勐兴铅锌矿矿坑涌水量的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
勐兴铅锌矿自1958年建矿以来,经过多次技改扩建逐步壮大起来。到目前为止,矿山共开拓了1020、860、860-Ⅱ和795四个坑口,并由此开掘出多个运输巷道和斜井,进行大规模的探采工作。现已开采到580中段,并向550中段掘进,现有生产坑道不同开采标高大部分中段均有涌水,88线以北的795坑尤其突出,目前涌水量达4294m3/d,且涌水量有随开采深度的加深而增大的趋势。而根据目前最新探矿成果显示,矿区含矿层位延深低于200m,200m处均有矿化体(矿体)存在。因此,未来矿床开采深度将低于200m标高,与地表高程垂直高差超过800m,矿坑涌水成为制约矿山深部开采的主要因素。为确保未来矿床深部采矿活动的安全,对矿区进行详细的水文地质调查研究以及深部矿坑涌水量的数值模拟具有十分重要的意义。
     本次研究分丰水期和枯水期对矿区进行水文地质调研,取得了一大批水文地质资料和观测数据,在前人研究基础上系统的分析了矿区水文地质特征,较为全面地认识了矿区的水文地质条件,合理的划分含水层组以及水文地质单元,进一步确定了矿床水文地质类型和主要充水来源。系统分析了矿区地下水化学成分,查明了矿区地下水的补、径、排条件。在系统分析矿区所处水文地质单元的水文地质条件的基础上,概化了矿区水文地质概念模型,并建立模拟区的数学模型,应用GMS地下水模拟系统软件构建了矿区地下水三维有限差分网格模型,利用modflow模块计算模拟了矿区不同开采条件下的渗流场变化特征,并分析各项参数对模型的敏感程度。经研究主要获得以下几点认识:
     1.渗透系数、储水系数、尾矿库渗漏是未来深部开采矿坑涌水的重要影响因素。
     2.影响矿床充水的因素主要有大气降水强度、裂隙发育程度、地层产状、尾矿库和地形条件。地势高低和地形坡度的陡缓决定着地表水对矿床充水的影响大小;大气降水是矿坑地下水的主要补给来源;构造裂隙和层间裂隙是地下水流的主要通道,并控制着地下水渗流场的变化规律;而矿床疏干抽排水是矿区深部地下水主要的排泄方式。
     3.研究结果表明未来矿区深部开采仍以消耗地下水静储量为主,但随着开采深度加深,地下水水头越来越高,静水压力也越来越大,且深部构造复杂,裂隙含水层富水地段分布极不均匀,坑道揭穿富水地段可能会造成短时涌水突水的现象。
     4.应用校正后的modflow数值模拟模型,模拟预测了未来不同开采涌水量条件下地下水的渗流场变化特征,结果表明地下水渗流场随开采抽排水时间的延长,深部开采中段揭穿含水层部位形成较深的降落漏斗。对于富水性较差的含水层,部分巷道涌水将由于补给来源有限而逐渐被疏干。
Since been building in 1958, MENGXING lead-zinc mine has gradually expand after several technical innovation. So far, a total of four Tunnels:1020,860,860-Ⅱand 795 have been opened up, some transportation roadway and inclined have been dug to carry out large-scale mining exploration work. Now they are mining in the 580 center-sections, and excavating direct towords 550 center-sections, water inflow in most of the center-sections at different mining elevation of the current production tunnel, especially in 795 center-sections located on north of the 88 line, it's water inflow reaches at 4294m3/d, and the water yield increased as the depth of mining. According to the latest exploration results, there are mineralized bodys (ore) with seam-bit extension below to 200 meters deep. Therefore, in the future the mining depth of deposit will be lower than 200 meters elevation and more than 800m to the vertical height difference between the surface elevation,so water inflow will be the the main factors constrained deep mining.To ensure the security of future mining activities in the deep deposits, it is great significance to do a detailed hydrogeological investigation and research, as well as numerical simulation of the deep mine water inflow forecasting.
     This study is to investigate the hydrogeological of the mine area by wet and dry seasons, we obtained a large number of hydrogeological information and observational data, analysed the mining hydrogeological features in-depth based on the previous research, understood the hydrogeological conditions of the mining area comprehensively, in addition, the aquifer group and hydrogeological unit have been divided reasonably, the hydrogeological type of deposits and the main source of water filling have been further confirmed. Besides this, we analysis the groundwater chemical composition of mining area systematically, identified the recharge, runoff and discharge conditions of groundwater in the mining area. Based on systematic analysis the hydrogeological conditions of hydrogeological unit in the mining area, we generalized the hydrogeological conceptual model of groundwater in the mining area and established a mathematical model for the simulation area. Finally, we built the three-dimensional finite difference mesh model of groundwater in mining area with GMS, using the Modflow Module computing and simulation seepage field features variation of groundwater under different mining conditions in the area, and analyzes the sensitivity of various hydrogeological parameters to the simulation models. The study obtained the following understanding:
     1. Permeability coefficient, water storage coefficient, tailings leakage is the important factor of water inflow at deep mining condition in the future.
     2. The mainly factors that affect the deposits water-filled are atmosphere precipitation intensity, degree of crack development, stratigraphic occurrence, Tailings Reservoir, and terrain conditions. Terrain height and the steep of terrain slope determines the size of surface water recharge on the deposits water filling; atmospheric precipitation is the main recharge source for sap groundwater; structural cracks and fissures between layers is the main Channels of groundwater flow, and it controls the variation of groundwater seepage field; while deposit mine dewatering pumping is a major drainage way in deep groundwater discharge.
     3. The results show that consuming groundwater static reserves is the main way in mine deep mining in the future, but with the depth of exploitation deeper, the lever of groundwater head become higher, hydrostatic pressure is also growing, moreover, which might cause short-term water flush and water inrush phenomenon in the exposing rich water segment that the deep structure is complicated, the distribution of rich water segment of the fractured aquifer is extremely uneven.
     4. Appling the corrected Modflow numerical simulation model to simulation seepage field features variation of groundwater under different mining water inflow conditions of the area, The results showed that:with the pumping and drainage of exploitation time prolonged, the seepage field of deep exploitation center-sections which have expose the aquifers will formation a deep landing funnel.For the less water abundance aquifer, the water inflow of some part of the tunnel will gradually have been dewatering due to limited sources of supply.
引文
[1]薛禹群,朱学愚,吴吉春等.地下水动力学(2版)[M].北京:地质出版社,2001,145-148.
    [2]薛禹群,谢春红.地下水数值模拟.北京:科学出版社,2007,145-148.
    [3]房佩贤,卫中鼎,廖资生.专门水文地质学.北京:地质出版社,2005:116-267.
    [4]郭东屏,张石峰.渗流理论基础.西安:陕西科学技术出版社,1994:100-135.
    [5]曹剑峰等.专门水文地质学.北京:地质出版社,2006.5 212-256
    [6]http://igwmc.cigem.gov.cn/soft/PMWin. pdf
    [7]GMS 6.0 Tutorials Copyright(?)2005 Brigham Young University-Environmental Modeling Research Laboratory.
    [8]徐开礼.构造地质学.2版.北京:地质出版社,1989.3(2002.3重印)
    [9]杨洪枝、王家仁.勐兴铅锌矿地质与综合信息成矿预测.云南:科技出版社,2008.4 12-18
    [10]王大纯、张人权.水文地质学基础.北京:地质出版社,1995.6 27,124
    [11]覃荣高,高建国等.基于GMS基岩矿区地下水三维实体模型的构建.地下水,2009.10
    [12]李峰,李保珠,张兵,薛传东,张惠颖等.云南会泽铅锌矿矿区水文地质测绘研究报告[R].昆明理工大学地球科学系,2001.8.
    [13]张洪霞,宋文.地下水数值模拟的研究现状与展望.水利科技与经济,2007,13(11)
    [14]覃荣高,高建国,孙凤娟,王亚萍.西盟锡矿矿坑涌水量的预测分析.昆明理工大学学报(增刊),2008.10
    [15]云南省龙陵县勐兴铅锌矿床勘探地质报告.1985.12 68-86
    [16]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [17]仵彦卿,张倬元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [18]许广明.地下流体渗流理论与数值模拟.北京:地质出版社,2008.
    [19]钱家忠,汪家权.中国北方型裂隙岩溶水模拟及水环境质量评价.合肥:合肥工业大学出版社,2003.
    [20]仵彦卿.多孔介质污染物迁移动力学.上海:上海交通大学出版社,2007.
    [21]仵彦卿.岩土水力学.北京:科学出版社,2009.
    [22]周志芳.裂隙介质水动力学原理.北京:高等教育出版社,2007.1.
    [23]张宏仁.地下水非稳定流理论的发展和应用.北京:地质出版社,1975
    [24]李塞.2009.个旧锡矿高峰山矿段开采期渗流场数值模拟及涌水量预测.昆明理工大学硕士学位论文
    [25]魏军.2006.矿井涌水量的数值模拟研究.辽宁工程技术大学硕士学位论文
    [26]毛邦燕.2005.复杂岩溶介质矿井涌水量的三维数值模拟研究.成都理工大学硕士学位论文
    [27]李保珠.会泽铅锌矿区水文地质条件及麒麟厂深部矿坑涌水量预测.中国学位论文全文数据库,2001
    [28]梁秀娟,林学钰,苏小四等.GMS与苏锡常地区地下水流模拟.人民长江,2005,36(11):25-36
    [29]白利平,王金生.GMS在临汾盆地地下水数值模拟中的应用.山西建筑,2004,30(16):78-79
    [30]王敏,高宗军.基于GMS的泰安东武水源地地下水环境研究.山东科技大学学报自然科学版,2009,28(1):20-24
    [31]王媛,速宝玉,徐志英.等效连续裂隙岩体渗流与应力全耦合分析.河海大学学报,1998,26(2):25-30
    [32]王文科.地下水流数值模拟的发展与展望.西北地质,1995,16(4):52-57
    [33]李宁,周仰效,李文鹏.乌鲁木齐河流域柴窝堡盆地与河谷区地下水流模拟.水文地质工 程地质,2009.3:1-7.
    [34]仵彦卿.地下水流系统确定—随机性数值模型模拟递推解的灵敏度分析.工程勘察,1994(1):32-35
    [35]徐乐昌.地下水模拟常用软件介绍.铀矿冶,2002,21(1):33-39
    [36]祝晓彬.地下水模拟系统(GMS)软件.水文地质工程地质,2003(5):53-56
    [37]韩程辉,刘文生.地下水模拟系统(GMS)与矿井防治水.矿业安全与环保,2005,32(1):25-28
    [38]王仕琴,邵景力,宋献方等.地下水模型MODFLOW和GIS在华北平原地下水资源评价中的应用.地理研究,2007,26(5):975-984
    [39]魏文清,马长明,魏文炳.地下水数值模拟的建模方法及应用.东北水利水电,2006,24(260):25-29
    [40]薛禹群,谢春红,吴吉春.地下水数值模拟和电模拟中存在的问题.水文地质工程地质,1996(6):49-52
    [41]薛禹群,吴吉春.地下水数值模拟在我国——回顾与展望.水文地质工程地质,1997(4):21-25
    [42]王福刚,曹剑锋.改进的遗传算法在地下水数值模拟中的应用.吉林大学学报(地球科学版),2002,32(1):64-69
    [43]束龙仓,林学钰,廖资生.基岩裂隙水神经网络专家系统实例研究.水科学进展,1998,9(4):384-389
    [44]束龙仓,林学钰,廖资生.基岩裂隙水寻找与开发的专家系统建立.水文地质工程地质,1997(5):30-33
    [45]杨旭,杨树才,黄家柱.基于GIS的地下水数值模拟模型拟合方法.计算机工程,2004,30(11):50-51
    [46]王淼,陈晨,张丽玲.基于钻孔数据和GMS的地层三维建模与可视化的研究.基础工程设计,2007,11
    [47]王晓明,代革联,巨天乙,唐亦川.可视化的地下水数值模拟.西安科技学院学报,2004,24(2):184-186
    [48]薛传东,刘星,杨浩等.昆明市地热田越流含水系统中地下热水的数值模拟.地球科学进展.2003,18(6):899-906
    [49]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析.西安理工大学学报.2002,16(1):1-5
    [50]侯伟,仵彦卿,丁卫华.裂隙岩体渗流场与应力场耦合研究进展与展望.山西建筑.2006,32(15):1-2
    [51]仵彦卿.裂隙岩体应力与渗流关系研究.水文地质工程地质.1995,(6):30-35
    [52]林学钰,廖资生.水文地质基础工作在地下水模型研究中的重要性.水文地质工程地质.1992,19(1):6-9
    [53]仵彦卿.岩体裂隙系统渗流场与应力场耦合模型.地质灾害与环境保护.1996,7(1):31-35
    [54]孙家聪,杨世瑜,韩润生等.保山苏帕河水电站现今构造应力场数值模拟及区域稳定性评价[M].昆明工学院矿产地质研究所,1994.8
    [55]李保珠,李峰,薛传东,吴志亮.有限单元法在会泽铅锌矿涌水量预测中的应用.上海地质.2003,(4):13-17
    [56]张电吉,汤平,白世伟.节理裂隙岩体渗流与应力耦合分析.武汉化工学院学报.2004,26(4): 44-49
    [57]陈兴周,李建林,柴军瑞,王如宾.考虑应力状态的裂隙岩体渗透系数确定方法简述.地下水.2005,27(5):352-365
    [58]梅一,吴吉春FEMWATER模块下三维有限元网格的构建.工程勘察,2008.9:28-35
    [59]梅一,吴吉春.基于FEMWATER的东北某地抽水蓄能电站渗流模型研究.水文地质工程地质,2008.6:1-5
    [60]柴利明.方庄煤矿水文地质单元划分的依据.内蒙古煤炭经济,2006(5):112-114
    [61]肖有才,张秀成,王宏艳.灰色理论在预测深埋型矿井涌水量中的应用.辽宁工程技术大学学报,2004,23(2):175-178
    [62]T.H.格泽尔,A.B.祖博娃.矿床疏干系统的水文地质模拟。矿山防治水.1993,(4):52-60
    [63]霍建党,王平,矿床水文地质野外试验方法的合理性分析.铀矿冶,2008,27(1):5-9
    [64]周志芳,李艳.解裂隙水运动问题的混合网络有限元法,1996,24(3):112-117
    [65]黄勇,周志芳.裂隙网络介质地下水流运动参数反演分析,2004,22(1):12-16
    [66]冉云明,徐德斌,程翔.沙包梁隧道水文地质勘察分析及涌水量计算.中国水运,2008年第7期
    [67]黄卓广,黄钟焕,黄梅新.比拟法在矿区矿坑涌水量预测应用实例.西部探矿工程,2006年第3期
    [68]仵彦卿.利用多孔压水试验资料计算裂隙岩体的渗透系数张量.地质灾害与环境保护,1993,4(1):61-64
    [69]周创兵,熊文林,双场耦合条件下裂隙岩体的渗透张量,岩石力学与工程学报,1996,15(4):338-344
    [70]张金才,张玉卓,应力对裂隙岩体渗流影响的研究,岩土工程学报,1998,20(2):19-22
    [71]郑少河,赵阳升,三维应力作用下天然裂隙渗流规律的实验研究,岩石力学与工程学报,1999,18(2):1-8
    [72]柴军瑞,采用模拟技术计算裂隙岩体的渗透系数张量,工程勘察,2000,(5):4-6
    [73]孙晋玉,张强,许模,应用化学动力学求解裂隙-岩溶介质渗流参数,岩土力学,2001,25 (4):601-604
    [74]周志芳,裂隙双重介质地下水运动参数反演分析,水动力学研究与进展,2003,18(6):742-747
    [75]张电吉,白世伟,杨春和,裂隙岩体渗透性分析研究,勘察科学技术,2003,(1):24-27
    [76]许光祥,张永兴,哈秋聆,粗糙裂隙渗流的超立方和次立方定律及其试验研究,水利学报,2003,(3):74-79
    [77]李金轩,余修日,低渗透裂隙岩体压水试验资料分析,岩石力学与工程学报,2004,23(9):1476-1480
    [78]程国明,马凤山,王思敬,陈祥军,袁仁茂,基于几何测量法的裂隙岩体渗透性研究,岩石力学与工程学报,2004,23(21):3595-3599
    [79]李康宏,邓祥辉,何萌,柴军瑞,李守义,基于钻孔资料的某尾矿坝渗透系数反演分析有限元模型建立,岩石力学与工程学报,2004,23(增1):4329-4332
    [80]喻永祥,吴吉春,利用ERT数据推求非均质多孔介质渗透系数初探,水文地质工程地质2006,(2):41-49
    [81]尹尚先,王尚旭,不同尺度下岩层渗透性与地应力的关系及机理,中国科学D辑地球科学2006,36(5):472-480
    [82]黄勇,周志芳,王锦国,低渗透性含水层水文地质参数确定方法及其应用,河海大学学报(自然科学版),2006,34(6):672-675
    [83]李平,卢文喜,杨威,李俊,水库裂隙岩体渗透系数张量的确定,水利学报,2007,38(11):1393-1396
    [84]Pind erqStathofS. Canthe Sharp Interface Salt Fresh Water Model Capture Transient Behavior. Developments in Water Science, Elsevier,1988.35:2 17 244.
    [85]W. G. Gray and G. F. Pinder, and C.A. Brebbia. Finite elements in water resources: proceedings of the second International Conference on Finite Elements in Water Resources, held at Imperial College, London, in July,1978.85-90
    [86]Bredehoeft, JohnD. The water budget mythr evisited:Why hydrogeologists model GroundWater, v40, n4,2002.340-345
    [87]Philippe Pasquier, Denis Marcotte. Steady- and transient-state inversion in hydrogeology by successive flux estimation[J]. Advances in Water Resources 29 (2006) 1934-1952
    [88]Zhou Xun, Chen Mingyou, Fang Bin, Zhang Hua, Shen Ye, Yao Jinmei. An analysis of the infer-aquifer rechargefor a deep-seated aquifer system tapped by a wellfield [J]. Environ Geol (2006) 51:647-653
    [89]Y.-J. Park, E. A. Sudicky, S. Panday, J. F. Sykes, V. Guvanasen. Application of implicit sub-time stepping to simulate flow and transportin fractured porous media [J]. Advances in Water Resources 31 (2008) 995-1003
    [90]Shiqin Wang, Jingli Shao, Xianfang Song, Yongbo Zhang, Zhibin Huo, Xiaoyuan Zhou. Application of MODFLOW and geographic information system to groundwater flow simulation in North China Plain, China [J]. Environ Geol (2008)55:1449-1462
    [91]Wa'il Y. Abu-El-Sha'r, Jehan F. Rihani. Application of the high performance computing techniques of parflow simulator to model groundwater flow at Azraq basin [J]. Water Resour Manage (2007) 21:409-425
    [92]Shiro Tamanyu. Fluid flow patterns calculated from patterns of subsurface temperature and hydrogeologic modeling—example of the Hohi geothermal area, Kyushu, Japan [J]. Journal of Geochemical Exploration 78-79 (2003) 273-277
    [93]Hassan Smaoui, Lahcen Zouhri, Abdellatif Ouahsine. Flux-limiting techniques for simulation of pollutant transport in porous media:Application to groundwater management [J]. Mathematical and Computer Modelling 47 (2008) 47-59
    [94]Leehee Laronne Ben-Itzhak, Haim Gvirtzman. Groundwater flow along and across structural folding:an example from the Judean Desert, Israel [J]. Journal of Hydrology 312 (2005) 51-69
    [95]NikitasMylopoulos, Y. Mylopoulos, N. Veranis, D. Tolikas. Groundwater modeling and management in a complex lake-aquifer system [J]. Water Resour Manage (2007) 21:469-494
    [96]Jorge Molinero, Javier Samper, Rube'n Juanes. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks [J]. Engineering Geology 64 (2002) 369-386
    [97]Bin He, Keiji Takase, Yi Wang. Numerical simulation of groundwater flow for a coastal plain in Japan:data collection and model calibration [J]. Environ Geol (2008) 55:1745-1753
    [98]Klaus Johannsen, Sascha Oswald, Rudolf Held, Wolfgang Kinzelbach. Numerical simulation of three-dimensional saltwater-freshwater fingering instabilities observed in a porous medium [J]. Advances in Water Resources 29 (2006) 1690-1704
    [99]Ju'lio F. Carneiro. Numerical simulations on the influence of matrix diffusion to carbonsequestration in double porosity fissured aquifers [J]. International Journal of Greenhouse Gas Control 3 (2009) 431-443
    [100]Nguyen Cao Don, Hiroyuki Araki, Hiroyuki Yamanishi, Kenichi Koga. Simulation of groundwater flow and environmental effects resulting from pumping [J]. Environmental Geology (2005) 47:361-374

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700