Radical Biol Med,2007; 42(10):1465-1469.
    [24]Roosje MA, Gerard H, Maria CE, et al. Function of Glutathione Peroxidase in Endothelial Cell Vitality[J]. Arch Biochem Biophys,2000; 382(1):63-71.
    [25]任德成.血管内皮细胞的氧化性损伤机理[J].心血管病学进展,2002;23(4):235-238.
    [26]Trasser A, O'Connor L, Dixit V. Apoptosis signaling[J]. Annu Rev Biochem,2000(69):217-245.
    [27]卫生部心血管病防治研究中心.中国心血管病报告,2006,中国大百科全书出版社.
    [28]张晋,王晓良.内皮源性血管活性因子的研究进展[J].中国药理学通报,2000;16(1):11-15.
    [29]Noll G, Tschudi M, Luscher TF. Endothelium and high blood pressure[J]. Int J Microcirc Clin Exp,1997; 17(5):273-279.
    [30]Drexler H. Endothelial dysfunction:clinical implications [J]. Prog Cardiovasc Dis,1997; 39(4):287-324.
    [31]Harsdorf R, Li P, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis[J]. Circulation,1999; 99(22): 29-34.
    [32]Miller D, Mac F, NG. Intracellular effects of free radicals and reactive oxygen species in cardiac muscle[J]. J Hump Hyperten,1995; 9(6): 465-473.
    [33]Block E. Hydrogen Peroxide alters the physical state and function of the membrane pulmonary artery endothelium cells[J]. J Cel Physiol,1991; 146(3):362-369.
    [34]Mosmann T. Rapid colorimetric assay for cellular growth and survival application to proliferation and cytolotoxity assays [J]. J Immumol Methods,1983; 65(1-2):55-63.
    [35]Gray J. Measurement of lipid oxidation:a review[J]. J Am Oil Chem Soc,1978;55(6):539-545.
    [36]Richard O. Cannon III. Role of nitric oxide in cardiovascular disease: focus on the endothelium[J]. Clin Chem,1998; 44(8B):1809-1819.
    [37]Dimmeler S, Rippmann V, Weiland M, et al. Angiotension II induces apoptosis of human endothelial cells:protective effect of nitric oxide[J]. Circ Res,1997; 81(6):970-976.
    [38]Dimmeler S, Haendeler J, Nehls M, et al. Suppression of apoptosis by nitric oxide via inhibition of ICE-like and CPP32-like protease[J]. J Exp Med,1997; 185(4):601-608.
    [39]Haendeler J, Zeiher AM, Dimmeler S. Nitric oxide and apoptosis [J]. Vitam Horm,1999; 57:59-79.
    [40]Dimmeler S, Zeiher AM. Nitric oxide-an endothelial cell survival factor[J]. Cell Death Differ,1999; 6(10):964-968.
    [41]Moncada S, Palmer RM, Higgs EA. Niric oxide:physiology, pathophysiology, and pharmacology [J]. Pharmacol Rev,1991; 43(2): 109-142.
    [42]Stagliano NE, Zhao W, Prado R, et al. The effect of nitric oxide synthase inhibition on acute platelet accumulation and hemodynamic depression in a rat model of thromboembolic stroke[J]. J Cereb Blood Flow Metab,1997; 17(11):1182-1190.
    [43]Stephen GH, Anthony JF, Sean MM, et al. Nitric oxide as a cellular antioxidant:A little goes a long way[J]. Free Radic Biol Med,2006; 40(3): 501-506.
    [44]Haider DQ Bucek RA, Giurgea AG, et al. PGE1 analog alprostadil induces VEGF and eNOS expression in endothelial cells[J]. Am J Physiol Heart Circ Physiol,2005; 289(5):H2066-2072.
    [45]Tsuboi K, Sugimoto Y, Ichikawa A. Prostanoid receptor subtypes[J]. Prostaglandins Other Lipid Mediat,2002; 68-69:535-556.
    [46]Gobeil F Jr, Dumont I, Marrache AM, et al. Regulation of eNOS expression in brain endothelial cells by perinuclear EP(3) receptors[J]. Circ Res.2002; 90(6):682-689.
    [47]Nachtigal P, KopeckyM, Solichova D, et al. The changes in the endothelial expression of eell adhesion molecules and iNOS in the vessel wall after the short-term administration of simvastatin in rabbit model of atherosclerosis [J]. J Pharm Pharmacol,2005; 57(2):197-203.
    [48]Collins RG, Velji R, Guevara NV, et al. P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice[J]. J Exp Med,2000; 191(1):189-194.
    [49]Cybulsky MI, liyama K, Li H, et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis[J]. J Clin Invest,2001,107(10): 1255-1262.
    [50]Gotoh R, Suzuki J, Kosuge H, et al. E-selectin blockade decreases adventitial inflammation and attenuates intimal hyperplasia in rat carotid arteries after balloon injury[J],2004, Arterioscler Thromb Vasc Biol, 24(11):2063-2068.
    [51]Sung BH, Kim SH, Yeo MG, et al. Human soluble E-selectin immunoadhesin inhibits leukemic monocyte adhesion to endothelial cells[J]. Cell Biochem Funct,2007,25(5):585-589.
    [52]Henseleit U, Steinbrink K, Goebeler M, et al. E-selectin expression in experimental models of inflammation in mice[J]. J Pathol,1996,180(3): pp317-325.
    [53]Sedgwick JD, Riminton DS, Cyster JG, et al. Tumor necrosis factor:a master-regulator of leukocyte movement[J]. Immunol Today,2000; 21(3): 110-113.
    [54]Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration:the multistep paradigm[J], Cell,1994,76(2), 301-314.
    [55]Zibara K, Chignier E, Covacho C, et al. Modulation of the expression of endothelial adhesion molecules(ICAM-1, PECAM-1, VCAM-1)-1 in aortic arch atheroscler lesions:quantitative study in ApoE deficient mice compared to wild-type(C57BL/6). Arterioscler Thromb Vasc Biol,2000; 20:-2288-2296.
    [56]Lenardo MJ, Baltimore D. NF-kappa B:a pleiotropic mediator of inducible and tissue-specific gene control[J]. Cell,1998; 58(2):227-229.
    [57]Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitin:The control of NF-κB activity[J]. Annu Rev Immunol,2000,18(1):621-663.
    [58]Musikacharoen T, Matsuguchi T, Kikuchi T, et al. NF-κB and STAT5 play important roles in the regulation of mouse Toll-like receptor gene expression[J]. Immunol,2001; 166(7):4516-4524.
    [59]Collins T, Read MA, Neish AS, et al. Transcriptional regulation of endothelial cell adhesion molecules:NF-kappa B and cytokine-inducible enhancers[J]. FASEB J,1995; 9(10):899-909.
    [60]Barnes PJ, Karin M. Nuclear factor-kappaB:a pivotal transcription factor in chronic inflammatory diseases[J]. N Eng1 J Med.1997; 336(15): 1066-1071.
    [61]Inoguchi T, Li P, Umeda F, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD (P)H oxidase in cultured vascular cells[J]. Diabetes,2000; 49(11):1939-1945.
    [62]Jay D, Hitomi H, Griendling KK. Oxidative stress and diabetic cardiovascular complications [J]. Free Radical Biol Med,2006; 40(2): 183-192.
    [63]Lee YJ, Kang DG, Kim JS, et al. Lycopus lucidus inhibits high glucose-induced vascular inflammation in human umbilical vein endothelial cells[J]. Vascul Pharmacol,2008; 48(1):38-46.
    [64]Khan MZ, Downing ND, Henry AP. Tibial reconstruction by ipsilateral vascularized fibular transfer[J]. Injury,1996; 27(9):651-654.
    [65]Weber C, Erl W, Pietsch A, et al. Antioxidants inhibit monocyte adhesion by suppressing nuclear factor-κB mobilization and induction of vascular cell adhesion molecule-1 in endothelial cells stimulated to generate radicals[J]. Arterioscler Thromb Vasc Biol,1994; 14(10): 1665-1673.
    [66]Muller JM, Rupec RA, Baeuerle PA. Study of gene regulation by NF-kappa B and AP-1 in response to reactive oxygen intermediates [J]. Methods,1997; 11(3):301-312.
    [67]Sen CK, Packer L. Antioxidant and redox regulation of gene transcription[J]. FASEB J,1996; 10(7):709-720.
    [68]Cao LH, Lee YJ, Kang DG. Effect of Zanthoxylum schinifolium on TNF-a-induced vascular inflammation in human umbilical vein endothelial cells[J]. Vascul Pharmacol,2009; 50(5-6):200-207.
    [69]Marui N, Offermann MK, Swerlick R, et al. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells[J]. J Clin Invest,1993; 92(4):1866-1874.
    [70]Walther M, Kaffenberger W, Van Beuningen D. Influence of clinically used antioxidants on radiation-induced expression of intercellular cell adhesion molecule-1 on HUVEC[J]. Int J Radiat Biol, 1999; 75(10):1317-1325.
    [1]Vane J, Corin RE. Prostacyclin:A Vascular Mediator[J]. Eur J Vasc Endovasc Surg,2003,26(6):571-578.
    [2]Kubis N, Levy BI. Angiogenic effect of prostaglandin I2 in relation with its effect on PPAR nuclear receptors[J]. JMol Cell Cardiol,2004,36(3):331-332.
    [3]Cipollone F, Cicolini G, Bucci M. Cyclooxygenase and prostaglandin synthases in atherosclerosis:Recent insights and future perspectives[J]. Pharmacol Ther, 2008,118(2):161-180.
    [4]Chandrasekharan NV, Dai H, Roos KL. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs:cloning, structure, and expression. Pharmacology.2002,99(21):13926-13931.
    [5]Lee IY, Bae YD, Jeoung DI, et al. Prostacyclin production is not controlled by prostacyclin synthase but by cyclooxygenase-2 in a human follicular dendritic cell line[J]. Mol Immunol,2007,44(12):3168-3172.
    [6]Bolego C, Buccellati C, Radaelli T, et al.eNOS, COX-2, and prostacyclin production are impaired in endothelial cells from diabetics[J]. Biochem Biophys Res Commun,2006,339(1):188-190.
    [7]Kawka DW, Ouellet M, Hetu PO, et al. Double-label expression studies of prostacyclin synthase, thromboxane synthase and COX isoforms in normal aortic endothelium[J]. Biochim Biophys Acta,2007,1771(1):45-54.
    [8]Wu KK, Liou JY. Cellular and molecular biology of prostacyclin synthase[J]. Biochem Biophys Res Commun,2005,338(9):45-52.
    [9]Chiang CW, Yeh HC, Wang LH, et al. Crystal Structure of the Human Prostacyclin Synthase[J]. JMol Biol,2006,364(3):266-274.
    [10]Hecker M, Ullrich V. On the mechanism of prostacyclin and thromboxane A2 biosynthesis[J]. J Biol Chem,1989,264:141-150.
    [11]Nakayama T, Soma M, WatanabeY, et al. Splicing mutution of the Prostacyclin synthase gene in a family associated with hypertension[J]. Biochem Biophys Res Commun,2002,297(5):1135-1139.
    [12]Nakayama T, Soma M, Saito S, et al. Association of a novel single nucleotide polymorphism of the prostacyclin synthase gene with myocardial infarction[J]. Am Heart J,2002,143(5):797-801.
    [13]Stitham J, Arehart EJ, Gleim SR, et al. Human prostacyclin receptor structure and function from naturally-occurring and synthetic mutations[J]. Prostag other Lipid Mediat,2007,82(1-4):95-108.
    [14]Parkington HC, Coleman HA, Tare M. Prostacyclin and endothelium-dependent hyperpolarization[J]. Pharmacol Res,2004,49(6):509-514.
    [15]金有豫,方云祥.前列腺素与白三烯的心血管药理[M]//陈修.心血管药理学.北京:人民卫生出版社,1997:80—100..
    [16]Fetalvero KM, Shyu M, Nomikos AP, et al. The prostacyclin receptor induces human vascular smooth muscle cell differentiation via the protein kinase A pathway[J]. Am J Physiol Heart Circ Physiol,2006,290:H1337-H1346.
    [17]Hasse A, Nilius SM, Schro K, et al. Long-term-desensitization of prostacyclin receptors is independent of the C-terminal tail[J]. Biochem Pharmacol,2003,65 (12) 1991-1995.
    [18]O'Keeffe MB, Reid HM, Kinsella BT. Agonist-dependent internalization and trafficking of the human prostacyclin receptor:A direct role for Rab5a GTPase[J]. Biochim Biophys Acta,2008,1783(10):1914-1928.
    [19]Wikstrom K, Reid HM, Hill M, et al. Recycling of the human prostacyclin receptor is regulated through a direct interaction with Rabl la GTPase[J]. Cell Signal, 2008,20(12):2332-2346.
    [20]Spisni E, Griffoni C, Santi S, et al. Colocalization prostacyclin (PGI2) synthase-caveolin-1 in endothelial cells and new roles for PGI2 in angiogenesis[J]. Exp Cell Res,2001,266(1):31-43.
    [21]Pola R, Gaetani E, Flex A, et al. Comparative analysis of the in vivo angiogenic properties of stable prostacyclin analogs:a possible role for peroxisome proliferator-activated receptors[J]. J Mol Cell Cardiol,2004,36(3):363-370.
    [22]Barbara D. Abbott.Review of the expression of peroxisome proliferators-activated receptors alpha (PPARa), beta (PPARβ), and gamma (PPARy) in rodent and human developmen[J]. Reprod Toxicol,2009,27(3-4):246-257.
    [23]Lefebvre P, Chinetti G, Fruchart JC,et al. Sorting out of PPARa in energy metabolism and vascular hormeostasis[J]. J Clin Invest,2006,116(3):571-580.
    [24]Semple RK, Chatttjee VK, O'Rahilly S. PPARy and human metabolic disease[J]. J Clin Invest,2006,116(3):581-589.
    [25]Pakrasi PL, Jain AK. Evaluation of cyclooxygenase 2 derived endogenous prostacyclin in mouse preimplantation embryo development in vitro[J]. Life Sci,2007, 80(16):1503-1507.
    [26]Delerive P, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors and inflammation[J]. J Endocrinol,2001,169(3):453-459.
    [27]Falcetti E, Flavell DM, Staels Bart, et al. IP receptor-dependent activation of PPARy by stable prostacyclin analogues[J]. Biochem Cell Biol,2007, 360(4):821-827.
    [28]Kuroda T, Hirota H, Fujio Y, et al. Carbacyclin induces carnitine palmitoyltransferase-1 in cardiomyocytes via peroxisome proliferator-activated receptor (PPAR) δ independent of the IP receptor signaling pathway [J]. J Mol Cell Cardiol,2007,43(1):54-62.
    [29]Yue TL, Bao WK, Beat J, et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation,2003, 108:2393-2399.
    [30]Atsuta H, Uchiyama T, Kanai H, et al. Effects of a stable prostacyclin analogue beraprost sodium on VEGF and PAI-1 gene expression in vascular smooth muscle cells[J]. Int J Cardiol,2009,132(3):411-418.
    [31]Straus DS, Glass CK. Anti-inflammatory actions of PPAR ligands:new insights on cellular and molecular mechanisms[J]. Trends Immunol,2007,28(12):551-558.
    [32]Fan Y, Wang Y, Tang Z, et al. Suppression of proinflammatory adhesion molecules by PPAR-δin human vascular endothelial cells [J]. Arterioscler Thromb Vasc Biol,2008,28(2):315-321.
    [33]Nakayama T, Masubuchi Y, Kawauchib K, et al, Beneficial effect of beraprost sodium plus telmisartan in the prevention of arterial stiffness development in elderly patients with hypertension and cerebral infarction[J]. Prostaglandins Leukot Essent Fatty Acids,2007,76(6):309-314.
    [34]Braun M, Hohlfeld T, Kienbaum P, et al. Antiatherosclerotic effects of oral cicaprost in experimental hypercholesterolemia in rabbits[J]. Atherosclerosis.1993, 103(1):93-105.
    [35]Ohata S, Ishibashi Y, Shimada T, et al. Effects of Oral Beraprost Sodium, A Prostaglandin I2 Analogue on Endothelium Dependent Vasodilatation in the Forearm of Patients With Coronary Artery Disease[J]. Clin Exp Pharmacol Physiol,2006, 33(4):381-387.
    [36]Muzaffar S, Shukla N, Bond M, et al. Acute inhibition of superoxide formation and Racl activation by nitric oxide and iloprost in human vascular smooth muscle cells in response to the thromboxane A2 analogue, U46619[J]. Prostaglandins Leukot Essent Fatty Acids,2008,78(4-5):247-255.
    [37]Albada ME, Berger RM, Niggebrugge M, et al. Prostacyclin therapy increases right ventricular capillarisation in a model for flow-associated pulmonary hypertension. Eur. J. Pharmacol,2006,549(1-3):107-116.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700