酸性功能化离子液体的制备及其在香料合成中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要探讨了酸性功能化离子液体的简便合成方法及其在催化合成香料中的应用,并取得了一些有意义的研究成果。
     1.本论文研究了一种未见文献报道的酸性功能化离子液体1-(4-磺酸基)丁基-3-甲基吡嗪四氟硼酸盐([4-sulfbmpyrazine][BF4])的合成方法,同时探索了1-(4-磺酸基)丁基-3-甲基咪唑四氟硼酸盐([4-sulfbmim][BF4])、1-羧甲基-3-甲基咪唑四氟硼酸盐([cmmim][BF4] )两种酸性功能化离子液体的合成方法,实验结果如下:
     (1)合成[4-sulfbmpyrazine][BF4]的中间体的优化条件为:n(2-甲基吡嗪): n(1,4-丁烷磺内酯)为0.05:0.10,加热至回流,反应时间12h,溶剂乙腈用量为45 mL,得率为83.5%。
     (2)合成[4-sulfbmpyrazine][BF4]的优化条件为:投料比n(中间体):n(HBF4)为0.05:0.06,反应温度为60℃,反应时间2 h,得率为92.4%。
     (3)合成[4-sulfbmim][BF4]中间体的优化条件为:投料比n(N-甲基咪唑):n(1,4-丁烷磺内酯)为0.10:0.12,反应时间6.5 h,加热回流反应,中间体得率为92.8%。
     (4)合成[4-sulfbmim][BF4]的优化条件为:投料比n(中间体):n(氟硼酸)为0.10: 0.10,反应时间为10 h,加热到回流,得率为85.7%。
     (5)合成氯代1-羧甲基-3-甲基咪唑[cmmim][Cl]的优化条件为:投料比n(N-甲基咪唑):n(氯乙酸)为0.05:0.05,反应时间8 h,反应温度70℃,得率88.9%。
     (6)合成1-羧甲基-3-甲基咪唑四氟硼酸盐[cmmim][BF4] ]的优化条件为:投料比n([cmmim][Cl]): n(NaBF4)为0.05:0.05,反应温度80℃,反应时间12 h,得率为93.0%。
     2.采用合成的酸性功能化离子液体为催化剂合成缩羰基类香料叶青素、风信子素、苹果酯及其同系物、环己酮-1,2-丙二醇缩酮及其同系物、苯甲醛-1,2-丙二醇缩酮等物质,通过对反应投料比、反应温度、反应时间、催化剂的用量等因素的考察,找到了适宜的反应条件。而且用作催化剂的离子液体可以重复使用,活性没有明显变化。实验结果如下:
     (1)酸性功能化离子液体催化合成叶青素的优化条件为:苯甲醇与乙缩醛的摩尔比为0.10:0.80,催化剂用量0.4 g,反应时间60 min,反应温度20℃,得率为92.2%。
     (2)酸性功能化离子液体催化合成风信子素的优化条件为:反应时间6 h,反应温度60℃,催化剂用量0.6g,投料比n(苯乙醇):n(乙缩醛)为0.10:0.50,得率为80.3%。
     (3)酸性功能化离子液体催化合成苹果酯的优化条件为:投料比n(乙酰乙酸乙酯):n(乙二醇)为0.10:0.15,反应时间2 h,催化剂用量0.5 g,带水剂用量40 mL,得率为95.4%。
     (4)酸性功能化离子液体[4-sulfbmim][BF4]催化合成5种苹果酯的同系物,均获得了较高的得率。
     (5)酸性功能化离子液体[4-sulfbmim][BF4]催化合成4种环己酮缩酮化合物,均获得了较高的得率。
     (6)酸性功能化离子液体[4-sulfbmim][BF4]催化合成苯甲醛-1,2-丙二醇缩醛的优化条件为:n(苯甲醛):n(1,2-丙二醇)为0.05:0.08,反应时间6 h,催化剂用量0.3 g,带水剂用量10 mL,产品得率为93.6%。
     3.采用合成的酸性功能化离子液体为催化剂合成酯类香料丙酸香茅酯、乙酸芳樟酯,通过对投料比,反应温度,反应时间,催化剂的用量等因素的考察,找到了适宜的反应条件。而且作为催化剂的离子液体可以重复使用,活性没有明显变化。实验结果如下:
     (1)酸性功能化离子液体[4-sulfbmpyrazine][BF4]催化合成丙酸香茅酯的优化条件为:n(香茅醇):n(丙酸酐)为0.05:0.10,反应温度70℃,反应时间2 h,催化剂用量0.3 g,得率为95.3%。
     (2)酸性功能化离子液体[4-sulfbmpyrazine][BF4]催化合成乙酸芳樟酯的优化条件为:n(芳樟醇):n(乙酸酐)为0.05:0.10,反应温度为30℃,反应时间为6 h,催化剂用量0.3 g,得率为64.7%。
     4.采用合成的酸性功能化离子液体[cmmim][BF4]为催化剂合成吲哚衍生物,通过对反应温度,反应时间,催化剂的用量等因素的考察,找到了适宜的反应条件取得较高的得率。而且作为催化剂的离子液体可以重复使用,活性没有明显变化。
This article studied the synthesis of task specific ionic liquids and its application in the synthesis of perfume and achieved some significant results.
     1. In this article three acid task specific ionic liquids are synthesized . The results are as follows:
     (1) the proper reaction conditions of intermediate of 1-(4-sulfonic group) butyl-3-methylpyrazine tetrafluoroborate ([4-sulfbmpyrazine][BF4])is the ratio of mol n (2-methylpyrazine)∶n (1,4-butanesultone) = 0.05∶0 .10 ,an amount of solvent acetonitrile of 45 mL, a reaction time of 12 h and heated refluence. The yield could reach 83.5 %.
     (2) the proper reaction conditions of 1-(4-sulfonic group) butyl-3-methylpyrazine tetrafluoroborate ([4-sulfbmpyrazine][BF4])is a ratio of mol n (intermediate)∶n (HBF4) = 0.05∶0.06 , a reaction temperature of 60℃and a reaction time of 2 h . The yield could reach 92.4%.
     (3) the proper reaction conditions of intermediate of 1-(4-sulfonic group) butyl-3-methylimidazole tetrafluoroborate([4-sulfbmim][BF4])is a ratio of mol n (2-methylimidazole)∶n (1,4-butanesultone) = 0.10∶0.10 , a reaction time of 6.5 h , heated refluence. The yield could reach 92.8 %.
     (4) the proper reaction conditions of 1-(4-sulfonic group) butyl-3-methylimidazole tetrafluoroborate([4-sulfbmim][BF4])is a ratio of mol n (intermediate)∶n (HBF4) = 0.10∶0 .10 , a reaction time of 10 h and heated refluence . The yield could reach 85.7%.
     (5) the proper reaction conditions of 1-(4-sulfonic group) butyl-3-methylimidazole chloride([cmmim] [Cl])is a ratio of mol n (2-methylimidazole)∶n (chloroactic acid) = 0.05∶0 .05 , a reaction time of 8 h , and a reaction temperature of 70℃. The yield could reach 88.9 %.
     (6) the proper reaction conditions of 1-carboxymethyl-3- methylimidazolium tetrafluoroborate ([cmmim][BF4]) is a ratio of mol n ([cmmim] [Cl])∶n (NaBF4) = 0.05∶0 .05 , a reaction time of 12 h , and a reaction temperature of 80℃. The yield could reach 93.0 %.
     2. Some ketals and acetals for example cyanophyll, hyacinthol, fructone, ramification of fructone, cyclohexanone ketal and benzaldehyde propylene glycol acetal are synthesized using acid task specific ionic liquids as catalyst. The proper reaction conditions were identified by experiments. The acid task specific ionic liquids ionic liquid had better catalytic activity compared with the traditional acidic catalyst. And it could be recycled and the catalytic activity didn’t reduce. The results are as follows:
     (1) the proper reaction conditions of cyanophyll is a ratio of mol n (benzyl alcohol)∶n (acetal) = 0.10∶0.80 ,an amount of catalyst of 0.4 g, a reaction time of 1 h and a reaction temperature of 20℃. The yield could reach 92.2 %.
     (2) the proper reaction conditions of hyacinthol is a ratio of mol n (phenethyl alcohol)∶n (acetal) = 0.10∶0.50 ,an amount of catalyst of 0.6 g, a reaction time of 6 h and a reaction temperature of 60℃. The yield could reach 80.3 %.
     (3) the proper reaction conditions of fructone is a ratio of mol n (ethyl acetoacetate)∶n (ethylene glycol) = 0.10∶0.15 ,an amount of catalyst of 0.5 g, a reaction time of 2 h and an amount of cyclohexane as carrying - water reagent of 40 mL. The yield could reach 95.4%.
     (4) 5 kinds of ramifications of fructone are synthesized using [4-sulfbmim][BF4] as catalyst. The catalyst had a fairly high catalytic activity and high yield.
     (5) 4 kinds of ramifications of cyclohexanone ketal are synthesized using [4-sulfbmim][BF4] as catalyst. The catalyst had a fairly high catalytic activity and high yield.
     (6) the proper reaction conditions of benzaldehyde propylene glycol acetal is a ratio of mol n (benzaldehyde)∶n (1,2-propanediol) = 0.05∶0.08 ,an amount of catalyst of 0.3 g, a reaction time of 6 h , and an amount of cyclohexane as carrying - water reagent of 10 mL. The yield could reach 93.6%.
     3. 2 kinds of ester (citronellyl propionate, linalyl acetate) are synthesized using acid task specific ionic liquid [4-sulfbmpyrazine][BF4] as catalyst. The proper reaction conditions were identified by experiments. The acid task specific ionic liquids ionic liquid could be recycled and the catalytic activity didn’t reduce. The results are as follows:
     (1) the proper reaction conditions of citronellyl propionate is a ratio of mol n (citronellol)∶n (propionic anhydride) = 0.05∶0.10 ,an amount of catalyst of 0.3 g, a reaction time of 2 h , an a reaction temperature of 70℃. The yield could reach 95.3%.
     (2) the proper reaction conditions of linalyl acetate is a ratio of mol n (citronellol)∶n (Propionic anhydride) = 0.05∶0.10 ,an amount of catalyst of 0.3 g, a reaction time of 6 h , an a reaction temperature of 30℃. The yield could reach 64.7%.
     4. Indole derivatives are synthesized using acid task specific ionic liquid [cmmim] [BF4] as catalyst. The proper reaction conditions were identified by experiments. The acid task specific ionic liquids ionic liquid could be recycled and the catalytic activity didn’t reduce .
引文
[1] Sugden S, Wilkins H. Fused metals and salts. J. Chem.Soc., 1929, 1291~1298
    [2] Hurley F H, wier T P. The electrode position of aluminium from nonaqueous solutions at room temperature. J. Electrochem. Soc., 1951, 98: 207~212
    [3] Chum H L, Koch V R, Miller L L. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt. J. Am. Chem. Soc., 1975, 97(11): 3264~3265
    [4] Hussey C L. Room temperature haloaluminate ionic liquids-novel solvents for transition metal solution chemistry. Pure &App. Chem., 1988, 60(12): 1763~1772
    [5]Wikes J S, Zaworotko M J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. Chem. Commun., 1992, (13): 965~967
    [6] Gui J Z, Cong X H, Liu D, et al. Novel Br?nsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal. Commun., 2004, 5: 473 ~ 477
    [7] Cole A C, Jensen J L, Ntai I et al. Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts. J. Am. Chem. Soc, 2002, 124: 5962 ~ 5963
    [8]. Zhao S H, Zhang H R, Feng L H, Chen Z B. Pyridinium ionic liquids-accelerated amine-catalyzed Morita–Baylis–Hillman reaction. J. Mole. Catal. A: Chemical, 2006, 258: 251~256
    [9] Cai Y Q, Liu Y, Gao G H. Efficient Baylis-Hillman Reaction via a 1,4-Diazabicyclo[2.2.2] octane-based Ionic Catalyst. Monatshefte für Chemie, 2007, 138: 1163~1166
    [10] Bao W L, Wang Z M, Li Y X. Synthesis of chiral ionic liquids from natural amino acids. J. Org. Chem., 2003, 68: 591~593
    [11] Zhao DB, Fei Z F, Geldbach T J et al. Nitrile-functionalized pyridinium ionic liquids: synthesis, characterization, and their application in carbon-carbon coupling reactions. J. Am. Chem. Soc. 2004, 126(48): 15876~15882
    [12] Leone A M, Weatherly S C, Williams M E et al. An ionic liquid form of DNA: redox-active molten salts of nucleic acids. J. Am. Chem. Soc., 2001, 123(2): 218~222
    [13] Huang J, Jiang T, Gao H X et al. Active and stable catalyst-Pd nanoparticles immobilized onto molecular sieve by ionic liquid as heterogenerous catalyst for solvent-free hydrogenation. Angew. Chem.Int. Ed., 2004, 43: 1397~1399
    [14] Dai L Y, Yu S Y, Shan Y K et al. Novel room temperature inorganic ionic liquids. Eur. J. Inorg. Chem., 2004, 237~241
    [15] Nishida T, Tashiro Y, Yamamoto M. Physical and electrochemical properties of 1-alkyl-3-methy-limidiazolium tetrafluoroborate for electrolyte. J. Fluorine Chem., 2003, 120(2):135~141
    [16] Suarez P A Z, Einloft S, Dullius J E L et al. Synthesis and physical-chemical properties of ionic liquids based on 1-n-butyl-3-methylimidzaolium cation. J. Chim. Phys., 1998, 95:1626~1630
    [17] Law G, Watson P R. Surface tension measurements of N-alkylimidazolium ionic liquids. Langmuir, 2001, 17(20): 6138~6141
    [18] Holbrey J D, Seddon K R. The phase behaviour of 1-alkyl-3-methylimidiazolium tetrafluoroborates: ionic liquids and ionic liquid crystals. J. Chem. Soc. Dalton Trans., 1999, (13): 2133~2140
    [19] Ann E V, Reichert W M, Swatloski R P et al. Characterization of hydrophilic and hydrophobic ionic liquids: Alternatives to volatile organic compounds for liquid-liquid separations. Ionic liquids industrial applications to green chemistry. ACS Symposium Series, 2002, 818: 289~308
    [20] Dzyuba S V, Bartsch R A. Infuence of structural variations in 1-alkyl(aralkyl)-3-methylimidazolium hexafluorophosphates and bis(trifluoromethylsulfonyl)imides on phusical properties of the ionic liquids. Chem. Phys. Chem., 2002, 3(2):161~166
    [21] Bonhote P, Dias A P, Papageoriou N et al. Hydropobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35(5): 118~1178
    [22] Varma R S, Namboodiri V V. An expeditious solvent-free route to ionic liquids using microwaves. Chem. Commun., 2001, 643~644
    [23] Namboodiri V V, Varma R S. Microwave-assidted preparation of dialkylimidazolium tetrachloroaluminates and their use as catalysts in the solvent-free tetrahydropyranylation of alcohols and phenols. Chem. Commun., 2002, 342~343
    [24] Namboodiri V V, Varma R S. An improved preparation of 1, 3-dialkylimidazolium tetracfluoroborate ionic liquids using microwaves. Tetrahedron Lett., 2002, 43: 5381~5383
    [25] Vasundhara S, Sukhbir K, Varinder S et al. Microwave accelerated preparation of [bmin][HSO4]ionic liquid: an acid catalyst for improved synthesis of coumarins. Catal.Commun., 2005, 6: 57~60
    [26]李春喜,宋红艳,王子镐.超声波在化工中的应用与研究进展.石油学报,2001,17(3):86~94
    [27] Namboodiri V V, Varma R S. Solvent-free sonochemical preparation of ionic liquids. Org. Lett., 2002, 18: 3161~3163
    [28]彭家建,邓友全.离子液体系中催化环己酮肟重排制己内酰胺.石油化工,2001,30(2):91~92
    [29] Howarth J, Hanlon K, Fayne D, et al. Moisture stable dialkyimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diesls-Alder reaction. Tetrahedron Lett., 1997, 38(17): 3097~3100.
    [30] Cai Y Q, Liu Y, Gao G H. Efficient Baylis-Hillman Reaction via a 1,4-Diazabicyclo[2.2.2]octane-based Ionic Catalyst. Monatshefte für Chemie 2007, 138: 1163~1166
    [31] Rosa J A, Afonson C A M, Santos A G. Ionic liquids as a recyclable reaction medium for the Baylis–Hillman reaction. Tetrahedron 2001, 57(19): 4189~4192
    [32] Ranu B C, Dey S S. Catalysis by ionic liquid: a simple, green and efficient procedure for the Michael addition of thiols and thiophosphate to conjugated alkenes in ionic liquid, [pmim]Br. Tetrahedron 2004, 60(19): 4183~4185
    [33] Potdar M K, Mohile S S, Salunkhe M M. Coumarin syntheses via Pechmann condensation in Lewis acidic chloroaluminate ionic liquid. Tetrahedron Lett., 2001, 42(52): 9285~9287
    [34] Singh V, Kaur S, Sapehiyia V, Singh J, Kad G. L. Microwave accelerated preparation of [bmim][HSO4] ionic liquid: an acid catalyst for improved synthesis of coumarins. Catal. Commun. 2005, 6(1): 57~60
    [35] Peng J J, Deng Y Q. Ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Tetrahedron Lett. 2001, 42(34): 5917~5919
    [36] Carmichael A J, Earle M J, Holbrey J D, McCormac P B, Seddon K R. The Heck Reaction in Ionic Liquids: A Multiphasic Catalyst System. Org. Lett. 1999, 1(7): 997~1000
    [37] Mathews C J, Smith P J, Welton T. Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids. Chem. Commun. 2000, 14:1249~1250
    [38] Song C E, Roh E J, Shim W H, Choi J H. Scandium(III) triflate immobilised in ionic liquids: a novel and recyclable catalytic system for Friedel–Crafts alkylation ofaromatic compounds with alkenes. Chem. Commun. 2000, 17:1695~1696
    [39] Qiao K, Yokoyama C. Novel Acidic Ionic Liquids Catalytic Systems for Friedel–Crafts Alkylation of Aromatic Compounds with Alkenes. Chem. Lett. 2004, 33(4): 472~473
    [40] Boulaire V L, Gree R. Wittig reactions in the ionic solvent [bmim][BF4]. Chem. Commun. 2000, 22: 2195~2196
    [41] Cole A C, Jensen J L, Ntai I et al. Novel Br?nsted Acidic Ionic Liquids and Their Use as Dual Solvent?CatalystsJ. Am. Chem. Soc. 2002, 124(21): 5962~5963
    [42] Li D M, Shi F, Peng J J. Guo S, Deng Y Q. Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes. J. Org. Chem. 2004, 69(10): 3582~3585
    [43] Zhao G. Y, Jiang T, Gao HX, Han B X et al. Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem. 2004, 6(2): 75~77.
    [44] Gu D G, Ji S J, Jiang Z Q, Zhou M F, Loh T P. An Efficient Synthesis of Bis(indolyl)methanes Catalyzed by Recycled Acidic Ionic Liquid. Synlett. 2005, 6: 959~962.
    [45]易封萍,毛海舫编,合成香料工艺学,中国轻工业出版社,北京, 2007, 199~200
    [46] Forrester K J, Merrigan T L, Davis J H. Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole. Tetrahedron Lett. 1998, 39(49): 8955~8958.
    [47] Wierzbicki A,Davis J H. Proceeding of the Symposium on advances in Solvent Selection and Substitution for Extraction. March 5-9, 2000. Atlanta, Gergia, ALCHE, New York. 2000.
    [48] Yoshizawa M, Hirao M, Kaori I A, Ohno H, Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem. 2001, 11:1057~1062
    [49]刘玉平,孙宝国,梁梦兰等.叶青素的合成研究.日用化学工业, 2004, 34:133~136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700