室温离子液体的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了N-烷基吡啶类和N-甲基咪唑类室温离子液体。测定了他们的电化学窗口和电导率,为下一步离子液体在电解活泼金属和电镀领域的应用奠定了基础。
     首先利用1-氯丁烷与吡啶或1-甲基咪唑反应合成了作为室温离子液体中间体的氯化N-正丁基吡啶(BPC)、氯化1-甲基-3-丁基咪唑([bmim]Cl)。AlCl_3和BPC按摩尔比为2:1、1:1和0.8:1可以分别合成酸性、中性和碱性室温离子液体;利用BPC与NH_4BF_4,[bmim]Cl与NH_4BF_4或KHSO_4在乙腈中的复分解反应,合成了四氟硼酸N-正丁基吡啶(BPBF_4)、四氟硼酸1-甲基-3-丁基咪唑([bmim]BF_4)和硫酸氢盐1-甲基-3-丁基咪唑([bmim][HSO_4])三种室温离子液体。通过核磁共振氢谱(~1H NMR)、拉曼光谱(Raman)和红外光谱(IR)手段对合成产物的化学结构进行了表征,证明了合成物分别是BPC、[bmim]Cl、AlCl_3-BPC、BPBF_4、[bmim]BF_4和[bmim][HSO_4]。
     利用循环伏安法测定了室温离子液体的电化学窗口。酸性、中性和碱性AlCl_3-BPC、BPBF_4、[bmim]BF_4和[bmim][HSO_4]离子液体的电化学窗口分别为3.4V、4.0V、2.25V、3.1V、2.2V和2.2V,它们的电化学窗口都比较宽,且大于水的电化学窗口(1.229V),因而许多不能通过水溶液电解得到的活泼金属如铝一等,可以通过含有相应金属元素的离子液体电解得到。
     测定了酸性、中性和碱性AlCl_3-BPC、BPBF_4、[bmim]BF_4和[bmim][HSO_4]离子液体的电导率,结果表明每种离子液体的电导率均随着温度的升高而增大,电导率大小顺序依次为K_a>K_b>K_c>K_d>K_e>K>_f,其中K_a,K_b,k_c,K_d,K_e和K_f分别为[bmim]BF_4、BPBF_4、酸性、碱性、中性AlCl_3-BPC和[bmim][HSO_4]室温离子液体的电导率。并且每种离子液体的电导率对数与温度倒数的关系呈线性关系,满足Arrhenius方程。
     测定了BPBF_4、[bmim]BF_4和[bmim][HSO_4]三种室温离子液体在22℃时
In this paper, four kinds of room temperature ionic liquids (RTIL) are prepared. Their electric conductivity and electrochemical window, which play an important role in the applications of ionic liquids to electrodeposition and electroplating of active metals, are determined.The intermediates N-butylpyridium chloride(BPC) and l-butyl-3-methylimidazolium chloride([bmim]Cl) for the synthesis of ionic liquids are prepared by the reactions between N-butyl halide and pyridium or N-methylimidazolium. Acidic, basic and neutral BPC-AlCl3 ionic liquids are prepared by directly mixing BPC and AlCl3 with different ratios of BPC to AlCl3 under inert atmosphere. For other ionic liquids such as N-butylpyridium tetrafluoride (BPBF4), l-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BFi|) and l-butyl-3-methylimidazolium hydrogen sulphate ([bmim][HSO4]), they are synthesized through anion exchange reactions in acetonitrile medium. Their chemical structures are determined
    by H NMR, IR and Raman spectra, respectively.The electrochemical window of the ionic liquids synthesized is measured by Cyclic Voltammogram. The chemical potential windows of the RTILs prepared are 3.4V, 4.0V, 2.25V, 3.1V, 2.2V and 2.2V for acidic, neutral and basic A1C13-BPC, BPBF4, [bmim]BF4 and [bmim][HSO4] RTILs respectively. The electrochemical windows of these ionic liquids are broader than of water (1.229V), so some active metals such as aluminium can be electrolysed in these ionic liquids.The electric conductivity of the RTILs is measured at different temperatures. The electric conductivity is increased with increasing temperature. It is shown that the sequence of electric conductivity can be expressed as Ka>Kb>Kc>Kd>Ke>Kf, where Ka kb kc, Kd Ke and Kf are electric conductivity for [bmim]BF4, BPBF4, acidic, basic and neutral AlCl3-BPC and [bmim][HSO4] RTILs, respectively. Moreover, the relations of electric conductivity and temperature can be described with Arrhenius equation.The viscosity of BPBF4, [bmim]BF4 and [bmim][HSO4] RTILs is determined at 22℃. It is demonstrated that [bmim]BF4 ionic liquid has better fluidity than BPBF4, and [bmim][HSO4 ] is the worst in fluidity among them.
引文
[1] F. Hurley and J.P. Wier, Electrodeposition of Metals form Fused Quaternary Ammonium Salts, J. Electrochem. Soc., 1951, 98: 203-206.
    [2] H.L.Chum, V.R.Koch, R.A.Osteryoung et al. An electrochemical Serutinity of Organometallic Iron Complexes and Hexamethylbenzene ins a Room Temperature Molten Salt, J.Am.Chem.Soc.,1975,97: 3264-3265.
    [3] Tait S, Osteryoung R A, Infrared study of ambient-temperature chloroaluminates as a function of melt acidity[J], Inorg Chem, 1984, 23: 4352-4360.
    [4] Boon J A, Levisky J A, Pflug J L and Wilkes J S, Friedel-Crafts reactions in ambient-temperature molten salts[J], J Org Chem, 1986, 51: 480-482.
    [5] Hussey C L, Room temperature haloaluminate ionic liquids-Novel solvents for transion metal solution chemistry. Pure & Appl Chem, 1988, 60(12): 1763-1772.
    [6] 李梦龙,化学数据速查手册,北京:化学工业出版社,2003,50,83-87.
    [7] 李汝雄,绿色溶剂—离子液体得合成与应用,化学工业出版社,2004:21-27.
    [8] Seddon K.R., Ionic Liquids for Clear Technology, J.Chem.Tech Biotechnol., 1997, 68(4): 351-356.
    [9] Bonhote P, Dias A P, Pagageorigiou N et al. Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem., 1996, 35: 1168-1178.
    [10] Fuller J., Carlin R.T., Long H.C. De, Structure of 1-ethyl-3-methylimidazolium Hexafluorophoshate: Model for Room Temperature Molten Salts, J.Chem.Soe.Chem.Commun., 1994: 229-301.
    [11] K.N.Marsh, J.A.Boxall, R.Lichtenthaler. Room temperature ionic liquids and their mixtures—a review.Science Direct, Fluid Phase Equilibria 2004, 219: 93-98.
    [12] Quarmby I.C., Mantz R.A.Goldenberg L.M., et al., Stoichiometry of Laten Acidity in Buffered Chloroaluminate Ionic Liquids, Anal. Chem., 1994, 66: 3558-3561.
    [13] Quarmby I.C., Osteryoung R.A., Latent Acidity in Buffered Chloroaluminate Ionic Liquids., J. Am. Chem. Soc., 1994, 116: 2649-2650.
    [14] Hagiwara R., Ito Y., Room temperature ionic liquids of alkylimidazolium cations and fluoroanions [J], Fluorine Chemistry, 2000, 105(2): 221-227.
    [15] Fannin A.A., Floreani D.A., King L.A., et al., Properties of 1,3-dialkylimidazolium Chloride Aluminum Chloride Ionic Liquids. 2. Phase-transitions, Densities, Electrical Conduetivities and Viscosities, J. Phs. Chem., 1984, 88: 2614-2621.
    [16] Ma M., Johnson K.E., Carbocation Formation by Selected Hydrocarbons in Trimethylsulfonium Bromide-AlCl_3/AlBr_3 Ambient Temperature Molten Salts., J. Am. Chem. Soc., 1995, 117: 1508-1513.
    [17] 田鹏,稀散金属和过渡金属室温离子液体的研究,东北大学博士学位论文,2002:2-5,26.
    [18] Melton T J, Joyee J, Wilkes S, et al., Electrochemical Studies of Sodium Chloride as a Lewis Buffer for Room Temperature Chloroaluminate Molten Salts[J], J Electrochem Soc, 137(12): 3865-3868.
    [19] Scordilis-Kelley C, Fuller J, Carlin R T, et al., Alkali Metal Reduction Potentials Measured in Chloroaluminate Ambient-Temperature Molten Salts[J], J Electroehem Soc, 1992, 139(3): 694-698.
    [20] Cumo J J and Gambino R J, The sythesis and epitaxial growth of GaP by fused salt electrolysis[J], J. Electrochem. Soc., 1968, 115(7): 755-759.
    [21] Li Q F, Hjuler H A, Berg R W, and Bjerrum N J. Electrochemcal deposition of aluminum from NaCl-AlCl_3 melts[J], J. Electrochem. Soc., 1990, 137(2): 593-598.
    [22] Carpenter M K, Mark W V, Electrochemical codeposition of gallium and arsenic from a room temperature chlorogallate melt[J], J.Electrochem.Soc, 1990,137(1): 123-129.
    [23] Xu X H and Hussey C L, Electrodeposition of silver on metallic and nonmetallic electrodes from acidic aluminum chloride-1-methl-3-ethylimidazolium chloride molten salts[J], J.Electrochem.Soc., 1992,139(5): 1295-1300.
    [24] Xu X H and Hussey C L, The electrochemistry of tin in the aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt[J], J.Electrochem.Soc., 1993,140(3): 618-626.
    [25] Xu X H and Hussey C L, The electrochemistry of mercury at glassy carbon and tungsten electrodes in the aluminum chloride-1-methyl-3-ethylimidazolium chloride molten salt[J],J.Electrochem.Soc, 1993,140(5): 1226-1233.
    [26] Pitner W R and Hussey C L, Stafford G R, Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt[J], J.Electrochem.Soc, 1996,143(1): 170-175.
    [27] Chen P Y, Sun W, Electrochemical study of copper in a basic 1-methl-3-ethylimidazolium tetrafluoroborate room temperature molten salts[J], Electrochem.Acta, 1999(45): 441-450.
    [28] Chen P Y, Sun W, Electrochemical study of Cd() in a basic l-methyl-3-ethylimidazolium chloride/tetrafluoroborate room temperature molten salt[J], Electrochimica Acta, 2000(45): 3163-3170.
    [29] Koura N, Electrodeposition of metals and alloys from molten salt electrolytes[J], J.Surf.Finish.Soc.Jap.(in Japanese), 1995,46(12): 1 088.
    [30] Safford G R, Jovic V D, Zhu Q, et al., The electrodeposition of Al-Cu alloys from room temperature chloroaluminate electrolytes[C], Extended Abstracts of The 96th Meeting of The Electrochemical Society, Inc .Hawaii, U.S.A.,Oct. 17-2, 1999, No.2 293.
    [31] Lin M C, Chen P Y, Sun W, Electrodeposition of Cu-Zn alloys from a Lewis acidic zinc-MEIC molten salt[C], ibid., No.2 290.
    [32] Koura N, Umebayashi T Idemoto Y, et al., Electrodeposition of Nb-Sn alloy from SnCl_2-NbCl_5-MEIC molten salts[J], Denki Kagaku,
     1999,67(6): 684.
    [33] Haarerg G M, Stafford G. Electrochemical behaviour of dissolved niobium, molybdenum and tantalum species in molten chloroaluminates[C], Extended Abstracts of The 196~th Meeting of The Electrochemical Society, Inc.Hawaii, U.S.A., Oct.17-22, 1999, No.2 295.
    [34] Stewart G, Hussey C L, Electrodeposition of transition metal-aluminum alloys from molten AlCl_3-NaCl[C]. Extended Abstracts of The 193~th Meeting of The Electrochemical Society, Inc.San Diego, U.S.A., May 3-8, 1998, No.1 037.
    [35] Sugden S, Wilkins H. CLXVII-The parachor and chemical constitution, Part XII, fused metals and salts[J]. J. Chem. Soc. 1929, 1291-1298.
    [36] Hirao M, Sugimoto H, Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines. J. Electro Chem. Soc, 2000, 147(11): 4168-4172.
    [37] Karodia N, Guise S, Newlands C et al. Clean catalysis with ionic solvents-phosphonium tosylates for hydroformylati-on. Chem. Comraun., 1998: 2341-2342.
    [3 8] Thomas W.Room-temperature ionic. Solvents for synthesis and catalysis[J], Chem.Rev., 1999,99(8): 2071-2083.
    [39] Hurley F H, Wier T P, Electrodeposition of metals from fused quaternary ammonium salts[J], J.Electrochem.Soc.,1951,98(2): 203-208.
    [40] Koch V R, Milleer L L and Osteryoung R A, Electroinitiated Friedel-crafts transalkylations in a room-temperature molten-salt medium[J], J.Am.Chem.Soc.,1976,98(17): 5277-5284.
    [41] Robonson J and Osteryoung R A, An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salts system aluminum chloride-n-butylpyridinium chloride[J], J.Am.Chem.Soc,1979,102(2): 323-327.
    [42] Gale R J and Osteryoung R A, Potentiometric investigation of dialuminum heptachloride formation in aluminum
     chloride-n-butylpyridinium chloride mixture[J], Inorg. Chem., 1979, 18(6): 603-609.
    [43] Ronald A.C., Lowell A K, Richard E L, et al., Density, electric conductivity and viscosity of several n-alkylpyridinium halides and their mixtures with aluminum chloride[J], J. Am. Chem. Soc., 1979, 126(10): 1644-1647.
    [44] Hussey C L, King L A and Carpio R A, The electrochemistry of copper in a room temperature aeidic chloroaluminate melt[J], J. Electrochem. Soc., 1979, 126(6): 1029-1034.
    [45] Hussey C L and Laher T M, Electrochemical and spectroscopic studies of cobalt(Ⅱ) in molten aluminum chloride-n-pyridinium chloride[J], Inorg. Chem., 1981, 112(20): 4201-4206.
    [46] Robinson J and Osteryoung R A, An investigation into electrochemical oxidation of some aromatic amines in the room-temperature molten salt system aluminum chloride-n-butylpyridinium chloride[J], J. Am. Chem. Soc., 1980, 102(13): 4415-4440.
    [47] Wilkes J S, Levisky J A, Wilson R A, et al., Althyl-imidazolium chloroaluminate melts: a new class of room temperature ionic liquids for electrochemistry spectroscopy and synthesis[J], Inorg. Chem., 1982, 21: 1263-1268.
    [48] 凌国平,逢清强,室温熔盐电镀的新进展[J],化学通报,2000,4:c0035.
    [49] Christopher J A, Martyn J G, Roberts and Seddon K R, Friedel-crafts reactions in room temperature ionic liquids[J], Chem. Common., 1998, 19(7): 2097-2098.
    [50] Denise A, Hussey C L, Seddon K. R, et al., Room-temperature ionic liquid as solvents for electronic absorption spectroscopy of halide complexes[J], Nature, 1994, 323(16): 615-616.
    [51] Fuller J, Carlin R T, Osteryoung R A, Electrochemical studies of chromium(Ⅲ) and chromium(Ⅱ) chloride complexes in basic aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salts[J], J. Electrochem. Soc.,1997, 144: 3881-3385.
    [52] Akihiro N V. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts[J], Electrochemica Acta, 2000, 45: 1265-1270.
    [53] Elaiwi A, Hitchcock P B, Sedden K R, Hydrogen bonding in imidazolium salts and its implications for ambient temperature halogenoaluminate(Ⅲ) ionicliquids[J], J. Chem. Soc. DaltonTran., 1995, 3467-3471.
    [54] Pierre B, Ddias A P, Nicholus P K, et al., Hydrophobic, highly conductive ambient temperature molten salts[J], Inorg. Chem., 1996, 35: 1168-1178.
    [55] Anna S L, John D H, Christopher A R, et al., Desinging ionic liquids: imidazolium melts with inert carborane anions[J], J. Am. Chem. Soc., 2000, 122(14): 7264-7272.
    [56] Earle M J, Seddon K R, McCormae P B, The first high yield green route to a pharmaceutical in a room temperature ionic liquid[J], Green Chem, 2000, 2(6): 261-262.
    [57] Leone A M, Weatherly S C, Williams M E, An ionic liquid form of DNA: redox-aetive molten salts of nucleic acids[J], J. Am. Chem. Soc., 2001, 123(2): 218-222.
    [58] Ohno H, Nishimura N, Ion conductive characteristics of DNA film containing ionic liquids[J], J. Electrochem. Soc., 2001, 148(4): 168-170.
    [59] Zulfiqar F, Kitazume T, Lewis acid-catalyzed sequential reaction in ionic liquid[J], Green Chem, 2000, 2(6): 296-297.
    [60] Tames H D, Andkerri J, Forrester J, Thazolium-ion based oranic ionic liquids(QILs), novel QILs which promote the benzoin condensation[J], Tetrahedron Letters, 1999, 40: 1621-1622.
    [61] Dongbin Zhao, Min Wu, Yuan Kou, et al., Ionic liquids: applications in catalysis, Catalysis Today, 2002, 74: 157-189.
    [62] 段海峰,张所波,林英杰等,新型室温离子液体六烷基胍盐的制备及性质,高等学校化学学报,2003,24:2024-2026.
    [63] 寇元,杨雅立,功能化的酸性离子液体,石油化工,2004,33(4): 297-302.
    [64] Visser. Ann. E., Swattoski, Richard P., Riecher, W. Matthew, Griffin, Scott, Refers, Robin D., Traditional extractants in nontraditional solvent: Group 1 and 2 extractionby crow chefs in room temperature ionic liquids, Ind. Eng. Chem. Res, 2000, 39 (10), 3596-3640.
    [65] Soberer, Sonja H. Kaftzik, Nicole, Kragl, Udo, Wasserscheid, Enzyme catalysis in ionic liquids: Lipase catalyzed kinetic resolution of 1-phenylethanol with improved enantion-selectivity., Chem. Commun. 2001, 5, 425-426.
    [66] G. J. Lye, Seddon, Room-temperature Ionic Liquids as replacements for organic solvents in multiphase Bioprocess Operations, Biotechnol. Bioeng, 2000, 69(2), 227-233.
    [67] Robinsion J, Osteryoung R A, ~1H and ~(13)C Nuclear Magnetic Resonance Spectroscopy Studies of Aluminium Halide-Alkylpyridinium Halide Molten Salts and Their Benzene Solutions[J], J Am Chem Soc, 1979, 101(14): 3776-3779.
    [68] 谢乃贤,司士辉,三氯化铝—氯化正丁基吡啶类室温熔岩的合成,湖南大学学报,1993,20(4):49-52.
    [69] John Fuller, A.C. Breda, R.T. Carlin, Ionic Liquid-polymer Gel Electrolytes from Hydrophilic and Hydrophobic Ionic Liquids, J. Electoanal. Chem., 1998, 459: 29-34.
    [70] 王宗明,何欣翔,孙殿卿,实用红外光谱学,北京:石油化学工业出版社,1978.
    [71] Yasuhiko Ito. Non-conventional electrolytes for electrochemical applications[J]. Electrochimica Acts, 2000, 45: 2611-2622.
    [72] 杨家振,金一,曹英华等,室温离子液体电化学稳定性的研究,高等学校化学学报,2004,9:1733-1735.
    [73] 张伟,吴巍,张树忠等,丁基吡啶四氟硼酸盐中的两相Beckmann重排反应,石油化工,2004,4(33):307-310.
    [74] Dullius J E L, Suarez Paulo A Z, Einloft S, et al., Selective Catalytic Hydrodimerization of 1,3-Butadiene by Palladium Compounds Dissolved in Ionic Liquids[J], Organnometallics, 1998, 17(5): 815-819.
    [75] 张晟卯,张春丽,吴志申等,室温离子液体介质中尺寸、结构可控Ni纳米微粒的制备及结构表征,化学学报,2004,62(15):1443-1446.
    [76] 龚勇华,薛浩然,谢在库等,离子液体[Bmim]BF_4/水混合溶剂中1-丁烯氢甲酰化反应研究,有机化学,2004,24(9):1108-1110.
    [77] Singer R. D., Scammells P. J., Alternative methods for the MnO_2 oxidation of codeine methyl ether to thebaine utilizing ionic liquids[J], Tetrahedron Letters, 2001, 42(39): 6831-6833.
    [78] Vasundhara Singh, Sukhbir Kaur, Varinder Sapehiyia, et. al., Microwave accelerated preparation of [bmim][HSO_4] ionic liquid: an acid catalyst for improved synthesis of coumarins[J], Catalysis Communications, 2005, 6: 57-60.
    [79] Jacqueline A. Whitehead, Geoffrey A. Lawrance and Adam McCluskey, 'Green' leaching: recyclable and selective leaching of gold-bearing ore in an ionic liquid[J], Green Chem, 2004, 6: 313-315

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700