预应力钢筒混凝土管受力性能的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力钢筒混凝土管(Prestressed Concrete Cylinder Pipe,简称PCCP)是一种优质复合管材,在大口径输水管线选型时,越来越具有竞争力。由于PCCP中含有混凝土、钢筒、预应力钢丝,结点构造和地下埋置工况复杂,对于PCCP的受力机理认识尚不统一。本文旨在研究PCCP受力机理,探讨预应力设计计算方法,分析PCCP的应力分布规律、管壁开裂性能、砂浆保护层的剥离性能以及PCCP抗裂可靠度。
     首先以完全弹性理论为基础,根据环形预应力作用机理,结合多层圆筒轴对称平面形变计算理论,建立了PCCP在使用阶段的理论计算方法。结合PCCP结构抗裂承载能力的要求,给出运行阶段PCCP预应力设计计算公式。并对受力模型与有限元分析结果进行对比,对预应力设计计算公式进行相应的修正。
     通过对PCCP在不同管壁厚度、埋深、内水压力和混凝土强度等级条件下PCCP最大环形应力变化特征和PCCP在内水压力作用下裂缝扩展过程以及砂浆保护层剥离性能进行数值分析,结果表明:(1)PCCP中最大环向应力随着埋深、内水压力的增大而增大,最小应力随着埋深、内水压力的增大而减小;(2)增加管壁厚度能够明显减小管道环向应力,而增加混凝土强度等级对改善混凝土的受力效果并不明显;(3)管侧砂浆较早开裂,并随着内水压力的增大向两侧扩展,外层管芯管腰较管芯其它部位较早开裂,并随着内水压力的增大向两侧扩展并向深处延伸,内层管芯管顶基本为一次裂通;(4)在发生开裂时,钢筒和预应力钢丝上在相应位置的应力会发生突变;(5)PCCP砂浆保护层剥离是预应力钢丝应力松弛、管体内外部温度差、保护层收缩共同作用的结果。
     最后采用改进支持向量机(SVM)响应面方法研究了PCCP抗裂可靠度,结果表明:混凝土抗拉强度和混凝土变异性,以及内压变化对抗裂可靠度影响较大,而预应力钢筋截面面积、有效预应力以及埋深的变异性对抗裂可靠度影响相对较小。
Prestressed Concrete Cylinder Pipe(PCCP)is a kind of high quality composite pipe. In the field of large diameter pipes, it has been demonstrated more competitive than other pipes. The mechanical performance of PCCP is not uniform yet, because of its complicated structure and work condition. In this paper, the mechanical behavior of PCCP is researched, design method of prestressing is discussed, distributing rule of stress, cracking and peeling performance and anti-crack reliability of PCCP are also analyzed.
     First of all, the mechanical model is established in PCCP working stage, based on the elastic plane strain theory of axisymmetric multilayer cylinders and the mechanism of the ring-like strands action. Design method of prestressing is put forward according to the aim at the crack control and the ultimate bearing resistance, then the method is amended compared with the finite-element analysis.
     The distributing rule of the biggest ring-like stress in the condition of different burying depth , hydraulic pressure, thickness of pipe wall and rank of concrete, the developing of cracks and the coating delamination are analyzed by finite-element analysis. It is shown as follows: The ring-like stress of pipe wall increases with the increscent burying depth and hydraulic pressure. The biggest ring-like stress of pipe wall decrease obviously with the thickness of pipe wall rising, on the contrary, the variation of stress is not obvious with the rank of concrete rising. The mortar cracks prior at springline and the crack expands towards both sides along with increasing of the internal pressure. The outer core cracks at the springline earlier than at other parts, and the crack expands towards both sides and extends deeply as the internal pressure increasing. The inner core cracks at crown at one blow. There is a sudden change of stress at the corresponding position when crazing in pipe wall. The coating delamination is a conjunct result of the relaxation of prestressed wire, the internal and external difference in temperature and the shrinkage of the coating.
     At last, the anti-crack reliability is analyzed with the method of improved Support Vector Machine (SVM) response surface method. It is indicated that the concrete tensile strength and the concrete changeability, as well as the hydraulic pressure affect the anti-crack reliability obviously, otherwise, the influence of variation of section area of prestressed wire, effective prestressing and burying depth is not obvious correspondingly.
引文
[1]朱尔明.对南水北调工程的基本认识.中国水利学会2001学术年会论文集,2001.40~47
    [2]周冠洋. PCCP管在我国的研制和应用.制冷空调与电力机械,2001,22(1):25~26
    [3]何维华.关于预应力钢筒混凝土管(PCCP)的推广应用.给排水在线,2003.5
    [4]程金煦.大中型输水管道管材选择探讨.给水排水,2001,5:8l~85
    [5]王勤华.大口径输水管线的材质及其经济技术指标的比较.给水排水,1996,1:44~47
    [6]张亚平.预应力钢简混凝上管的应用.施工材料与设备,1999,5:54~57
    [7] Rechrad A. Lwis,P. E. Matt whetaly,Presterssed Cocnerte Cylidnre Pipeline Evaluation, A Toolbox Approach,Pipelines,ASCE,2003:276~285
    [8] A. Almugerhiy Abdulha. Ph.D.,M. Eliah Reafat and M. Enawaa Khallaf, Rehabilitation Management of Prestressed Concrete Cy1inder Pipe Using Remote Field Current/transformer Coupling(RFEC/TC) and other technologies,Pipelines,2003
    [9]胡连生,郝满仓.浅谈PCCP及其发展.山西水利科技, 1999.6:84~85
    [10]孙绍平.预应力钢筒混凝土管若干基本问题的分析.特种结构,2001,18(3 ):17~33
    [11]孙绍平,郭永峰.预应力钢筒混凝土管在工程中的应用.特种结构, 2003,9. 28~31
    [11]赵国藩.高等钢筋混凝土结构学.北京:机械工业出版社,2005.9
    [12]梁兴文,王社良,李晓文.混凝土结构设计原理.北京:科学出版社,2003.8
    [13]中华人民共和国电力行业标准:水工混凝土结构设计规范(DI/T5057-1996),北京:中国计划出版社,1997
    [14]宋玉普.新型预应力混凝土结构.北京:机械工业出版社,2006.1
    [15]赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社, 2000.12
    [16]王铁成.混凝土结构原理.天津大学出版社,2002
    [17]American Warter Works Asociation, Standard for Prestresed Concrete Prestressed Pipe, Cylinder Type, ANSI/AWWA C3O1~99
    [18]American Warter Works Asociation,Design of Prestressed Concrete Cylinder Pipe, ANSI/AWWA C3O4~99
    [19]奚军.PCCP设计中的几点体会.山西水利科技,2002(3):31~32
    [20]中华人民共和国工程建设标准:《给水排水工程埋地管芯缠丝预应力混凝土管和预应力钢筒混凝土管管道结构设计规程》(CECS140:2002),北京:中国计划出版社,2002
    [21]张社荣,段昊罡,钟登华.预应力钢筒混凝土管(PCCP)性能分析.灌溉排水学报,2004,23(3B):188~189
    [22]张社荣,张彩秀,顾辉,预应力钢筒混凝土管(PCCP)设计方法探讨,水利水电技术,2005.4,53~55
    [23]张彩秀.预应力钢筒混凝土管(PCCP)的有限元分析.硕士学位论文,天津大学,2005
    [24]Mehdi S. Zarghamee F. ASCE,Daniel W. Eggers, A.M.ASCE,and Rasko P.ojdrovic,M.ASCE,Finite-Element modeling of Failure of PCCP with Broken Wires subjected to Combined Loads,Pipelines, ASCE,2002:1~17
    [25] Mehdi S. Zarghamee F. ASCE,Daniel W. Eggers,A.M.ASCE,Rasko P.ojdrovic,M.ASCE and Brian Rose, M.ASCE,Risk Analysis of Prestressed Cylinder Pipe with Broken Wires,Pipelines,ASCE,2003:599~609
    [26]Youssef Georges Diab and Tomas Bonierbale,A Numerical Modeling and a Proposal for Rehabilitation of PCCP’s,Pipelines,ASCE,2004: 1~8
    [27]Wong F.S.Slope reliability and response surface method.J Geotech Eng, ASCE, 1985,111(1):32~53.
    [28] Bucher C.G,Bourgund U. A fast and efficient response surface approach for structural reliability problems.Structura1 Saefty.1990,7(1):57~66
    [29]Rajashekhra M.R., Ellingwood B.R. A nwe look at the response surface approach for reliability analysis. Structura1 Safety, 1993,12(3):205~220
    [30]kim S.-H.,Na S.-W.Response surface method using vector Projected sampling points.Structural Safty.1997,19(1):3~19
    [31]Lee S.H.,Kwak B.M. Response surface augmented moment method for Efficient reliability analysis.Structural Safety,2006,28(3):261~272
    [32]Wong S.M.Hobbs R.E.,Onof C.An adaptive response surface method for reliability analysis of structures with Multiple loading sequences. Structural Safety, 2005,27(4):287~308
    [33]Kaymaz I., McMahon C.A.A response surface method based on weighted regression for structural reliability analysis. Probabilistic Engineering Mechanics, 2005.20(1):11~17
    [34] Martin T. Hagan H.B.D.,Mark H. Beale. Neural network design. China Mahine Press,CITIC Publishing house,2002
    [35]Hosni Elhewy A.,Mesbahi E., Pu Y. Reliability analysis of structures using neural network method. Probabilistic Engineering Mechanics, 2006, 21(1):44~53
    [36]Deng J., Gu D., LI X., Yue Z.Q. Structural reliability analysis for implicit performance functions using artificial neural network ,Structural Safety, 2005,27(1):25~48
    [37]Gomes H.M., Awruch A.M. Comparison of response surface and neural network with other methods for structural reliability analysis.Structural Safety, 2004,26(1):49~67
    [38] VapnikV. The Nature of Statitistical Learning Theory. NewYork: Springer Publication,1995
    [39]袁雪霞.建筑施工模板支撑体系可靠性研究.杭州:浙江大学博士学位论文,2006
    [40]Rocco C.M., Moreno J. Fast Monte Carlo reliability evaluation using support vector machine. Reliability Engineering and System Safety, 2002,76 (3):237~243
    [41]陆有忠,杨有负,张会林.边坡工程可靠性的支持向量机估计,岩石力学与工程学报,2005,4(1):149~153
    [42]唐纯喜,长距离输水工程的关键结构体系可靠度研究,博士学位论文,浙江大学,2007
    [43]中华人民共和国国家标准:工程结构可靠度设计统一标准.北京:中国计划出版社,1992
    [44]中华人民共和国国家标准:水利水电工程结构可靠度设计统一标准.北京:中国计划出版社,1994
    [45]武清玺,刘阿多.隧洞结构截面与体系可靠度计算.河海大学学报:自然科学版,1996,24(2):56~61
    [46]武清玺,王保田.拱坝坝肩整体稳定可靠度分析方法探讨闭.河海大学学报:自然科学版,1995,23(3):26~32
    [47]武清玺,吴世伟.基于有限元法的重力坝可靠度分析田.水利学报,1990,(1):58~64
    [48]武清玺,俞晓正.混凝土面板堆石坝可靠度计算方法研究[J]岩土工程学报,2004,26(4):468~472
    [49]王卫标,武清玺,金伟良等.三维问题的随机界面元法闭.力学学报,2003,35(1):105~110
    [50]董哲仁.钢衬钢筋混凝土压力管道设计与非线性分析.北京:中国水利水电出版社,1998
    [51]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994
    [52]董毓利.混凝土非线性力学基础.北京:中国建筑工业出版社,1997
    [53]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析.北京:清华大学出版社,1993
    [54]Brian J Mergelas, David L Atherton, etc. Managing the risk in operating PCCP pipelines. Pipelines 2001
    [55] Roberto Gomez, etc. Structural Model for Stress Evaluation of Prestressed Concrete Pipes of the Cutzamala System. Pipelines 2004
    [56]Hamid R. Lotfi, etc. Reliability assessment of distressed prestressed concrete cylinder pipe. Pipelines 2005. 838~852
    [57]David H. Marshall, P.E., etc. Tarrant Regional Water District's Risk Management Plan for Prestressed Concrete Cylinder Pipe, Pipelines 2005
    [58]朱宇. PCCP管在输水管线施工中关键技术的研究.硕士学位论文,西安建筑科技大学,2006
    [59]乐东义,吴晓玲,刘劲松.三峡电站压力管道钢衬预应力钢筋混凝土结构设计研究.压力管道,郑州:黄河水力出版社,1998: 100~110
    [60]李晓克.预应力混凝土管道受力性能与计算方法的研究.博士论文,大连理工大学,2003
    [61]E.J.赫恩,材料力学,北京:人民教育出版社,1981
    [62]徐芝纶,弹性力学,北京:人民教育出版社,1982
    [63]Zarghamee, M. S., and Dana, W. R. (1991). A step-by-step integration procedure for computing state of stress in prestressed concrete pipe. Computer analysis of the effects of creep, shrinkage, and temperature changes on concrete structures, ACISP-129, C. C. Fu and M. D. Daye, eds., American Concrete Institute (ACI),Detroit, Mich., 155~170
    [64]Zarghamee M. S., Fok K. L.and Sikiotis E. S. Limit-states design of prestressed concrete pipe. II: Procedure. J. of Struct. Engrg., 116(8), 2105~2126
    [65]Zarghamee M.S., Eggers D.W., Ojdrovic R.P. and Valentine, D.P. Thrust Restraint Design of Concrete Pressure Pipe, Journal of Structural Engineering, ASCE, 130(1), January, 95–107 and Closure (2005), 131(9), September, 1478~1482
    [66] Zarghamee M.S.and Fok, K.L., Analysis of Prestressed Concrete Pipe under Combined Loads. Journal of Structural Engineering, Vol. 116, No. 7:2022~2039
    [67]Heger F. J., Zarghamee M. S., and Dana W. R. Limit states design of prestressed design of prestressed concrete pipe. I: Criteria. J. Struct. Engrg., ASCE, 116(8), 2083~2104
    [68]宋珺.地震作用下埋地长距离输水管道动力特性研究.硕士学位论文,太原理工大学, 2005
    [69]小飒工作室,最新经典ANSYS及wokerbench教程,北京:电子工业出版社,2004
    [70]陆新征,江见鲸,利用ANSYSsofid56单元分析复杂应力条件下的混凝土结构,2002ANSYS中国用户年会论文集,2002
    [71]陆传荪,预应力钢筋混凝土管、预应力钢筒混凝土管制造,北京:中国水利水电出版社,1998,84~86
    [72]戴显荣,蔡若红,利用Ansys模拟分析预应力混凝土,浙江交通科技,2004,2:22~24
    [73]葛立福,纤维复合材料加固水工涵管的有限元分析及应用,硕士学位论文,武汉大学,2004
    [74]杨铮,预应力混凝土结构的三维有限元分析与研究,硕士学位论文,浙江大学,2005
    [75]中国船舶工业总公司第九设计研究院,弹性地基梁及矩形板计算,国防工业出版社,1983
    [76]龙驭球,弹性地基梁的计算,高等教育出版社,1981
    [77]汪定熵、罗毅,地基的基床系数,岩土工程技术,1996年第3期
    [78]张展君、朱小林,承压板尺寸对地基承载力的影响,岩土工程师,1990,2(3):23~27
    [79]华南工学院等,地基及基础,中国建筑工业出版社,1981
    [80]刘晓青,李同春,李文虎.考虑地基分布反力的弹性基础板有限元计算,水利水运工程学报,第2期, 2004.6
    [81] K.L Johnson Contact Mechanics(接触力学),高等教育出版社,1992.5
    [82]彼得·艾伯哈特,胡斌.现代接触动力学.东南大学出版社,2003
    [83]A.P.S.Selvadural著.范文田、何广汉、张式深、罗无量译,土与基础相互作用的弹性分析,北京:中国铁道出版社,1984
    [84]中国船舶工业总公司第九设计研究院,弹性地基梁及矩形板计算,国防工业出版社,1983
    [85]Terzaghi K. Evaluation of coeficients of subgrade reaction. Geoteehnique 1955,5(4):297~326
    [86]Z.Celep ,K.Güler, Static and dynamic response of a rigid circular plate on a tensionless Winkler foundation, Journal of Sound and Vibration 276(2004) 449~458
    [87]Z. celep , M. Gencoglu , Forced vibration of a rigid circular plate on a tensionless Winkler edge support, Journal of Sound and Vibration 263(2003)945~953
    [88]K. Güler And Z. Celep ,Static And Dynamic Responses of A Circular Plate On A Tensionless Elastic Foundation ,Journal of Sound and Vibration (1995)183(2),185~195
    [89]A. R. D. Silva , R. A. M. Silver , P. B. Gon?alves , Numerical methods for analysis of plates on tensionless elastic foundations, Internal Journal of Solid and Structures 38(2001)2083~2100
    [90] A.M.Neville. Properties of Concrete, Pitman Publishing Limited(3rd.edition London),1981
    [91]夏晓舟,三峡水电站钢衬钢筋混凝土引水压力管道的裂缝数值模拟研究,硕士学位论文,广西大学,2003
    [92]宋玉普,多种混凝上材料的本构关系和破坏准则,北京:中国水利水电出版社,2002
    [93]杨铮,预应力混凝土结构的三维有限元分析与研究,硕士学位论文,浙江大学,2005
    [94]桂劲松,康海贵.计算结构可靠度的BRF神经网络响应面法.海洋工程,2004,22(3):81~85
    [95]桂劲松.结构可靠度分析的改进BP神经网络响应面法.应用力学学报,2005,22(1):127~130
    [96]徐军,郑颖人.响应面重构的若干方法研究及其在可靠度分析中的应用.计算力学学报,2002,19(2):217~244.
    [97]董聪.现代结构系统可靠性理论及其应用.北京:科学出版社,2010.3
    [98]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程运用.北京:清华大学出版社,2006
    [99] Breitung K. Asymptotic approximations for multinormal integrals. Journal Engineering Mechanics Division. ASCE, 1984,110(3):357~366
    [100] Pulidori D.C.,BECK J.L. New Approximations for Reliability Integrals, Journal Engineering Mechanics. ASCE, 1999,110(3):466~475
    [101]C.Plat J., Sequential minimal Optimization:a fast Algorithm for training support vector machines.1998,Microsoft research technical report
    [102]Gary W.F., Steve L.Eficient SVM regression training with SM0.Machine learning, 2002,46. 271~290
    [103]桂劲松,康海贵结构可靠度分析的全局响应面法研究闭.建筑结构学报,2004,25(4):100~105
    [104]中华人民共和国国家标准:混凝土结构设计规范(GB50010-2002).北京:中国计划出版社,2002
    [105]秦权,林道锦,梅刚.结构可靠度随机有限元-理论及工程运用.北京:清华大学出版社,2O06.9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700