变速风电机组风电场并网的系统电压稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电装机容量的不断增长以及大容量风电场的不断出现,风力发电对电网的影响越来越大。由于风电机组与传统同步发电机组具有不同的特性以及自然界风速固有的间歇性、随机性,风电并网使电网的有功无功潮流分布、稳定性等都受到了较大的影响。因此,对风电场并网进行研究有着重要而现实的意义。本文主要分析了风电场并网之后对电力系统电压稳定性的影响,其中风电场主要基于两种典型的变速风电机组:基于双馈感应发电机的变速、变桨距控制风电机组和基于永磁同步发电机的变速、变桨距控制风电机组。
     (1)基于双馈感应发电机的变速、变桨距控制风电机组。发电机定子直接馈入电网,转子通过部分功率变频器馈入电网,此类变速风电机组通过变频器实现发电机有功、无功功率解耦控制,使风电机组具有变速运行的特性,能够提高风电机组的风能转换效率,实现最大风能捕获并减小风电机组机械部件所受应力;调节改善风电场的功率因数及电压稳定性。
     (2)基于同步发电机的变速、变桨距控制风电机组。此类风电机组多采用多极永磁的同步发电机,通过全功率变频器接入交流电网。由于变频器的解耦控制,使得基于同步发电机的变速风电机组与电网完全解耦合,其特性完全取决于变频器的控制系统及控制策略。
     本文首先建立了以上两种典型的变速风电机组的数学模型,风力发电机组的建模研究表明,过于简化的模型将使研究结果失真,过于复杂的模型会加大分析难度,因此对建立的完整数学模型进行了简化,得到系统得三阶动态模型。由于控制系统之于变速风电机组的特殊重要作用,本文探讨了变速风电机组的控制系统模型,最终得到一套适合与电压稳定分析的风电机组模型。
     考虑到风电机组的地理分布性以及机组型号的差异,本文讨论了对大型的风电场采用集总方法建立其等值模型。仿真结果表明,等值的风电场模型能够很好的替代详细模型以提高效率节省时间。
     采用静态分析与动态时域仿真相结合的方法对电力系统电压稳定进行了研究与分析,通过PV曲线首先研究了系统的静态电压稳定,然后分析了在风速扰动和线路故障条件下,包含风电场的电力系统暂态电压稳定,采用静止无功补偿SVC来提高含风电场的电力系统电压稳定。
     最后对电压失稳的机理采用分叉理论进行了分析,在一个典型的电力系统建立比通常的常微分方程(ODE)更详细的微分代数系统方程(DAE)模型,用时域仿真方法观察了包含风电场的系统混沌动态过程,含风电场的电力系统从Hopf分叉点到电压崩溃的全过程,其间经历倍周期分叉,其后出现混沌现象,然后遭遇Bluesky分叉,发生边界激变,导致电压在鞍结点之前崩溃。本文用时域仿真方法完整展示了含风电场的电力系统电压崩溃过程,由于系统的电压崩溃源于分叉,因此最后使用SVC消除分叉点的影响,抑制了系统混沌的出现。
With the growing of an installed capacity of wind power, as well as the continual emergence of large scale of wind farm, wind power has more and more influence on the power grid. Wind power has the different characteristic compared with the traditional synchronous generating units. Moreover, the wind speed has the inherent nature of intermittent, random, then, the integration of wind power changes the power flow distribution and the power grid stability. As a result, it's meaningful to investigate wind power integration. This paper focuses on the voltage stability after the large scale of wind farm integration. Two typical wind turbines were chosed to investigated, doubly fed induction generation (DFIG) and direct drive permanent magnet synchronous generator (PMSG).
     Variable speed and variable pitch wind generating unit based on DFIG, whose rotor was connected to the grid through partial scale frequency converter. The active and reactive power can be decoupled by the frequency converter in this wind generating, which can improve the transformation efficiency, capture the maximum wind energy.
     Variable speed and variable pitch wind generating unit based on PMSG, which is multi-pole synchronous generator. The wind generating unit was connected to the grid through full scale frequency converter. The wind generating unit was decoupled by the decoupling controller of frequency converter. Therefore, this characteristic of this generating unit was controlled by the control system of converter.
     The mathematical models of two typical variable wind speed wind turbines were established. Too simplification or too cpmplication model were not suitable to study, which had been proved by the current research. So we used the three-order model after simplifying the complete wind turbine model. We analyzed the model of control system since it is significant for the whole wind generating unit.
     In the meanwhile, the aggregated wind farm model was established after considering of the distribution of wind turbines, the equivalent wind farm model can represent the whole wind farm through the simulation results.
     In this paper, static analysis and dynamic time domain simulation were used to power grid voltage stability after wind farm integration. The PV curve was used to analyze static voltage stability, while time domain simulation was used to transient voltage stability under the wind speed disturbance and line trip. The static reactive power compensation (SVC) was added to improve the system stability after windfarm integration.
     Finally, the mechanism of voltage stability after wind farm integration was analyzed in detail. Based on the differential-Algebraic Equation (DAE) model of power system with wind farm, the chaotic behavior was observed through time domain simulation. The complete dynamic behavior includes period doubling bifurcation (PDB), chaotic motion and Bluesky bifurcation (boundary crisis), which gives rise to the voltage collapse before the saddle node bifurcation. We used the SVC to remove the Hopf. Bifurcation and restrict the chaotic since the oscillation instability due to Hopf. bifurcation.
引文
[1] P. Kundur, J. Paserba, V. Ajjarapu et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans. Power Syst., Aug. 2004,19(3): 1387-1401
    [2] P. Kundur. Power System Stability and Control. New York: McGraw-Hill, 1994
    [3] P. M. Anderson, A. A. Fouad. Power System Control and Stability. IEEE Power System Engineering Series, New York, 1993
    [4] Sauer P. W., Pai M. A. Power System Dynamics and Stability. Upper Saddle River, NJ: Prentice-Hall, 1998
    [5] Petru, Tomas. Modeling of wind turbines for power system studies, Ph. D., Chalmers Tekniska Hogskola (Sweden), 2003: 136
    [6] J. G. Slootweg, H. Polinder, W. L. Kling. Representing wind turbine electrical generating systems in fundamental frequency simulations. IEEE Trans. Energy Convers., Dec. 2003, 18(4): 516-524
    [7] A. D. Hansen, C. Jauch, P. Sorensen. Dynamic wind turbine models in power system simulation tool Digsilent. Rise National Laboratory, Ris0, Denmark, Tech. Rep. Ris(?)-R-400(EN), Dec. 2003
    [8] Tabesh, Ahmadreza. Dynamic modelling and analysis of multi-machine power systems including wind farms. Ph. D., University of Toronto (Canada), 2005: 148
    [9] R. Pena, J. C. Clare, G. M. Asher. Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy conversion. in Proc. Inst. Elect. Eng., May 1996, 143(3): 231-241
    [10] Pena-Guinez, Ruben Sigifredo. Vector control strategies for a doubly-fed induction generator driven by a wind turbine, Ph. D., The University of Nottingham (United Kingdom), 1996: 184
    
    [11] Tang, Yifan. High performance variable speed drive system and generating system with doubly fed machines, Ph. D., The Ohio State University, 1994: 147
    
    [12] J. G. Slootweg, H. Polinder, W. L. Kling. Dynamic modeling of a wind turbine with doubly fed induction generator. in Proc. IEEE Power Eng. Soc. Summer Meeting, Vancouver, BC, Canada, July 2001
    [13] S. Muller, M. Deicke R., W. De Doncker. Doubly fed induction generator systems for wind turbines. IEEE Ind. Applicat. May/June, 2002: 26-33
    [14] Dynamic Modeling of Doubly-Fed Induction Machine Wind-Generators. DIgSILENT GmbH, Germany, Tech. Rep., Aug. 2003
    [15] M. A. Poller. Doubly-fed induction machine models for stability assessment of wind farms. in Proc. IEEE Power Tech Conf., Bologna, Italy, June 2003
    [16] Petersson, Andreas, Analysis, modeling and control of doubly-fed induction generators for wind turbines. Ph. D., Chalmers Tekniska Hogskola (Sweden), 2005: 176
    [17] Brekken, Ted Kermit Anderson. A novel control scheme for a doubly-fed induction wind generator under unbalanced grid voltage conditions. Ph. D., University of Minnesota, 2005: 133
    [18] Rathi, Manoj. A novel robust control and fault ride through for wind turbines with doubly fed induction generator operating in weak grids. Ph. D., University of Minnesota, 2005: 106
    [19] F. M. Hughes, O. Anaya-Lara, N. Jenkins et al. Control of DFIG-based wind generation for power network support. IEEE Trans. Power Syst., Nov. 2005, 20(4): 1958-1966
    [20] F. M. Hughes, O. Anaya-Lara, N. Jenkins et al. A power system stabiliser for DFIG-based wind generation. IEEE Trans. Power Syst., May 2006, 21(2): 763-772
    [21] Y. Lei, A. Mullane, G. Lightbody et al. Modeling of the wind turbine with a doubly-fed induction generator for grid integration studies. IEEE Trans. Energy Convers., Mar. 2006,21(1): 257-264
    [22] I. Erlich, J. Kretschmann, J. Fortmann et al. Modeling of wind turbines based on doubly-fed induction generators for power system stability studies. IEEE Trans. Power Syst., Aug. 2007,22(3): 909-919
    [23] Gabriele Michalke, Anca D. Hansen, Thomas Hartkopf. Control of a wind park with doubly fed induction generators in support of power system stability in case of grid faults. Available: http: //www. risoe. dk/rispubl/art/ pdf, 2007: 153
    [24] V. Akhmatov, H. Knudsen. An aggregate model of a grid-connected, large scale, offshore wind farm for power stability investigations—importance of windmill mechanical system. Electric Power Systems Research, 2002,24: 709-717
    [25] M. Poller, S. Achilles. Aggregated wind park models for analyzing power system dynamics. in Proc. 4th Int. Workshop Large Scale Integration of Wind Power and Transmission Networks for Offshore Windfarms, Billund, Denmark, Oct. 2003
    [26] L. M. Fernandez, F. Jurado, J. R. Saenz. Aggregated dynamic model for wind farms with doubly fed induction generator wind turbines.Renewable Energy,2008,33(1):129-140
    [27]P.Sφrensen,A.Hansen,L.Janosi et al.Simulation of interaction between wind farm and power system.RISφ report R-1281(EN)(on-line:www.risoe.dk/rispubl/VEA/veapdf/ris-r-1281.pdf),Roskilde,Denmark,December 2001
    [28]J.G.Slootweg,W.L.Kling.The impact of large scale wind power generation on power system oscillations.Electric Power Systems Research,2003,67:9-20
    [29]J.G.Slootweg.Wind power:modeling and impact on power system dynamic.Ph.D.dissertation Delft,The Netherlands:Tech.Univ.Delft,2003
    [30]V.Akhmatov.Analysis of dynamic behavior of electric power systems with large amount of wind power.Ph.D.thesis,Technical Univ.Denmark,Lyngby,Denmark,Apr.2003
    [31]C.Eping,J.Stenzel,M.Poller et al.Impact of large scale wind power on power system stability.5th Int.Workshop on Large-Scale Integration of Wind Power and Transmission Networks for Offshore Wind Farms,Apr.2005
    [32]Zhou Fengquan.Modeling and analysis of wind farm impacts on power systems,M.Eng.,McGill University(Canada),2005:97
    [33]Persaud,Shashi.Impact of wind energy development on utility network behaviour and system operation.Ph.D.,Queen's University of Belfast(United Kingdom),2001:222
    [34]Bryans,Leslie.Grid integration of large-scale wind power.Ph.D.,Queen's University Belfast(United Kingdom),2006
    [35]Seman,Slavomir.Transient performance analysis of wind-power induction generators,D.Sc.(Tech.).Teknillinen Korkeakoulu(Helsinki)(Finland),2006:112
    [36]M.V.A.Nunes,J.A.P.Lopes,H.H.Zurn et al.Influence of the variable-speed wind generators in transient stability margin of the conventional generators integrated in electrical grids.IEEE Trans.Energy Convers,Dec.2004,19:692
    [37]F.Mei,B.Pal.Modal analysis of grid-connected doubly fed induction generators.IEEE Trans.Energy Convers,Jun.2007,22(3):728-736
    [38]雷亚洲,Gordno L.国外风力发电导则及动态模型简介.电网技术,2005,25(12):27-32
    [39]申洪,王伟胜,戴慧珠.变速恒频风力发电机组的无功功率极限.电网技术,2003,27(11):60-63
    [40]王承煦,张源.风力发电.北京:中国电力出版社,2003
    [41]叶杭冶.风力发电机组的控制技术.北京:机械工业出版社,2002
    [42]吴学光.风电场并网运行的数学建模及遗传算法模型优化研究:[博士学位论文].武汉:武汉水利电力大学,2000
    [43]申洪.变速恒频风电机组并网运行模型研究及其应用:[博士学位论文].北京:中国电力科学研究院,2003
    [44]李晶.变速恒频双馈风电机组动态模型及并网控制策略的研究:[博士学位论文].北京:华北电力大学,2004
    [45]李东东.变速风力发电系统的建模与控制:[博士学位论文].重庆:重庆大学,2005
    [46]邹旭东.变速恒频交流励磁双馈风力发电系统及其控制技术研究:[博士学位论文].武汉:华中科技大学,2005
    [47]金鑫.风力发电机组系统建模与仿真研究:[博士学位论文].重庆:重庆大学,2007
    [48]潘文霞.大型风电场电压稳定性分析与控制研究:[博士学位论文].南京:河海大学.2004
    [49]迟永宁.大型风电场接入电网的稳定性问题研究:[博士学位论文].北京:中国电力科学研究院,2006
    [50]张红光,张粒子,陈树勇等.大容量风电场对电力系统小干扰稳定和阻尼特性的影响.电网技术,2007,31(13):75-80
    [51]马幼捷,张继东,周雪松等.基于分叉理论的含风电场电力系统稳态电压稳定问题研究.电网技术,2008,32(9):74-79
    [52]贺益康,郑康,潘再平等.交流励磁变速恒频风电系统运行研究.电力系统自动化,2004,28(13):55—59
    [53]周双喜,朱凌志,郭锡玖等.电力系统电压稳定性及其控制.北京:中国电力出版社,2004
    [54]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究.中国电机工程学报,2005,25(8):90-94
    [55]Mtiller S.,Deicke M.,De Doncker R.W.Doubly fed induction generator systems for wind turbines.Industry Applications Magazine IEEE.2002,8(3):26-33
    [56]Feijoo A.,Cidras J.,Carrillo C.A Third Model for the Doubly-Fed Induction Machine.Electric Power Systems Research,2000,56(2):121-127
    [57]Y.Lei,A.Mullane,G.Lightbody et al.Modeling of the wind turbine with a doubly fed induction generator for grid integration studies.IEEE Trans.Energy Convers.,2006,21(1):257-264
    [58]Radunskaya A.,Williamson R.,Yinger R.A Dynamic Analysis of the Stability of a Network of Induction Generators.IEEE Trans.Power Systems,May 2008:657-663
    [59]林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究.中国电机工程学报,2003,23(11):122-125
    [60]苑国锋,柴建云,李永东.变速恒频风力发电机组励磁变频器的研究.中国电机工程学报,2005,25(8):90-94
    [61]卞松江,吕晓美,相会杰等.交流励磁变速恒频风力发电系统控制策略的仿真研究.中国电机工程学报,2005,25(16):57-62
    [62]李晶,王伟胜,宋家骅.变速恒频风力发电机组建模与仿真.电网技术,2003,27(9):14-17
    [63]P.M.Anderson,A.Bose.Stability simulation of wind turbine systems.IEEE Trans.Power App.Syst.,Dec.1983,102:3791-3795
    [64]Salman K.Salman,Anita L.J.Teo.Windmill Modeling Consideration and Factors Influencing the Stability of a Grid-Connected Wind Power-Based Embedded Generator.IEEE Trans.on Power Systems,MAY 2003,18(2):793-802
    [65]王伟.同步风力发电机的稳态模型及其并网问题研究:[硕士学位论文].北京:北京交通大学,2008
    [66]J.B.Ekanayake,L.Holdsworth,N.Jenkins.Comparison of 5th order and 3rd order machine models for doubly fed induction generator(DFIG) wind turbines.Electric Power Systems Research,2003,67(3):207-215
    [67]Kariniotakis G.N.,Stavrakakis G.S.,Nogaret E.F.Wind power forecasting using advanced neural networks models,IEEE Trans.on Energy Conversion,December 1996,11(4):762-767
    [68]FeijooA.E.,Cidras J.,Domelas J.L.G.Wind speed simulation in wind farms for steady-state security assessment of electrical power systems.IEEE Trans.on Energy Conversion,December 1999,14(4):1582-1588
    [69]Alexiadis M.C.,Dokopoulos P.S.,Sahsamanoglou H.S.Wind speed and power based on spatial correlation models IEEE Trans.on Energy Conversion,September 1999,14(3):836-842
    [70]刘其辉.变速恒频风力发电系统运行与控制研究:[博士学位论文].杭州:浙江大学,2005
    [71]吴迪,变速直驱永磁风轮发电机控制系统的研究:[硕士学位论文].上海:上海交通大学。2006
    [72]T.Thiringer,J.Luomi.Comparison of reduced-order dynamic models of induction machines,IEEE Trans.Power Systems,Feb.2001,16:119-126
    [73]郭金东,赵栋利,林资旭等.兆瓦级变速恒频风力发电机组控制系统.中国电机工程学报,2007,27(6):1-6
    [74]姚骏,廖勇,瞿兴鸿等.直驱永磁同步风力发电机的最佳风能跟踪控制.电网技术,2008,32(10):11-15,27
    [75]胡卫红,王玮,王英林等.电力系统潮流计算中风电场节点的处理方法.华北电力技术,2006(10):12-17
    [76]S.Heier.Grid Integration of Wind Energy Conversion Systems.John Willey and Sons,England,1998
    [77]E.Hau.Wind-Turbines Fundamentals,Techonlogies,Application,Economics.Spring Verlag,Germany,2000
    [78]T.Burton,D.Sharpe,N.Jenkins et al.Wind Energy Handbook.John Wiley &Sons,Ltd,2001
    [79]T.Ackermann(edited by),Wind Power in Power Systems,John Wiley and Sons,2005
    [80]Chiang H.D.,Flueck A.J.,Shah K.S.et al.CPFLOW:A Practical tool for tracing power system steady-state stationary behavior due to load and generation variations.IEEE Trans.Power Syst.,1995,10:623-634
    [81]S.K.M.Kodsi,C.A.Cafiizares.Modeling and simulation of IEEE 14 bus system with Facts controllers,Tech.Rep.Univ.Waterloo,ON,Canada,[Online]Available:http://www.power.uwaterloo.ca.,Mar.2003
    [82]Y.Mansour,W.Xu,F.Alvarado et al.SVC placement using critical modes of voltage instability.IEEE Trans.Power Syst.,May 1994,9(2):757-763
    [83]D.J.Hill,I.M.Y.Marcels.Stability theory for differential/algebraic systems with application to power systems.IEEE Trans.Circuits and Systems,Nov.1990,37(11):1416-1423
    [84]F.Milano.An open source power system analysis toolbox.IEEE Trans.Power Syst.,Aug.2005,20(3):1199-1206
    [85]N.Mithulananthan,C.A.Canizares,J.Reeve.Hopf bifurcation control in power system using power system stabilizers and static vat compensators,in Proc.North Amer.Power Symp.,San Luis Obispo,CA,Oct.1999:155-163
    [86]N.Mithulananthan,C.A.Cafiizares,J.Reeve et al.Comparison of PSS,SVC and STATCOM controllers for damping power system oscillations.IEEE Trans.Power Syst.,May 2003,18:786-792
    [87]M.J.Lautenberg,M.A.Pal,K.R.Padiyar.Hopf bifurcation control in power system with static vat compensators.Int.J.Electr.Power Energy Syst.,1997,19(5):339-347
    [88]K.N.Srivastava,S.C.Srivastava.Elimination of dynamic bifurcation and chaos in power systems using Facts devices.IEEE Trans.Circuits and Systems-Ⅰ:Fundamental theory and applications,Jan.1998,45(1):72-78
    [89]V.Ajjarapu,B.Lee.Bifurcations theory and its application to nonlinear dynamical phenomena in an electrical power system.IEEE Trans.Power Systems,1992,17(1):424-431
    [90]H.D.Chiang,C.W.Liu,P.P.Varaiya et al.Chaos in a simple power system.IEEE Trans.Power Systems,Nov.1993,8(4):1407-1417
    [91]H.O.Wang,E.H.Abed,A.M.A.Hamdan.Bifurcations,chaos,and crises in voltage collapse of a model power system.IEEE Trans.Circuits & Syst.Ⅰ,Mar.1994,41(3):294-302
    [92]C.Canizares."Voltage Stability Assessment:Concepts,Practices and Tools"Power System Stability Subcommittee Special Publication IEEE/PES.Final Document(thunderbox.uwaterloo,ca/-claudio/claudio,html#VSWG),August 2002
    [93]Taylor C.W.Power System Voltage Stability.New York:McGraw-Hill,1994
    [94]T.V.Cutsem,C.Voumas.Voltage Stability of Electric Power Systems.Kluwer Academic Publishers,Boston,1998
    [95]Tan C.W.,Varghese M.,Varaiya P.P.et al.Bifurcation,chaos,and voltage collapse in power systems.Proceedings of the IEEE,1995,83:1484-1496
    [96]R.Seydel.Practical Bifurcation and Stability Analysis:From Equilibrium to Chaos.2nded.New York:Springer-Verlag,1994
    [97]王宝华,杨成梧,张强.电力系统分岔与混沌研究综述,电工技术学报,2005,20(7):1-10
    [98]贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究.中国电机工程学报, 2001,21(7):26-30
    [99]Yu Yixin,Jia Hongjie,Wang Chengshan.Chaotic phenomena and small stability region of electrical power systems.Science in China(Seres E),2001,44(2):187-199
    [100]薛禹胜,周海强,顾晓荣.电力系统分叉与混沌研究述评.电力系统自动化,2002,26(16):9-15
    [101]P.Cartwright,L.Holdsworth,J.B.Ekanayake et al.Co-ordinated voltage control strategy for a doubly-fed induction generator(DFIG)-based wind farm.Generation.in Proc.IEE.Transmission and Distribution,Jul.2004,151(4):495-502
    [102]A.D.Hansen,G.Michalke,P.Sφrensen et al.Coordinated voltage control of DFIG wind turbines in uninterrupted operation during grid faults.Wind energy,Aug.2006,10(1):51-68
    [103]K.N.Sdvastava,S.N.Singh,S.C.Srivastava.Effect of multiple equilibria on power system stability.Electric Power Systems Research,2000(55):165-172
    [104]Zhujun Jing,Dashun Xu,Yu Chang et al.Bifurcations,chaos,and system collapse in a three node power system.Int.J.of Electrical Power and Energy Systems,2003,25(6):443-461
    [105]顾伟.电力系统最优分叉控制研究:[博士学位论文].南京:东南大学,2006
    [106]刘劲,孙扬声,陈德树.周期参数扰动电力系统中的倍周期分叉、混沌和奇怪吸引子.电网技术,1996,20(8):1-3
    [107]柳明,吴捷.微扰电力系统中的次谐及混沌轨道.电力系统自动化,2002,26(15):9-14
    [108]Venkatasubramanian V.,Ji W.Coexistence of four different attractors in a fundamental power system model.IEEE Transactions on Circuit and System-Ⅰ,1999,46(3):405-409
    [109]Alona B.T.,Vivien K.,Graeme W.Banded chaos in power systems.IEEE Transactions on Power Delivery,2001,16(1):105-110
    [110]Tan Chin Woo,Varghese M.,Varaiya P.et al.Bifurcation,chaos,and voltage collapse in power systems.Proceedings of the IEEE,1995,33(11):1484-1495
    [111]Lee B.,Ajjarapu V.Period-doubling route to chaos in an electrical power system.IEE Proceedings-C,1993,140(6):490-496
    [112]Yu Yixin,Jia Hongjie,Li Peng et al.Power systems instability and chaos.Electric Power Systems Research,2003,65(3):187-195
    [113]Lo K.L.,Zhu T.X.Chaotic motions and diffusion in a power system.Proceedings of EMPD,1998,1:323-328
    [114]Srivastava K.N.,Srivastava S.C.Quasi-periodic route to chaos and its control in a power system model.European Transactions on Electrical Power,1999,9(4):241-245
    [115]Chu Chia-Chi.Chaotic motions of simple power system models.Proceedings of International Conference on Control of Oscillations and Chaos,1997,1:323-328
    [116]段献忠.电压稳定问题的机理和建模及实用算法的研究:[博士学位论文].武汉:华中科技大学,1992
    [117]吴俊玲.大型风电场并网运行的若干技术问题研究:[硕士学位论文].北京:清华大学,2004
    [118]卫宁.SVC安装地点的选择对电力系统电压稳定的影响:[硕士学位论文].南宁:广西大学,2007
    [119]杨淑英.双馈型风力发电变流器及其控制:[博士学位论文].合肥:合肥工业大学,2007
    [120]王星华.变速恒频同步直驱风力发电机控制系统研究:[硕士学位论文].上海:上海交通大学,2007
    [121]赵兴勇.基于分岔理论的电力系统电压稳定性研究:[博士学位论文]上海:上海交通大学,2008
    [122]胡雅娟.基于实测运行数据的风电场整体模型的研究:[硕士学位论文].长春:东北电力大学,2007
    [123]杜晓明.基于连续潮流和分岔理论的电压稳定性分析:[硕士学位论文]北京:华北电力大学,2006
    [124]夏凯.大型风电场接入与并网运行仿真研究:[硕士学位论文].上海:上海交通大学,2008
    [125]杨娜.大型风电场接入电网后的系统稳定性分析:[硕士学位论文].上海:上海交通大学,2008
    [126]于文杰.永磁直驱风力发电系统最大风能追踪策略研究:[硕士学位论文].长春:东北电力大学,2008
    [127]王宝华.电力系统非线性动力学行为分析与控制:[博士学位论文].南京:南京理工大学.2004
    [128]胡卫红.风电场并网分析的稳态算法与动态仿真研究:[硕士学位论文].北京:北京交通大学,2007
    [129]刘艳妮.风电场并网运行电压稳定性研究:[硕士学位论文].北京:北京交通大学,2007
    [130]万航羽.风电场模型研究及应用:[硕士学位论文].北京:北京交通大学,2008
    [131]曹娜,赵海翔,陈默子等 潮流计算中风电场的等值.电网技术,2006,30(9):53-56
    [132]盛利涛,永磁同步电机直接转矩控制策略的研究与实现:[硕士学位论文].杭州:浙江工业大学,2007
    [133]高金峰,张晓,倍周期分岔和环面分岔对电力系统电压稳定性的影响.郑州大学学报(工学版),2005,26(2):27-31
    [134]洪灵,徐健学,一类新的边界激变现象:混沌的边界激变.物理学报,2001,50(4):612-618
    [135]管迪,陈乐生.一种带绝对值项系统的分俞、激变与混沌.动力学与控制学报,2007,5(2):132-135
    [136]André Arthur Perleberg Lerm,and Aguinaldo Silveira e Silva,Avoiding Hopf Bifurcations in Power Systems via Set-Points Tuning,IEEE Trans.on Power Systems,2004,19(2):1076-1084
    [137]李辉,韩力,赵斌等.风电机组等效模型对机组暂态稳定分析结果的影响.中国电机工程学报,2008,28(17):105-111
    [138]迟永宁,刘燕华,王伟胜等.风电接入对电力系统的影响.电网技术,2007,31(3):77-81
    [139]戴慧珠,王伟胜,迟永宁.风电场接入电力系统研究的新进展.电网技术,2007,31(20):16-23
    [140]尹明,李庚银,张建成等.直驱式永磁同步风力发电机组建模及其控制策略.电网技术,2007,31(15):61-65
    [141]林莉,孙才新,王永平等.大容量风电场接入后电网电压稳定性的计算分析与控制策略.电网技术,2008,32(2):41-46
    [142]徐大平,肖运启,秦涛等.变桨距型双馈风电机组并网控制及建模仿真.电网技术,2008,32(6):100-105
    [143]刘劲.电力系统分岔和混沌问题的综合研究:[博士学位论文].武汉:华中理工 大学,1995
    [144]Niu Xize,Qiu Jiajun.Investigation of torsional instability,bifurcation,and chaos of a generator set.IEEE Transactions on Energy Conversion,2002,17(2):164-168
    [145]Kavasseri Rajesh G.,Padiyar K.R.Analysis of bifurcations in a power system model with excitation limits.Int.J.of Bifurcation and Chaos in Applied Sciences and Engineering,2001,11(9):2509-2516
    [146]Lo K.L.,Zhu T.X.Arnold diffusion in a particular multi-machine power system.IEE Proceedings-C,1998,145(3):257-264
    [147]Chiang H.D.,Dobson I.,Lazhar J.S.On voltage collapse in electric power systems.IEEE Transactions on PWRS,1990,5(2):601-607
    [148]邓集祥.电力系统分歧浅析.控制与决策,1993,8(2):111-115
    [149]邓集祥,马景兰.电力系统中非线性奇异现象的研究.电力系统自动化,1999,23(22):1-4
    [150]陈予恕,唐云,陆启韶等.非线性动力学中的现代分析方法.北京:科学出版社,2000
    [151]Li J.,Venkatasubramanian V.Study of Hopf bifurcations in a simple power system model.Proceedings of the 39th IEEE Conference on Decision and Control,2000:3075-3079
    [152]Voumas C.D.,Pai M.A.,Sauer P.W.The effect of automatic voltage regulation on the bifurcation evolution in power systems.IEEE Transactions on PWRS,1996,11(4):1683-1688
    [153]Abed E.H.,Varaiya P.P.Nonlinear oscillations in power systems.Electrical Power and Energy Systems,1984,6(1):37-43
    [154]余贻鑫.电压稳定研究述评.电力系统自动化,1999,23(21):1-8
    [155]Kwatny H.G.,Pasrija A.K.,Bahar L.Y.Static bifurcation in electric power networks:Loss of steady-state stability and voltage collapse.IEEE Transactions on Circuit and System,1986,CAS-33(10):981-991
    [156]Dobson I.,Chiang H.D.Towards a theory of voltage collapse in electric power systems.Syst.and Cont.Lett.,1989,13(3):253-262
    [157]Dobson I.Observations on the geometry of saddle node bifurcation and voltage collapse in electrical power systems.IEEE Transactions on Circuit and System-Ⅰ:Fundamental Theory and Applications,1992,39(3):240-243
    [158]Grebogi C.,Ott E.,Yorke J.A.Chaos attractors in crisis.Physical Rev.Lett.,1982, 48(22): 1507-1510
    [159] Grebogi C, Ott E., Yorke J. A. Crises, sudden changes in chaotic attractors, and transient chaos. Physical D, 1983, 7(1-3): 181-200
    [160] Lof P. A., Andersson G., Hill D. J. Voltage stability indices for stressed power systems. IEEE Transactions on PWRS, 1993, 8(1): 326-332
    [161] Chiang H. D., Rene Jean-Jumeau. A more efficient formulation for computation of the maximum loading points in electric power systems. IEEE Transactions on PWRS, 1995,10(2): 635-644
    [162] Yorino N., Harada S., Cheng H. A method to approximate a closest loadability limit using multiple load flow solutions. IEEE Transactions on PWRS, 1997, 12(1): 424-429
    [163] Ajjarapu V., Fang Zhihong. A novel approach for voltage collapse analysis and control. Proceedings of International Conference on Power System Technology, 1998,2:1499-1503
    [164] Mori H., Iizuka F. An efficient method for calculating power flow solutions and the closest bifurcation point using mathematical programming. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems, 1998,3: 570-573
    [165] Feng Zhihong, Ajjarapu V., Long B. Identification of voltage collapse through direct equilibrium tracing. IEEE Transactions on PWRS, 2000,15(1): 342-348
    [166] Delfino B., Denegri G. B., Invernizzi M. et al. Dynamic index assessment for voltage stability in electric power systems. Proceedings of International Conference on Power System Technology, 2000, 1: 397-402
    [167] Ohta H., Ueda Y. Unstable limit cycles in an electric power system and basin boundary of voltage collapse. Chaos, Solition and Fractals, 2001,12(1): 159-172
    [168] Wu Q., Popovic D. H., Hill D. J. et al. System security enhancement against voltage collapse via coordinated control. IEEE Power Engineering Society, 1999 Winter Meeting, 1999: 755-760
    [169] Wang Y., Chen H., Zhou R. A nonlinear controller design for SVC to improve power system voltage stability. Electrical Power and Energy Systems, 2000, 22(7): 463-470
    [170] Chen H., Wang Y., Zhou R. Analysis of voltage stability enhancement via unified power flow controller. Proceedings of International Conference on Power System Technology, 2000, 1: 403-408
    [171] Shahrestani S. A., Hill D. J. Global control with application to bifurcating power systems.System & Control Letters,2000,41(3):145-155
    [172]张卫东,张伟年.电力系统混沌振荡的参数分析.电网技术,2000,24(12):17-20
    [173]Outa H.,Ueda Y.Global bifurcation caused by unstable limit cycle leading to voltage collapse in an electric power system.Chaos,Solitons and Fractals,1998,9(6):825-843
    [174]温权,张勇权,程时杰.负荷预报的混沌时问序列分析方法.电网技术,2001,25(10):13-16
    [175]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700